Металл способный поглощать газы при высоких температурах

Обновлено: 20.09.2024

Некоторые металлы способны поглощать водород в различной степени и удерживать его при обыкновенной температуре даже в пустоте. Это так называемое явление окклюзии водорода (Грагам). Количество поглощенного водорода зависит от состояния поверхности металла и от температуры. Порошкообразные металлы и при температуре более высокой до известного предела поглощают больше водорода, чем сплошные и на холоду. Серебро, медь, железо, золото, платина в сплошном виде и при обыкновенной температуре поглощают на один объем металла менее одного объема водорода. Так называемая губчатая платина при обыкновенной температуре, а особенно платиновая чернь, обладают гораздо большею поглотительною способностью в отношении к В. Металлический же палладий поглощает более всех других металлов; выкованный в виде пластинки (неплавленый) при 19° палладий поглощает 376 объемов на 1 об., при 90°-67° до 643 об., при 245° до 526 объемов. Как видно, эта способность палладия с увеличением температуры возрастает до некоторого максимума, а при дальнейшем повышении температуры снова уменьшается. Губчатый палладий при 200° поглощает 655 объемов. Поглощение сопровождается увеличением объема, или разбуханием металла; особенно ясно это можно видеть при следующем опыте: разлагают воду гальваническим током; электрод, на котором выделяется водород, делают из палладиевой пластинки, покрытой с одной стороны лаком; при пропускании тока пластинка закручивается вследствие расширения непокрытой лаком поверхности, происходящего от поглощения водорода. Никель, кобальт, алюминий, магний также способны поглощать водород. Чугун, особенно марганцовистый, в расплавленном состоянии поглощает водород, а также сталь, при 800°. В этих явлениях можно видеть переход от самого слабого взаимодействия водорода с металлами, ограничивающегося поверхностью их, до образования определенных химических соединений.

Водородистые палладий Pd2H, натрий Na2H и калий К2Н представляют примеры подобных определенных соединений. Они обладают металлическим видом, и последние — серебристо-белым цветом. Они получаются при нагревании металлов в атмосфере водорода; температуры, при которых они образуются, близки к температурам их диссоциации. Упругость диссоциации равна атмосферному давлению для Pd2H при 130° — 140°, для Na2H — при 420° — 430°, для К2Н — при 410° — 420°; наиболее удобная температура получения первого — около 100°, второго и третьего — выше 200°. Pd2H способен еще далее поглощать водород, но это дальнейшее поглощение признают за простое растворение водорода в водородистом палладии. Водородистый калий способен самовоспламеняться на воздухе, а водородистый натрий в сухом воздухе быстро не изменяется. Литий при 500°, а равно и таллий способны поглощать водород. Водородистая медь Cu3Н получается в виде темного малопостоянного осадка при действии на раствор медного купороса некоторых восстановителей.

Изложенными фактами до последнего времени вопрос о водородистых металлах почти вполне исчерпывался. Но недавно благодаря новым исследованиям К. Винклера возникла возможность и этого рода соединения подвести (Б. Браунер) под общие законы, управляющие химическими явлениями, в смысле форм соединений, в особенности под периодический закон (см. это слово). Исследования Винклера показали возможность образования водородистых соединений многих металлов. Эти соединения получаются, если водород при высокой температуре приходит в соприкосновение с металлом в момент его выделения из кислородного соединения действием металлического порошкообразного магния при нагревании. Таким образом получены, при реакции весьма энергичной, водородистые церий — CeH2, цирконий — ZrH2, торий — ThH2; для металлов III группы получены водородистые иттрий У2Н3, лантан La2Н3. Металлы II группы также соединяются с водородом в указанных условиях; даже водородистый магний получается при нагревании в атмосфере водорода смеси окиси магния с порошкообразным металлическим магнием, потому что окись магния способна диссоциировать в парах магния (Морзе и Вайт); реакция происходит при этой группе сравнительно медленно и несовершенно; получены соединения для бериллия, магния, кальция, стронция и бария; состав их выражается общей формулой МеН, на атом металла один атом водорода; выход водородистого соединения возрастает с увеличением атомного веса металла. Получить водородистые соединения для металлов I группы этим способом не удалось по той причине, очевидно, что редукция магнием кислородных соединений их совершается при большом выделении тепла и температуры, развивающиеся при этом, значительно выше температур диссоциации водородистых металлов.

Таким образом, металлы первых четырех групп периодической системы образуют ряд водородистых соединений такого состава Ме2Н, Ме2Н2, Ме2Н3 и Ме2Н4 (формулы вторая и четвертая удвоены, чтобы лучше показать последовательность изменения форм соединений при переходе от одной группы к другой). Кремний и углерод, принадлежащие к IV группе (но к другой полугруппе, чем Се и Th), к которой относится также церий и другие металлы, образующие, по Винклеру, водородистые соединения состава Ме2Н4, образуют с водородом соединения другого состава, именно водородистый кремний: SiH4 и метан СН4, которые суть уже газы, т. е. физически глубоко отличаются от твердых В. металлов, упоминаемых выше. Водородистые соединения таких металлов, как мышьяк, сурьма и т. п., также суть газы. Они описываются при этих металлах и уже входят в ряд водородных соединений, подобных Н2О, HCl и т. п.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон . 1890—1907 .

Тема 6. Цветные металлы и сплавы

1. Какие Вы знаете классификации цветных металлов и их сплавов?

2. Медь и ее сплавы. Классификация, состав, маркировка и применение

3. Алюминий и его сплавы. Классификация, состав, маркировка и применение

4. Магний и его сплавы. Классификация, состав, маркировка и применение

5. Титан и его сплавы. Классификация, состав, маркировка и применение

Тестовые вопросы

1. Название сплавов меди с цинком:

1) бронзы; 2) латуни; 3) мельхиоры; 4) куниали

2. Марка литейной латуни:

1) Л90; 2) Л68; 3) ЛО70-1; 4) ЛЦ10

3. Марка деформируемой латуни:

1) Л90; 2) ЛЦ10; 3) БрО10; 4) Л96

4. Количество цинка, содержащееся в однофазных латунях … %:

1) более 10; 2) более 39; 3) менее 39; 4) более 46

5. Марка двухфазной двухкомпонентной деформируемой латуни:

1) Л96; 2) ЛЦ32; 3) Л60; 4) ЛЦ16К4

6. Марка однофазной двухкомпонентной латуни:

1) Л90; 2) ЛО70-1; 3) Л60; 4) Бр Б2

7. Максимальную прочность имеет латунь с содержанием цинка…%

1) 15; 2) 45; 3) 32; 4) 90

8. Максимальную пластичность имеет латунь с содержанием цинка…%

1) 45; 2) 90; 3) 15; 4) 32

9. Латунь, содержащая …% цинка называют томпаком

1) 20; 2) 45; 3) 32; 4) 90

10. Марка литейной оловянистой бронзы:

1) БрОФ 6,5-0,4; 2) БрО3Ц7С5Н; 3) Л60; 4) ЛАЖ 60-1-1

11. Сплавы на основе системы Cu-Ni-Zn называются…

1) нейзильберами; 2) мельхиорами; 3) куниалями; 4) манганинами

12. Сплавы на основе системы Cu-Ni-Al называются…

1) мельхиорами; 2) куниалями; 3) манганинами; 4) нейзильберами

13. Сплавы на основе системы Cu-Ni называются…

1) куниалями; 2) манганинами; 3) мельхиорами; 4) нейзильберами

14. Марка деформируемого алюминиевого сплава, легированного цинком, магнием и медью:

1) Д16; 2) В95; 3) АЛ2; 4) Бр Б2

15. Алюминиевые сплавы, которые обычно модифицируют:

1) дуралюмины; 2) силумин; 3) магналии; 4) латуни

Сплавы алюминия с . называют силуминами.

1) медью; 2) магнием; 3) кремнием; 4) цинком

17. Алюминиевый сплав, который относится к деформируемым термически неупрочняемым:

1) дуралюмины; 2) силумины; 3) магналии; 4) бронза

18. Алюминиевый деформируемый термически упрочняемый сплав:

1) дуралюмин; 2) силумин; 3) магналии; 4) бронза

19. Литейные алюминиевые сплавы:

1) дуралюмины; 2) силумины; 3) магналии; 4) специального названия нет

20. Алюминиевые коррозионностойкие сплавы, широко используемые для изготовления деталей глубокой штамповкой:

1) дуралюмины; 2) силумины; 3) магналии; 4) нейзильбер

21. Металл, способный поглощать газы при высоких температурах:

1) алюминий; 2) медь; 3) титан; 4) хром

22. Цифра в маркировке магниевых сплавов показывает…

1) условный порядковый номер; 2) содержание магния в процентах; 3) содержания меди в процентах; 4) предел прочности в МПа

23. Литейный магниевый сплав:

1) 45Л; 2) МЛ6; 3) Л90; 4) АЛ2

24. Деформируемый магниевый сплав:

1) АЛ2; 2) Д16; 3) МА1; 4) М3

25. Титановые сплавы обладают …

1) низкой коррозионной стойкостью; 2) высокими механическими свойствами; 3) низкой стоимостью;4) хорошей обрабатываемостью резанием

Тугоплавкие металлы

Тугоплавкие металлы

Тугоплавкие металлы выделяются в отдельную категорию по признаку минимальной температуры плавления – от +200 °С. Кроме этого, все подобные металлы относятся к редкоземельным, то есть их процентное содержание в земной коре крайне мало – 2-3 %. Их сложно обрабатывать в чистом виде, но значение в сплавах сложно переоценить. Например, именно благодаря тугоплавким металлам работают лампы накаливания.

Причина устойчивости к сверхвысокой температуре кроется в структуре атомов, электроны на их орбитах расположены очень близко друг к другу. Тугоплавкие металлы также устойчивы к деформации. Подробнее о свойствах и применении тугоплавких металлов читайте в нашем материале.

Получение тугоплавких металлов

Тугоплавкие металлы проявляют высокую химическую активность, легко взаимодействуя с другими элементами. Это осложняет их добычу, так как металлы этой группы редко сохраняются в чистом виде.

При добыче элементов этой группы сначала получают металл в виде порошка, применяя специальное оборудование. На сегодняшний день нет технологий, позволяющих эффективно добывать металлы из группы тугоплавких, отделяя их от примесей. Химические соединения тугоплавких металлов отличаются нестабильностью, что осложняет их применение в промышленности и снижает качество конечной продукции.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Методы добычи тугоплавких металлов

Восстановление через триоксид водорода

Эта технология для получения тугоплавких металлов в виде порошка требует постоянной температуры в диапазоне от +800 до +1000 °С, для чего используют специальные печи. Чаще всего эту многоэтапную методику применяют для добычи вольфрама и молибдена

Восстановление перренатов водородом

Выделение рения по такой технологии в промышленных масштабах производят при температуре в диапазоне от +480 до +520 °С. Для вымывания из порошка щелочи используют смесь соляной кислоты с горячей водой

Через металлические соли

Технологию чаще всего применяют при добыче молибдена. В процессе выделения металла смесь металлической соли с порошком металла подвергают нагреву от +550 до +900 °С в защитной среде из инертного газа. Далее молибден восстанавливают водородом при +820…+980 °С

В основном, все методики получения тугоплавких металлов основаны на так называемой порошковой металлургии. После получения исходного материала в виде порошка из него методом химического восстановления водородом выделяется нужный металл. Далее получают гексафторид металла и уже из него выделяют металл в чистом виде.

Плавление тугоплавких металлов в виде порошка производят в специальных печах, после чего металл проковывают (протягивают) в проволоку или листы. Помимо нагрева, специальное оборудование попутно прессует металл, придавая ему необходимую форму. Все операции из-за высокой химической активности сырья проходят в защитной среде из инертных газов.

Сферы применения тугоплавких металлов

Тугоплавкие металлы широко используются в промышленности:

  1. Как легирующие добавки при выплавке стали.
  2. В станкостроении, машиностроении и в производстве автомобилей.
  3. В производстве комплектующих для электротехники – электродов, нитей накаливания и других жаростойких деталей.
  4. В самолетостроении при производстве реактивных двигателей.
  5. В военной промышленности, особенно при производстве ракет.
  6. В производство особо прочных сплавов для снарядов, элементов брони военной техники и другой военной продукции от оружия до защитного снаряжения.
  7. В производстве красок, огнестойких покрытий и еще многих областях производства.
  8. В атомной энергетике, где оборудование работает в экстремальных температурных режимах. Применение металлов из группы тугоплавких позволяет обеспечить стабильную и безопасную эксплуатацию АЭС.

Свойства рения (Re)

Рений расположился на 75-й позиции в периодической таблице химических элементов. По тугоплавкости из металлов в чистом виде (речь не идет о сплавах) уступает только вольфраму. При стандартных условиях он обладает плотной структурой и серебристым цветом. Месторождения рения найдены по всему миру, но первоначально его открыли в Германии, своим названием металл обязан реке Рейн.

Свойства рения (Re)

Официальной датой открытия этого элемента считают 1925 год, когда Уолтер Ноддак обнаружил элемент, существование которого задолго до этого предсказывал Менделеев. В 1928 году Ида Тэкке и Отто Берг смогли получить из молибденовой руды килограмм рения, затратив при этом на каждый грамм полученного вещества более 650 г сырья.

Физические свойства:

  • При плотности 21 г/см3 рений стоит на 4-м месте по твердости.
  • Рений плавится при температуре +3200 °С, а закипает при +5600 °С.
  • Чистый рений в порошке пластичен, однако по мере обработки его твердость начинает резко расти. Этот металл легко выдерживает многократные нагревы и охлаждения, не теряя своей прочности.
  • По удельному сопротивлению рений вне конкуренции в своей группе.

Металл находят повсюду, однако в таких мизерных количествах, что его по праву считают одним из самых редких элементов таблицы Менделеева. Отсюда и стоимость металла: в зависимости от химической чистоты порошок стоит от 1 300 до 12 000 долларов за килограмм. Лидерами по добыче металла сегодня являются США и Российская Федерация. Разведанные запасы на 2020 год составляли около 13 000 тонн, по расчетам этого количества хватит на 150–200 лет.

Рений применяют:

  • Для создания покрытий, защищающих металл от коррозии и механических повреждений. Однако покрытия на основе сплавов рения в разы дороже хромовых.;
  • В химической промышленности – им покрывают внутренние стенки емкостей для хранения кислот.
  • В качестве добавки в жаропрочных сплавах.
  • При строительстве ракет и самолетов в качестве легирующей добавки, а также для создания жаропрочного покрытия на поверхности турбинных лопаток или сопел двигателей.

В целом рений относительно мало применяют в промышленности из-за его редкости и дороговизны.

Причины востребованности тантала (Ta)

Этот металл занимает 73-ю позицию в периодической системе элементов. При стандартных условиях тантал представляет собой серебристый металл, иногда с голубоватым оттенком, который ему придает оксидная пленка. В 1802 году шведский ученый А. Г. Экеберг обнаружил тантал в двух образцах породы: из Швеции и Финляндии. В чистом виде металл смогли получить только через 42 года. Отсюда название – в честь мифического героя, которого боги обрекли на вечные страдания.

Причины востребованности тантала (Ta)

Почти через 100 лет после открытия Экеберга немецкий исследователь Болтон выделил пластичную форму этого металла.

  • температура плавления тантала +3000 °С, а кипения +5500 °С;
  • при сравнимой с золотом пластичности тантал обладает очень высокой плотностью – порядка 17 г/см3;
  • тантал отлично поглощает газ и при нагреве до +800 °С способен поглотить 740 объемов газа;
  • при охлаждении до температуры ниже 4,5 К тантал переходит в сверхпроводящее состояние;
  • тантал – парамагнетик при температуре до -3420 °С, при более низкой температуре он становится ферромагнетиком.

Главные месторождения танталовой руды расположены во Франции, Египте и Таиланде. В земной коре процентное содержание этого редкого металла составляет 0,0002 %. Один килограмм тантала стоит в среднем около 250 долларов США. Если же речь идет об очищенном до 99,9 % металле, его цена превышает 4000 $.

Применение тантала в промышленности:

  • компонент антикоррозионных и жаростойких покрытий;
  • устойчивые к воздействию агрессивных химических агентов предметы лабораторной посуды;
  • теплообменники атомных электростанций (тантал не вступает в реакцию с парами цезия);
  • сверхпроводящие стержни в криотронах.

В последние годы тантал нашел еще одно необычное применение. Благодаря способности этого элемента образовывать на поверхности прочную и красивую радужную оксидную пленку, этот металл полюбили ювелиры.

Для того чтобы получить 1 тонну чистого (от 80 %) тантала, понадобится переработать около 3 000 тонн породы.

Тугоплавкий металл Ниобий (Nb)

Занимающий 41-ю позицию в периодической таблице Менделеева ниобий выделил из колумбита в начале XIX века англичанин Хэтчет. На первых порах ниобий посчитали вариантом тантала, так как эти два металла очень похожи. В 1844 году исследователь из Германии Генрих Розе, назвал металл в честь любимой дочки.

Добыча ниобия из руды происходит в три этапа: вскрытие концентрата, разделение ниобия и тантала и химическое восстановление чистого ниобия. В промышленности используют карботермическую, алюмотермическую и натрийтермическую технологии добычи ниобия из руды. Все изотопы ниобия, кроме одного, радиоактивны. Взаимодействие человека с пылью металла приводит к раздражению слизистых, отравлению и даже параличу конечностей в тяжелых случаях.

Области применения ниобия:

  • легирующая добавка в стали, применяемые в авиапромышленности;
  • легирующая добавка в сплавах цветных металлов;
  • изготовление сверхпроводящей проволоки для криотронов;
  • изготовление электролитических конденсаторов высокой удельной теплоемкости;
  • чеканка памятных монет.

Основные объемы ниобия добывают в Северной Америке, Японии и Бразилии. В нашей стране добыча ниобия ведется на Кольском полуострове.

Сферы применения молибдена (Мо)

Честь открытия этого тугоплавкого металла принадлежит шведскому ученому Карлу Шееле, который в 1778 году, прокаливая молибденовую кислоту, получил триоксид молибдена. Металлический молибден в виде порошка в 1817 году получил Йенс Якоб Берцелиус путем восстановления оксида водородом. Молибден представляет собой мягкий пластичный металл серебристо-белого цвета. Земная кора по оценкам ученых содержит 3×10−4 % молибдена.

Сферы применения молибдена (Мо)

  • мягкий пластичный металл с твердостью по шкале Мооса 4.5 балла;
  • парамагнетик;
  • крайне низкий коэффициент теплового расширения;
  • температура плавления +2 600 °С, кипения +4 650 °С.

Крупнейшие современные месторождения молибдена – в США, Канаде, Мексике, Австралии, Норвегии, России и Чили. Крупные запасы молибдена (7 % от мировых) найдены в Армении.

Применение молибдена:

  • в качестве легирующей добавки при выплавке жаропрочных нержавеющих сталей;
  • катализатором реакций в химической промышленности;
  • в качестве компонента зеркал газодинамических лазеров;
  • как нагревательный элемент в высокотемпературных вакуумных печах.

В человеческом организме молибдену отведена крайне важная роль: он участвует в тканевом дыхании, усиливая работу антиоксидантов. А вот вдыхание молибденовой пыли ведет к пневмокониозу – неизлечимой болезни легких.

Самый тугоплавкий металл Вольфрам (W)

В группе тугоплавких металлов лидирует вольфрам. Поспорить с ним в термостойкости может только один неметаллический элемент таблицы Менделеева – углерод. В периодической системе вольфраму принадлежит 74-я позиция. Название металла, в переводе означающее «волчья пена», досталось ему от минерала вольфрамита, который затруднял выплавку олова, превращая руду в шлак. Вольфрам был открыт в 1783 году братьями Элюар, по другой версии честь открытия принадлежит Карлу Шееле.

Самый тугоплавкий металл Вольфрам (W)

Физические особенности свойств вольфрама:

  • блестящий металл, сероватого оттенка;
  • температура плавления +3400 °С, а кипения + 5 555 °С;
  • плотность 19,25 г/см3, что делает его одним из наиболее плотных элементов;
  • парамагнетик;
  • твердость 7,5 баллов по шкале Мооса;
  • пластичен, хорошо куется, протягивается в нити или пластинки.

Рекомендуем статьи

Вольфрам отличается высокой устойчивостью к коррозии. В раскаленном до красного свечения состоянии этот металл медленно образует оксидную пленку.

Применение вольфрама:

  • как легирующая добавка для жаропрочных и жаростойких сталей;
  • в качестве легирующей добавки в лучших сортах инструментальных сталей;
  • электроды для дуговой аргоновой сварки;
  • нагревательные элементы в вакуумных печах сопротивления;
  • защита от ионизирующего излучения.

Килограмм этого тугоплавкого металла продают по цене 110 долларов США. Металл низкой пробы, загрязненный примесями, можно приобрести за 70 $.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Разрушение металлов

Разрушение металлов

Разрушение металлов часто происходит вследствие появления и развития трещин (из-за механического воздействия). Это может быть как несколько трещин, расположенных рядом, так и одна магистральная, возникшая при слиянии более мелких. Способность сопротивляться такому процессу зависит от прочности и надежности материала и определяет его долговечность.

Вследствие воздействий внешней среды также может происходить химическое или электрохимическое разрушение металла – коррозия. Обработка поверхностей для защиты проводится в зависимости от агрессивных факторов. Подробнее о видах и причинах разрушения металлов читайте в нашем материале.

Виды разрушения металлов

Специалисты выделяют вязкое и хрупкое разрушение металлов, но эти виды объединяет общий механизм зарождения трещин. В большинстве случаев микротрещины образуются на фоне скопления движущихся дислокаций перед препятствием – перед границами блоков и зерен, перед слиянием дислокаций, пр.

Значительная плотность дислокаций приводит к их слиянию с одновременным формированием микротрещины. Трещина появляется в плоскости, перпендикулярной плоскости скольжения, при плотности дислокаций Ю10–1013 см-2. Существуют и безбарьерные механизмы образования трещин, например, на фоне взаимодействия дислокаций в кристаллической решетке.

При хрупком разрушении металла отрыв происходит, когда нормальные растягивающие напряжения достигают предельного значения сопротивления отрыву. Перед разрушением материал оказывается подвержен упругой, а в некоторых случаях и небольшой пластической деформации.

Хрупкое разрушение характеризуется сопротивлением отрыву и сопровождается кристаллическим изломом, который в большинстве случаев проходит по границам зерен. Тогда плоскость разрушения является перпендикулярной нормальным растягивающим напряжениям, а поверхность излома имеет «ручьистое» строение.

Хрупкая трещина распространяется с большой скоростью, приближенной к скорости звука, по этой причине данный тип разрушения металла известен как внезапный, катастрофический.

На практике чаще встречается не абсолютно хрупкое, а микропластическое разрушение. Дело в том, что когда материал находится в упругодеформированном состоянии, концентрация напряжений у вершины трещины вызывает пластическую микродеформацию.

Вязкое или пластическое разрушение металла можно описать как срез под действием касательных напряжений. Оно предполагает медленное распространение трещины при большой работе. Перед разрушением наблюдается большая пластическая деформация металла с поглощением энергии внешнего нагружения – данный эффект достигается благодаря вязкости материала.

В результате образуется волокнистый излом, особенности которого объясняются пластическим деформированием металла. Плоскость излома находится под углом, а его микростроение принято характеризовать как «чашечное».

С точки зрения микроструктуры разрушение металла делят на транскристаллитное и интеркристаллитное. В первом случае трещина распространяется по телу зерна, тогда как во втором проходит через его тело.

Факторы, влияющие на пластичное и хрупкое состояние металлов

Вязкостью называют способность материала поглощать механическую энергию внешних сил при помощи пластической деформации. С точки зрения физики, вязкость представляет собой энергетическую характеристику и выражается в единицах работы, например в Джоулях.

Факторы, влияющие на пластичное и хрупкое состояние металлов

На показатель вязкости влияет химический состав металлов и сплавов, примененная термическая обработка и ряд прочих внутренних факторов. Не менее важную роль играют условия, в которых металл находится, а именно учитывают температуру, скорость нагружения, наличие концентраторов напряжения, вид напряженного состояния, размеры изделия. В зависимости от этих показателей, материал может быть вязким или хрупким.

Остановимся на каждом факторе более подробно:

Температурное воздействие

Изменение температуры сильно влияет на предел текучести ат, но почти не оказывает воздействия на сопротивление отрыву или SOT. При температуре Тв, то есть указывающей на верхний порог хрупкости, или ломкости, от < SQT, нагружение вызовет пластическое деформирование и последующее разрушение металла.

В этом случае материал оказывается в вязком состоянии. Тогда как при температурах Тн, то есть нижнего порога хрупкости, или хладноломкости, SOT < ат, разрушение не сопровождается пластической деформацией. Значит, можно говорить о том, что металл пребывает в хрупком состоянии.

Стоит пояснить, что под хладноломкостью понимают склонность металла к переходу в хрупкое состояние на фоне снижения температуры. В число хладноломких входят железо, вольфрам, цинк и другие металлы, характеризующиеся объемно-центрированной кубической (ОЦК) и гексагональной плотноупакованной (ГПУ) кристаллической решеткой. Металлы и сплавы с гранецентрированной кубической или ГЦК-решеткой не относятся к хладноломким, поэтому могут применяться в криогенной технике.

Скорость деформации

При переходе от статического нагружения к динамическому возрастает предел текучести, а сопротивление отрыву почти не зависит от скорости деформации. Увеличение скорости деформации приводит к тому, что хрупкость металла проявляется при более высокой температуре. Если металл при статическом нагружении остается вязким, то динамическое нагружение способно спровоцировать его переход в хрупкое состояние.

Наличие концентраторов напряжения

Под концентраторами напряжений понимают надрезы, отверстия, выточки, канавки, включения – они оказывают значительной воздействие на материал, приводя к повышению его хрупкости. Чаще всего очагами хрупкого разрушения металлов становятся трещины. Для надреза характерна концентрация напряжений у его вершины. Чем больше глубина надреза и чем он острее, тем большее влияние металл испытывает под действием коэффициента концентрации напряжений.

Пластичным материалам свойственна местная пластическая деформация около вершины надреза при Оmax > SQr. Сам металл упрочняется, уменьшается острота надреза, снижается концентрация напряжения, благодаря чему достигается надежная работа изделия. Если материал не склонен к местной пластической деформации, у вершины надреза формируется трещина, а ее развитие вызывает хрупкое разрушение.

Напряженное состояние

Важной характеристикой различных способов нагружения является коэффициент мягкости =max⁡ /Smax, где max⁡ – наибольшие касательные напряжения; Smax – наибольшие растягивающие напряжения. Для осевого сжатия ос = 2; для кручения – 0,8; для осевого растяжения – 0,5. Сжатие металла сопровождается вязким разрушением путем среза, перед которым наблюдается пластическая деформация. Тогда как растяжение того же материала вызывает хрупкое разрушение путем отрыва.

Масштабный фактор

Речь идет о влиянии размеров изделия на разрушение металлов и сплавов. Дело в том, что при увеличении массы повышается вероятность присутствия дефектов в объеме материала, которые могут запустить процесс разрушения.

Усталостное разрушение металлов

Усталость – это разрушение металлов на фоне повторных нагрузок либо связанных с изменением знака напряжений. Она наблюдается у пружин автоматики, деталей кулачковых и любых иных механизмов, постоянно претерпевающих нагружение и последующеее разгружение, растяжение и сжатие или многократно повторяющиеся ударные и плавно возрастающие нагрузки.

Например, материал валов, которые передают крутящий момент, подвержен изгибу с вращением. Из-за этого наблюдается многократное изменение знака напряжения, то есть растяжение сменяется сжатием.

Усталостное разрушение металлов

От других видов усталостное разрушение металлов отличается внезапным характером, оно не сопровождается видимыми внешними признаками предварительной пластической деформации. Обычно в усталостном изломе присутствуют две характерные зоны: с гладкой и неровной поверхностью. Первая формируется при постепенном развитии трещины, а другая представляет собой область, в которой произошел излом оставшейся части сечения.

Усталостное разрушение свойственно деталям, функционирующим при напряжении, не достигающем напряжения предела текучести металла. Формирование подобных трещин объясняется строением материала, то есть присутствием различно ориентированных зерен, блоков, включений неметаллической природы, микропор, дислокаций и твердых дефектов решетки.

Под усталостью понимают постепенное накопление повреждений из-за повторно-переменных напряжений, что в итоге вызывает растрескивание и механическое разрушение металла изделия.

Помимо усталости, существует и противоположное свойство – выносливость, то есть способность материала сопротивляться усталости.

Теоретический предел выносливости представляет собой наибольшее напряжение цикла, с которым металл справляется без последующих разрушений при бесконечно большом количестве циклов нагружения.

Предел выносливости определяют, исходя из заданного числа циклов нагружения N. Например, у стали этот показатель составляет 107, у цветных металлов N = 108. В большинстве случаев для выяснения предела выносливости проводят испытание образца на изгиб с вращением со знакопеременным симметричным циклом напряжений.

Данная характеристика во многом связана с качеством обработки поверхности металла. Так, при зачистке грубым напильником предел выносливости сокращается на 20 % по сравнению с аналогичным показателем полированного металла. А наличие коррозии приводит к его многократному снижению.

Химическая коррозия металлов

Такое разрушение металлов происходит в среде, неспособной передавать электрический ток. Например, данный процесс запускается при нагреве, что приводит к образованию сульфидов (химических соединений) и различных видов пленок. Сплошные пленки могут быть непроницаемыми.

Химическая коррозия металлов

В итоге коррозия и разрушение поверхности металла останавливается, так как материал оказывается законсервированным. Подобным слоем защищена поверхность алюминия, хрома, никеля, свинца. На стали и чугуне пленка непрочная и не может препятствовать разрушению более глубоких слоев изделия.

Выделяют два типа химической коррозии:

Газовая появляется на поверхности металла под действием агрессивной среды газа, пара при повышенной температуре. Особенность таких условий состоит в том, что в горячей среде на поверхности нет конденсата. Химическая коррозия может быть спровоцирована кислородом, диоксидом серы, водяным паром, сероводородом, пр. В результате наблюдается абсолютное разрушение активного металла, кроме ситуаций, когда он находится под защитой плотной пленки.

Для запуска жидкостной коррозии необходимы жидкостные среды, неспособные передавать электричество. Чаще всего такой эффект достигается при контакте металла с сырой нефтью, нефтепродуктами, смазочными материалами. Если в указанных веществах присутствует вода в небольших объемах, коррозия становится электрохимической.

При любом виде химической коррозии скорость разрушения металла зависит от химической реакции, при которой окислитель проникает сквозь поверхностную оксидную пленку.

Электрохимическая коррозия металлов

Для электрохимической коррозии необходима среда, передающая электрический ток. Подобный процесс приводит к изменению состава металла, ведь атомы покидают кристаллическую решетку на фоне анодного или катодного влияния. В первом случае ионы металла переходят в окружающую жидкость. Во втором – получаемые при анодном процессе электроны связываются с окислителем.

Электрохимическая коррозия металлов

Чаще всего встречается электрохимическая коррозия под действием водорода или кислорода, что важно учитывать при защите металлов от разрушений. Дело в том, что металлические изделия обычно испытывают на себе влияние влажной среды во время хранения и использования.

Электрохимическая коррозия может быть нескольких видов:

  • Электролитная. Обязательным условием для нее является контакт металла с растворами солей, кислотами, основаниями, обычной водой.
  • Атмосферная. Протекает под действием влажной атмосферы и является наиболее распространенной, так как ей подвержено подавляющее большинство предметов из металла.
  • Почвенная. Является результатом контакта металлического изделия с влажной почвой, в которой нередко присутствуют различные химические элементы, обеспечивающие более активное разрушение металла. Кислые почвы способствуют повышенной скорости протекания коррозии, а песчаные оказывают самое медленное влияние.
  • Аэрационная. Относится к самым редким видам коррозии – ее основным признаком является неравномерный доступ воздуха к разным поверхностям металла. Неоднородное воздействие приводит к разрушению линий переходов между разными участками.
  • Морская коррозия металлов. Это еще один из видов разрушения металлов под действием окружающей среды – процесс происходит из-за контакта с морской водой. Его выделяют как отдельный тип, так как речь идет о жидкости с большой долей солей и растворенных органических веществ в составе. Данные характеристики обеспечивают морской воде повышенную агрессивность.
  • Биокоррозия. Металл может разрушаться и под действием бактерий, ведь в процессе своей жизнедеятельности подобные живые существа вырабатывают углекислый газ и другие вещества.
  • Электрокоррозия. В данном случае разрушение металла объясняется воздействием на него блуждающих токов. Обычно подобные процессы протекают в подземных сооружениях, например, им подвержены рельсы метрополитена, стержни заземления, трамвайные линии, пр.

На производстве в состав стали нередко добавляют легирующие компоненты, защищающие металл от образования очагов коррозии всех либо только некоторых типов. В качестве легирующего элемента может использоваться хром – он должен составлять не менее 13 % от общего объема сплава. Помимо этого, предотвратить появление коррозии на стали без применения легирующих добавок позволяют конструктивные, пассивные и активные методы антикоррозионной защиты.

Вредные примеси в стали

Вредные примеси в стали

Вредные примеси в стали не только ухудшают ее состав, но и могут привести к последующей деформации изготовленного из нее изделия. Однако нельзя все их рассматривать как нежелательные. Некоторые из них относят к полезным, а от других вообще невозможно избавиться, так как они постоянные. Да и нет необходимости их устранять, поскольку постоянные примеси могут влиять на качественные характеристики стали.

В этой статье мы поговорим о том, какими являются вредные примеси стали и как они влияют на ее состав и характеристики стальных изделий.

Полезные и специальные примеси в стали

Полезные и специальные примеси в стали

В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:

  • Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
  • Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.

Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.

Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.

Рекомендовано к прочтению

По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.

Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.

Остановимся подробно на назначении некоторых элементов:

  • Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
  • Медь – увеличивает стойкость стали к коррозии.
  • Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
  • Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
  • Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
  • Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
  • Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
  • Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
  • Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
  • Церий – способствует возрастанию пластичности и прочности стали.
  • Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
  • Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.

Вредные примеси в стали, которые ухудшают ее свойства

Давайте разберемся, какие вредные примеси содержатся в стали. Основными являются фосфор и сера.

Вредные примеси в стали, которые ухудшают ее свойства

Сера (S) содержится в сталях высокого качества в количестве не более 0,02–0,03 %. Для металла общего назначения этот показатель повышается до 0,03–0,04 %. С помощью спецобработки количество серы уменьшается до 0,005 %.

Растворения серы в железе не происходит, а образуется FeS (сульфид железа). Он входит в эвтектику, образующуюся при температуре +988 °С.

При высоком содержании серы сталь становится красноломкой. Это происходит из-за появления на границах зерен сульфидных эвтектик, имеющих низкую способность к плавке. Красноломкость появляется при температуре красного каления стали – +800 °С.

Плохое влияние сера оказывает на свариваемость, пластичность, ударную вязкость, а также поверхность металла. Это особенно заметно, если марганец и углерод содержатся лишь в небольших количествах.

Склонность к сегрегации на границах зерен у серы значительна. По этой причине в ходе нагрева пластичность стали падает. Если металл предназначен для дальнейшей обработки автоматическим механическим способом, то в состав обязательно добавляют серу в количестве от 0,08 % до 0,33 %, так как она способствует возрастанию у подшипниковых сталей усталостной прочности.

Марганец же снижает вредное воздействие серы на сталь. При жидком состоянии сплава он вступает в реакцию с образованием сульфида марганца, температура плавления которого составляет +1620 °С. Она значительно превышает температуру горячей обработки металла (от +800 °С до +1200 °С). При таком нагреве сульфиды марганца достаточно пластичны и просто деформируются.

Сера

Сегрегация фосфора (Р) в значительно меньшей, чем серы и углерода, степени происходит в ходе затвердевания сталей. Идет его растворение в феррите, из-за чего прочность металла увеличивается. Чем больший процент фосфора содержит сталь, тем выше ее хладноломкость и ниже ударная вязкость, пластичность.

Высокая температура среды позволяет достичь растворимости фосфора в пределах 1,2 %. Чем ниже становится температура, тем меньше растворимость фосфора. Она постепенно опускается до 0,02–0,03 %. Именно такое содержание данного химического элемента наблюдается в сталях. Это может говорить о том, что он, как правило, полностью растворяется в альфа-железе.

Отпускная хрупкость хромистых, хромоникелевых и хромомарганцевых, марганцевых и магниево-кремниевых легированных сталей во многом зависит от сегрегации фосфора по границам зерен. Элемент способствует замедлению распада мартенсита и повышает упрочняемость.

С целью улучшения механической (автоматической) обработки в низколегированные стали добавляют большое содержание фосфора.

При наличии углерода в количестве 0,1 % в конструкционной низколегированной стали фосфор должен увеличивать антикоррозийные свойства, а также прочность металла.

Наличие фосфора в хромоникелевых аустеничных сталях приводит к увеличению предела текучести. При попадании аустеничной нержавеющей стали в среду сильного окислителя присутствие в ее составе фосфора вызывает коррозию на границах зерен. Такое поведение предопределено сегрегацией фосфора на этих границах.

Углерод

Вредные примеси в стали – это не только сера и фосфор, но и углерод.

Медленно остывая, сталь приобретает структуру, состоящую их двух фаз – цементита и феррита. Цементит связан в стали с углеродом. Его содержание прямо пропорционально количеству последнего. При этом цементит имеет твердость, значительно превышающую жесткость феррита. Цементит, вернее, входящие в его состав частицы (хрупкие, твердые), увеличивают сопротивляемость деформации, повышая противодействие движению дислокации. Помимо того, снижается вязкость и пластичность металла.

Как следствие, при возрастании процента углерода происходит увеличение твердости стали, пределов ее текучести и прочности, снижение относительных сужения и удлинения, а также ударной вязкости. То есть чем больше углерода, тем легче сталь переходит в хладноломкое состояние. Если содержание углерода в стали колеблется в диапазоне 1,0–1,1 %, то растет твердость металла в отожженном состоянии. При этом предел прочности снижается.

Такое явление, как снижение прочности, наблюдается по причине выделения аустенита вторичного цементита на границах бывшего зерна. Этот цементит делает сплошную сетку в сталях с вышеуказанным составом. В ходе растяжения сетка напрягается и цемент, хрупкий по своей природе, начинает разрушаться. Все это является причиной распада и последующего уменьшения предела прочности. Увеличивая количество углерода, можно добиться уменьшения плотности стали, увеличения электросопротивляемости, коэрцитивной силы, снижения остаточной индукции, теплопроводности и магнитной проницаемости.

Рассматривая вопрос о том, какие вредные примеси присутствуют в стали, нельзя забывать о влиянии азота (N). Под его воздействием в металле образуются нитриды, представляющие собой неметаллические хрупкие инородные тела, которые делают свойства стали значительно хуже.

Однако вредные примеси в стали являются в какой-то мере полезными, а иногда и неустранимыми. К положительным сторонам примеси азота стоит отнести его способность увеличить аустеничную область диаграммы состояния металла. Он делает аустеничную структуру стабильнее. Кроме того, он способен заменить собой никель (но только частично) в рассматриваемых сталях.

Для увеличения прочности низколегированной стали прибегают к добавлению титана, ванадия и ниобия (нитридообразующих элементов). В процессе горячей обработки и последующего охлаждения, взаимодействуя, они создают небольшие карбонитриды и нитриды, придающие стали прочность.

Олово

Даже небольшое количество олова (Sn) вредно для стали. В легированных сталях этот элемент способен вызвать отпускную хрупкость. Кроме того, олово сегрегируется на границах зерен стали, уменьшает ее горячую пластичность в аустенитно-ферритной области диаграммы состояния. Непрерывнолитые слитки под воздействием олова имеют низкое качество поверхности.

Обсуждая вредные примеси в стали и их влияние на материал, нельзя забывать, пожалуй, о самом опасном из них – водороде. В процессе сварки этот химический элемент во всех случаях является вредной примесью. Причина заключается в излишнем охрупчивании стали. При проведении сварочных работ водород может попасть в расплав из:

  • атмосферы дугового разряда;
  • может уже содержаться в металле.

Поглощенный из атмосферы водород, пребывающий в ионизированном и атомарном виде, в ходе кристаллизации значительно уменьшает собственную растворимость. В результате его последующего выделения из материала в нем образуются трещины и поры.

Водород, уже находящийся в металле, может быть в виде гидрида (связанном) или в диффузно-подвижном состоянии (в виде твердого раствора). Молекулярный водород содержится в микронесплошностях материала.

Снизить количество водорода в сварочной зоне можно следующими способами:

  • используют окислители атмосферы (применяют специальные руднокислые электроды или работают под защитой CO2);
  • покрытия электродов и флюсы дополняют хлоридами и фторидами (ими могут быть соли и плавиковый шпат);
  • проводят просушку материалов, предназначенных для сварки (флюса, электродов, газов, проволоки и пр.).
  • Кислород.

Вредные примеси в стали включают в себя и кислород, который понижает пластичность металла. Для защиты материала при сварке используют процесс раскисления шва до определенной нормы. В ходе сварки титана, алюминия и прочих высокоактивных металлов мастера делают атмосферу внутри рабочей зоны без кислорода. Используя для этого гелий, аргон, галидные флюсы, они создают вакуум, поскольку для этих металлов достаточно сложно найти раскислители.

Сурьма

Сурьма (Sb) оказывает вредное влияние на поверхность стали (непрерывнолитых слитков). Причина заключается в ее сегрегации в процессе затвердевания металла. Когда сталь переходит в твердое состояние, сурьма сегрегирует на границах зерен, что приводит у легированных сталей к отпускной хрупкости.

Читайте также: