Минимальное опирание плиты перекрытия на металлическую балку

Обновлено: 17.05.2024

6.4.1 Лестничные клетки устраивают, как правило, закрытыми с естественным освещением через окна в наружных стенах на каждом этаже. Расположение и число лестничных клеток - в соответствии с нормативными документами по противопожарным нормам проектирования зданий и сооружений, но не менее одной между антисейсмическими швами в зданиях высотой более трех этажей.

6.4.2 Лестничные клетки и лифтовые шахты каркасных зданий с заполнением, не участвующим в работе, следует устраивать в виде ядер жесткости, воспринимающих сейсмическую нагрузку, или в виде встроенных конструкций с поэтажной разрезкой, не влияющих на жесткость каркаса, а для зданий высотой до пяти этажей при расчетной сейсмичности 7 и 8 баллов их допускается устраивать в пределах плана здания в виде конструкций, отделенных от каркаса здания.

Конструкции сборных лестничных маршей и узлов их креплений к несущим элементам зданий, как правило, не должны препятствовать взаимным горизонтальным смещениям смежных перекрытий. При этом лестничные марши должны быть надежно закреплены с одного конца, а конструкция опирания другого конца должна обеспечивать свободное смещение марша относительно опоры, не допуская его обрушения.

Допускается применять конструкции лестничных маршей, связанные с перекрытиями по обоим концам, при этом несущая способность лестничных маршей и узлов их креплений должна быть рассчитана на восприятие нагрузок, возникающих при взаимном смещении перекрытий.

6.4.3 Лестницы следует выполнять из монолитного железобетона, из крупных сборных железобетонных элементов, соединяемых между собой с помощью сварки. Допускается устройство лестниц с применением металлических или железобетонных косоуров с наборными ступенями при условии соединения с помощью сварки или на болтах косоуров с площадками и ступеней с косоурами и деревянных лестниц в деревянных зданиях.

6.4.4 Междуэтажные лестничные площадки следует заделывать в стены. В каменных зданиях площадки должны заделываться на глубину не менее 250 мм и заанкериваться. Лестничные площадки, располагаемые в уровне междуэтажных перекрытий, должны надежно связываться с антисейсмическими поясами или непосредственно с перекрытиями.

6.4.5 Конструкции лестничных клеток и узлы крепления должны обеспечивать условия безопасного использования лестниц при эвакуации в режиме чрезвычайных ситуаций.

6.5 Перегородки

6.5.1 Перегородки следует выполнять ненесущими. Перегородки следует соединять с колоннами, несущими стенами, а при длине более 3,0 м - и с перекрытиями. Допускается выполнять перегородки из штучной кладки в соответствии с требованиями 6.5.5 и 6.14.

6.5.2 Конструкция крепления перегородок к несущим элементам здания и узлов их примыкания должна исключать возможность передачи на них горизонтальных нагрузок, действующих в их плоскости. Крепления, обеспечивающие устойчивость перегородок из плоскости, должны быть жесткими.

Прочность перегородок и их креплений должна быть в соответствии с 5.5 подтверждена расчетом на действие расчетных сейсмических нагрузок из плоскости.

6.5.3 Для обеспечения независимого деформирования перегородок следует предусматривать антисейсмические швы между вертикальными торцевыми и верхней горизонтальной гранями перегородок и несущими конструкциями здания. Ширину швов принимают по максимальному значению перекоса этажей здания при действии расчетных нагрузок с учетом прогиба перекрытия в эксплуатационной стадии, но не менее 20 мм. Швы заполняют упругим эластичным материалом.

6.5.4 Крепление перегородок к несущим железобетонным конструкциям следует выполнять соединительными элементами, приваренными к закладным изделиям или накладным элементам, а также анкерными болтами или стержнями.

6.5.5 Перегородки из кирпича или камня, при их применении на площадках сейсмичностью 7 баллов, следует армировать на всю длину не реже, чем через 700 мм по высоте арматурными стержнями общим сечением в шве не менее 0,2 .

Кирпичную (каменную) кладку перегородок на площадках сейсмичностью 8 и 9 баллов, в дополнение к горизонтальному армированию, следует усиливать вертикальными двухсторонними арматурными сетками, установленными в слоях цементного раствора марки не ниже M100 толщиной 25-30 мм. Арматурные сетки должны иметь надежное соединение с кладкой.

6.5.6 Дверные проемы в кирпичных (каменных) перегородках на площадках сейсмичностью 8 и 9 баллов должны иметь железобетонное или металлическое обрамление.

6.6 Балконы, лоджии и эркеры

6.6.1 В районах сейсмичностью до 8 баллов включительно допускается устройство эркеров с усилением образованных в стенах проемов железобетонными рамами и установкой металлических связей стен эркеров с основными стенами.

6.6.2 Устройство встроенных лоджий допускается с установкой жесткого решетчатого или рамного ограждения в плоскости наружных стен. Устройство пристроенных лоджий допускается с установкой металлических связей с несущими стенами, сечение которых определяется по расчету, но не менее 1 на 1 м.

6.6.3 Конструкции балконов и их соединения с перекрытиями должны быть рассчитаны как консольные балки или плиты.

6.6.4 Вынос стен лоджий и эркеров, заделанных в каменные стены, не должен превышать 1,5 м. Вынос плит балконов, лоджий, эркеров, заделанных в каменные стены, не являющихся продолжением перекрытий, не должен превышать 1,5 м.

6.6.5 Конструкции перекрытий лоджий и эркеров должны быть связаны с закладными деталями стеновых элементов или с антисейсмическими поясами, устроенными в стенах лоджий и эркеров и связанными антисейсмическими поясами примыкающих стен или непосредственно с внутренними перекрытиями.

6.7 Особенности проектирования железобетонных конструкций

6.7.1 Проектирование элементов железобетонных конструкций следует выполнять в соответствии с требованиями СП 63.13330 и с учетом дополнительных требований настоящего свода правил.

6.7.2 При расчете на прочность нормальных сечений изгибаемых и внецентренно сжатых элементов значения граничной относительной высоты сжатой зоны бетона следует принимать по действующим нормативным документам на бетонные и железобетонные конструкции с коэффициентом, равным при расчетной сейсмичности: 7 баллов - 0,85; 8 баллов - 0,70; 9 баллов - 0,50.

Примечание - При расчете по прочности нормальных сечений на основе нелинейной деформационной модели характеристику не применяют.

6.7.3 В качестве ненапрягаемой рабочей арматуры следует преимущественно использовать свариваемую арматуру класса А500. Допускается применение арматуры классов А600, В500 и класса А400 марки 25Г2С.

6.7.4 В несущих элементах железобетонных конструкций не допускается применение стыкуемых дуговой сваркой отдельных стержней, сварных сеток и каркасов, а также анкерных стержней закладных деталей из арматурной стали класса А400 марки 35ГС.

6.7.5 В качестве напрягаемой арматуры следует преимущественно использовать стержневую горячекатаную или термомеханически упрочненную арматуру классов А800 и А1000, стабилизированную арматурную проволоку классов Вр1400, В1500 и В1600 и семипроволочные стабилизированные арматурные канаты классов К1500 и К1600.

6.7.6 Не допускается использовать в качестве рабочей арматуры как напрягаемой, так и без предварительного напряжения арматурный прокат, имеющий полное относительное удлинение при максимальном напряжении менее 2,5%, а также арматурную проволоку класса В500.

6.7.8 При сейсмичности 9 баллов не допускается применять арматурные канаты и стержневую арматуру периодического профиля диаметром более 28 мм без специальных анкеров.

Монолитное перекрытие по металлическим балкам

Видео-курсы от Ирины Михалевской

Иногда в частном домостроении применяется такой вариант перекрытий - монолитное железобетонное, опирающееся на металлические балки (спаренные швеллеры, двутавры, труба квадратная и т.д.).

Плюсами такого перекрытия является то, что за счет довольно часто расположенных балок (от 1 м до 2,5 м в среднем) само перекрытие можно сделать довольно тонким (но не менее 50 мм). Армируется такое перекрытие в один слой, что тоже дает немалую экономию.


Основным минусом является то, что по требованиям пожарной безопасности металлические конструкции нужно покрывать специальным огнезащитным составом, а это недешевое удовольствие.

В данной статье мы рассмотрим два вопроса: как выполнить железобетонное перекрытие и как подобрать металлические балки.

С чего следует начать? С анализа перекрытия в плане. Допустим, у нас перекрытие размером 4х8 м. Рациональней расположить балки вдоль короткой стороны плиты, т.е. длина балок будет 4 метра (не считая глубины опирания на стены). Чем короче балка, тем меньше металла мы на нее потратим, и тем реже эти балки можно расставить. Конечно, это не жесткое правило, а просто рациональный совет.

Далее необходимо собрать нагрузки на 1 м 2 перекрытия. Как собирать нагрузки, подробно изложено в статье «Собираем нагрузки на ленточный фундамент дома». При этом учитывается:

- временная нагрузка на перекрытие,

- нагрузка от веса перегородок (желательно балки располагать под перегородками, чтобы избежать чрезмерной нагрузки на облегченное перекрытие),

- нагрузка от веса полов,

- собственный вес перекрытия.

Затем нужно задаться шагом металлических балок. Здесь на первый план выходит монолитное перекрытие. Если сделать шаг балок слишком частым, мы рискуем вызвать перерасход как металла, так и железобетона. Если расстояние между балками, наоборот, слишком большое, это вызовет увеличение арматуры в плите, увеличение толщины этой плиты (при этом значительно возрастет нагрузка на балки), а значит увеличится и сечение балок. Поэтому всегда перед началом расчета нужно анализировать и подбирать оптимальное расстояние между балками перекрытия. Изложенные ниже расчеты применимы при условиях: между всеми балками должно быть одинаковое расстояние; должно выполняться условие L 1/ L 2 > 2, где L 1 - длина балки, L 2 - расстояние между соседними балками.

В принципе, есть несколько путей расчета перекрытия такого типа.

Первый путь (более трудоемкий, особенно без достаточного опыта, но иногда необходимый). Можно задаться профилем металлических балок (допустим, у вас уже есть в наличии металл конкретного профиля); затем, задавшись толщиной перекрытия и шагом балок, можно собрать нагрузки и выполнить расчет балки. При этом, выполняя расчет, вы за несколько подходов можете определить максимально допустимое расстояние между балками, при котором выполняются условия прочности и деформативности. После этого можно перейти к расчету перекрытия и определить его толщину и армирование. Если все прошло - хорошо. Если толщина оказалась большей, чем вы задавали, расчет нужно будет повторить с начала - пока не сойдутся все части задачи.

Второй путь. Расчет начинается с железобетонного перекрытия. Задаемся шагом балок и толщиной плиты, собираем нагрузки и выполняем расчет плиты. При необходимости, корректируем шаг балок и толщину плиты до наиболее экономичных результатов. Собираем нагрузку на балку с получившегося пролета и подбираем сечение балок.

Второй путь мы рассмотрим на примере.


Расчет ведется для условно выделенной полосы плиты шириной 1 м.

Необходимо перекрыть помещение размером в плане 6х10 м. Над перекрытием будут жилые комнаты - временная нагрузка 150 кг/м 2 . Материалы плиты: бетон класса В15, расчетное сопротивление бетона Rb = 7,7 МПа, арматура горячекатаная периодического профиля класса А400С, расчетное сопротивление арматур ы Rs = 365 МПа.

Минимальная толщина перекрытия должна быть больше, чем L /35, где L - расстояние между балками.

Задаемся шагом балок - 2,5 м, направление балок - вдоль короткой стороны помещения, толщина ж.б. перекрытия - 80 мм (что больше, чем 2,5/35 = 0,071 м = 71 мм), расстояние от нижней грани плиты до рабочей арматуры - 35 мм.

Шарниры и защемления в конструкциях

Рассмотрим на реальных примерах узлы опирания или соединения конструкций и определим, с чем мы имеем дело: с шарниром или защемлением.

Сборная плита с опиранием по двум сторонам.

Это классический случай шарнира. Глубина опирания плиты диктуется типовыми сериями, и она меньше высоты сечения плиты. В таких условиях, изгибаясь, плита спокойно повернется на опоре – на шарнирной опоре. Мало того, защемлять плиту путем более глубокого заведения в стену нельзя, т.к. в ней тут же появятся моменты на опоре (при шарнирной схеме момент на опоре равен нулю), а верхней арматуры для восприятия этих моментов в сборных плитах практически нет.

Расчетная схема для такой плиты:

Расчетная схема для сборной плиты

Монолитная однопролетная плита (балка) с опиранием на кладку.

Здесь все зависит от глубины заведения плиты в стену.

Если при высоте плиты 200 мм вы опираете плиту на 150-200 мм, то это шарнир.

Если верхняя арматура заходит на опору на длину анкеровки или выполнены специальные мероприятия в виде приварки пластин (шайб) на концах арматуры, то это защемление.

Если глубина опирания «ни то, ни се» - т.е. больше высоты сечения, но меньше длины анкеровки, то это тот неприятный случай, когда нужно не просто законструировать, но и выполнить расчет всех деталей узла и проверить, выдержат ли они такое издевательство. Во-первых, установка верхней рабочей арматуры уже обязательна. Во-вторых, она должна быть рассчитана на возникающие при этом защемлении моменты. В-третьих, достаточность ее анкеровки должна быть проверена расчетом.

Расчетная схема для однопролетной плиты следующая:

Расчетная схема для плиты

Для монолитной балки все аналогично, глубину заделки для защемленного варианта можно только сэкономить, отогнув верхний стержень вниз. Но как у плиты, так и у балки пригруз кладкой должен быть достаточным и проверен расчетом.

Балконная плита (балка) консольная.

Это стандартная схема с опорой в виде защемления – шарнира здесь быть не должно ни в коем случае, даже неполного защемления не должно быть – только стопроцентный жесткий узел. Иначе система будет геометрически изменяемой: балкон под нагрузкой будет проворачиваться на опоре со всеми вытекающими.

Поэтому при конструировании опирания консольного балкона нужно очень тщательно разрабатывать и просчитывать жесткий узел опирания. В типовой серии 2.130-1 вып. 9 можно ознакомиться с узлами опирания балконных плит и понять, по какому принципу достигается защемление. Во-первых, это достаточное заведение плиты в стену. Во-вторых, это значительный пригруз кладкой стены сверху. В-третьих, это обязательная анкеровка верхней части плиты в сжатой конструкции – в решениях серии это осуществляется путем приварки к закладной в балконной плите анкеров, которые надежно крепятся в конструкциях стены (крепление просчитывается). Все три условия должны быть сбалансированы и в сумме давать надежное защемление. При опирании балок нужно использовать тот же принцип: глубина опирания плюс анкеровка верхней части балки.

В случае монолитной консольной плиты или балки, опирающейся на монолитную стену, необходимо завести верхнюю арматуру консоли в стену на длину анкеровки – это обеспечит защемление.

Если балкон переходит в плиту (т.е. по сути это плита с консольным вылетом балкона), то о жестком узле здесь заботиться не надо – достаточно обыкновенного шарнирного опирания на стену.

Если вы делаете балкон в существующем здании, очень сложно разработать и выполнить чистое защемление, поэтому старайтесь избегать чистых консолей, а делать балконы с подкосами.

Расчетная схема для балкона:

Расчетная схема для балкона

Балкон или консольная балка с подкосом.

Такое решение выбирают в нескольких случаях: если это продиктовано архитектурным решением; если конструкция выполняется в существующем здании; если консоль без подкоса не выдерживает значительной нагрузки.

Чем хороша такая консоль? Тем, что в совокупности конструкция является консолью, но по отдельности каждый узел опирания является шарнирным с ограничением перемещений по вертикали и по горизонтали – а такие узлы не требуют расчета, и законструировать и выполнить их значительно легче, чем защемление. Главное здесь – обеспечить надежное ограничение перемещения по горизонтали: если подкос крепится болтами, то чтобы их было достаточно на вырыв; если конструкция просто закладывается в стену, то должны быть анкеры, заведенные в кладку и т.п.

Расчетная схема такого балкона следующая:

Расчетная схема балкона с подкосом

Горизонтальная балка закреплена в стене с ограничением перемещений по вертикали и горизонтали. Она неразрезная по длине. В пролете (или на краю) горизонтальная балка шарнирно опирается на подкос, который в свою очередь опирается на стену с ограничением перемещений по вертикали и горизонтали.

Многопролетная балка с опиранием на стены из кладки.

У такой балки в средних пролетах всегда опирание шарнирное, а вот на крайних опорах может быть как защемление, так и шарнир. Все обусловлено величиной пролетов и возможностью защемить балку. Если пролеты большие, или же если размеры пролетов разные и неблагоприятно влияют на пролетный момент в крайних пролетах (например, крайние пролеты значительно больше средних), то можно попытаться применить защемление на крайних опорах. В основном же крайние опоры делаются шарнирными.

Расчетная схема для многопролетной балки:

Расчетная схема для многопролетной балки

Многопролетная плита с опиранием на металлические балки.

У этой плиты абсолютно тот же принцип, что и у многопролетной балки, описанной в предыдущем случае. Крайние опоры у такой плиты могут быть балками, а могут быть и стенами здания. В случае, если крайние опоры – балки, то защемление при опирании на них организовать сложно, стандартно здесь применяется шарнирное опирание.

Хочется обратить внимание на следующий момент. При многопролетном перекрытии больших размеров в нем приходится делать деформационный шов. Если нагрузки значительные, то при шарнирном опирании на крайние опоры в крайних пролетах возникают значительные изгибающие моменты, требующие значительного армирования – и это не всегда рационально для плит малой толщины. В таком случае, рекомендую рассмотреть вариант устройства шва не на балке, а в пролете: тогда две плиты будут иметь консольный свес. Моменты в таком случае сбалансируются и армирование будет гармоничным.

Расчетная схема с деформационным швом

Монолитная стена подвала.

На стену подвала всегда воздействует горизонтальное давление грунта, причем, чем глубже подвал, тем значительней влияние горизонтального давление на конструкции.

При определении расчетной схемы для стены подвала нужно рассматривать схему в двух направлениях. Первое, и самое главное – это вертикальный разрез по стене. Нужно рассмотреть два узла: верхний и нижний.

В верхнем узле могут быть отсутствие опирания (если на стену не опирается перекрытие); шарнир с ограничением перемещения по горизонтали (если есть шарнирное опирание перекрытия – например, сборные плиты); жесткий узел (если связь стены подвала и перекрытия жесткая – например, монолитная конструкция). Опирание в данном случае имеется в виду в горизонтальном направлении, т.к. основная нагрузка у нас – это горизонтальное давление грунта.

В нижнем узле сопряжения стены с фундаментной лентой в основном встречается жестким – шарнир там организовывать трудоемко, да и не имеет особого смысла.

Теперь насчет другого, горизонтального разреза стены. Если по длине стена ничем не ограничена в перемещениях (нет перпендикулярных стен), то рассматривать горизонтальный разрез в расчете не надо. А вот если есть перпендикулярные стены, расположенные довольно часто, то нужно посчитать стену еще и в горизонтальном направлении, т.к. с одной стороны действует давление грунта, с другой стороны стены служат опорами, и получается многопролетная неразрезная конструкция, в которой возникают как пролетные, так и опорные моменты – соответственно, нужно проверить горизонтальное армирование стены с учетом расположения перпендикулярных стен. Такая стена считается как многопролетная неразрезная плита шириной 1 м (метровая горизонтальная полоса условно вырезается из стены); средние опоры – шарниры, а крайние зависят от связи с перпендикулярными стенами – в основном, это защемление.

Сопряжение железобетонной колонны с фундаментом.

В основном в железобетоне схема сопряжения – защемление, т.к. шарнир организовать сложнее (особенно в монолите).

В сборном варианте колонна глубоко заделывается в стакан (глубина заделки – расчетная), а в монолитном варианте из фундамента делаются выпуски арматуры в колонну, которые заводятся минимум на длину нахлестки в колонну и на длину анкеровки – в фундамент.

Расчетная схема для опирания колонны на фундамент

Если вы хотите разобраться с каким-то конкретным примером соединения конструкций, пишите в комментариях, и ваш случай будет добавлен в статью.

Шарнир или защемление – что выбрать?

Естественно, есть такие схемы, в которых все уже предопределено – однозначный шарнир (как в сборных пустотных плитах перекрытия) или однозначное защемление (консольная балконная плита). Но есть такие варианты, когда выбор предоставляется проектировщику – и поначалу очень сложно определиться, как составить расчетную схему, чтобы получить оптимальный результат. Рассмотрим некоторые случаи.

Связь ростверка со сваями – шарнир или жесткое соединение?

Как известно, ростверк может опираться на сваи либо шарнирно, либо жестко. И часто очень сложно понять, а какой же вариант выбрать? Во-первых, нужно прочесть СНиП «Свайные фундаменты», в котором оговорены условия, допускающие шарнирное опирание – их не так уж много, часть ваших вопросов сразу отсеется. А далее следует проанализировать саму конструкцию в целом.

Если фундамент на одной свае, то однозначно связь сваи с ростверком должна быть жесткой, иначе не будет устойчивости.

В случае куста свай следует определить следующее:

1 – если фундамент воспринимает только вертикальную нагрузку (без моментов и поперечных сил), можно рассматривать шарнирное опирание;

2 – если в сваях возникают отрывающие усилия (при передаче момента от колонны через ростверк), то соединение только жесткое.

В случае ленточного свайного ростверка:

1 – если расчет ростверка показывает значительные перенапряжения в нем в связи с жестким соединением со сваями, следует рассмотреть вариант с шарнирным опиранием;

2 – если на ростверк передаются горизонтальные усилия (ветровые или от давления грунта), соединение со сваями следует делать жестким.

В случае ростверка в виде плиты можно использовать шарнирное соединение, если это не противопоказано СНиПом «Свайные фундаменты» и если нет отрывающих усилий в сваях.

В случае ленточного ростверка в шпунтовой (подпорной) стенке из свай:

1 – если ростверк служит просто обвязочной балкой и на него ничего не опирается, соединение лучше выбрать шарнирным;

2 – при расположении на ростверке опор эстакады или подобных конструкций, передающих усилия от ветровых нагрузок, связь должна быть жесткой.

- для сваи выгодней шарнирное опирание, т.к. тогда на нее не передается изгибающий момент; но этот вид опирания не всегда позволен СНиПом;

- при наличии отрывающих усилий соединение сваи с ростверком всегда нужно делать жестким, чтобы конструкция не потеряла устойчивость (а отрывающее усилие часто выплывает при раскладывании момента от колонны на пару сил);

- и сваи, и ростверк только выигрывают от шарнирного соединения, поэтому если совсем-совсем нет противопоказаний, нужно выбирать шарнир.

Главное запомнить: всегда при жестком соединении сваи с ростверком моменты в ростверке передаются на сваи, и это следует учитывать при расчете сваи.

Опирание металлической или железобетонной рамы на фундамент.

В случае с рамами решение по опиранию на фундамент зачастую приходит после выбора конструкции самой рамы.

Если рама с жесткими узлами соединения ригелей с колоннами, то рациональней всего при опирании на фундамент выбрать шарнирный узел – такая рама при шарнирном опирании не пострадает, а вот фундамент выиграет, т.к. момент равен нулю, а значит фундамент будет меньше и экономичней. Да и при расчете такой рамы сложностей будет на целых шесть степеней свободы меньше – а при ручном расчете это ого-го сколько.

Если в раме ригели опираются на колонны шарнирно, то колонны обязательно должны быть жестко связаны с фундаментом, иначе мы получим геометрически изменяемую систему.

Но иногда, определившись со схемой рамы (например, ригели опираются шарнирно, а колонны защемлены в фундаментах), мы получаем невыгодный результат (например, недопустимо большие в данных условиях фундаменты). Тогда приходится походу менять расчетную схему и проверять вариант с жесткими узлами в раме и шарнирами в месте опирания на фундамент.

Часто сами материалы диктуют нам выбор расчетной схемы: допустим, в монолитном железобетоне сложно организовать шарниры, поэтому там чаще всего все узлы (и в раме, и в месте опирания колонн на фундамент) – жесткие. И это тоже нормально. Главное, чтобы законструировано было соответственно расчетной схеме.

Плиты перекрытия и балки.

В этой теме также нужно многое попробовать, чтобы набраться опыта и научиться выбирать лучший вариант расчетной схемы с первого раза.

В железобетонных плитах и балках при защемлении выплывает значительная верхняя арматура. Естественно, это ведет к удорожанию, но рационально в большепролетных конструкциях. Иногда так получается, что при большом пролете увеличение сечения балки или высоты плиты только ухудшает работу (т.к. растет нагрузка от собственного веса); а вот защемление дает свои положительные плоды – на опорах появляется изгибающий момент, дающий нам верхнюю арматуру, зато в пролете момент уменьшается, и в сумме конструкция проходит по расчету. При этом, правда, никогда не стоит забывать, что защемленная балка или плита передает усилие на конструкции, на которые она опирается.

Еще защемление стоит применять в плитах и балках, в которых важно уменьшить прогиб или уменьшить раскрытие трещин – меньше момент в пролете, значит меньше и деформации.

Еще одна особенная штука – это плита, опирающаяся по четырем сторонам. Она уже за счет такого опирания работает так, что возникает необходимость установить верхнюю арматуру в плите (особенно ближе к углам). Поэтому зачастую рационально, если есть такая возможность, защемить плиту и проверить, не меньше ли будет армирование.

Опирание крайних плит или второстепенных балок.

У любой многопролетной конструкции, будь то плита или второстепенная балка, есть крайний пролет, в котором она опирается на балку с одной стороны. И в связи с такой однобокой загруженностью балка-опора испытывает кручение, зачастую значительное. И в таких случаях, когда при расчете на кручение сечение балки разрастается до немыслимых размеров, нам на помощь приходит шарнир. Если опереть плиту или второстепенную балку шарнирно, то крайная балка-опора разгрузится, моменты на нее передаваться не будут, и ситуация перестанет быть критической. Понятно, что не всегда получается законструировать шарнирное опирание (особенно в монолитном варианте), но иногда даже в монолите лучше сделать крайнюю балку с консолью, и уже на эту консоль шарнирно опереть плиту. Еще есть вариант (но это если позволяет архитектура) – вывести опирающуюся плиту консольно в виде балкона; тогда балка-опора не до конца, но разгрузится.

Также на тему шарниров и защемления можно прочитать здесь.

Ирина, это любопытный вопрос, заранее соглашаюсь с вашим мнением)), по предыдущему моему комментарию был неправ, у Вас всё правильно написано, невнимательно прочитал и представил случай жесткого сопряжения колонны с ростверком и шарнирного (при отсутствии выдергивающих усилий в сваях) сопряжения ростверка со сваями для него и написал, что моменты передаваться не будут, а только вертикальные усилия

Да нет, Ирина в статье все однозначно написано)), просто я невнимательно прочитал, а по поводу того, что раньше как Вам сказали ростверк считали абсолютно жестким мои соображения такие:
считаю надо смотреть в каждом конкретном случае считать или не считать ростверк абсолютно жестким.
Чтобы считать "что-либо" абсолютно жестким телом, надо предполагать, что это "что-либо" имеет под нагрузкой очень малые деформации (перемещения, углы поворота), которые настолько малы, что не создают достаточно больших усилий от этих деформаций, которые бы влияли на несущую способность конструкции.
К примеру если высота ленточного ростверка относительно шага свай жестко соединенных с ним достаточно велика, то ростверк можно считать достаточно жестким (или абсолютно жестким) прогиб ростверка будет минимально малым и соответственно будут минимально малы моменты на опорах (сваях), соответственно этими моментами можно пренебречь и считать сваи только на вертикальные нагрузки от ростверка

Как опирать сборные плиты перекрытия

Назрела тема для этой статьи – уж очень много ошибок допускают строители.

Что представляет собой сборная плита (пустотная или ребристая)? Это прежде всего армированная железобетонная конструкция, рассчитанная на определенную работу. Любой железобетон может работать только при такой схеме, когда напряжения в нем может подхватить рабочая арматура.

В сборных плитах рабочая арматура расположена только в нижней зоне плиты и только вдоль плиты. Что это значит? Это значит, что плита без разрушения может изгибаться только в продольном направлении и только так, чтобы изгиб плиты был направлен вниз.

Рабочая арматура пустотной плиты

Как видно из рисунка, когда плита изгибается, ее нижняя часть растягивается, и арматура при этом подхватывает это напряжение растяжения, т.к. бетон на это не способен. Бетон без арматуры при изгибе будет только трещать и разрушаться. При малейшем изгибе нам нужно устанавливать арматуру, которая будет брать растягивающие напряжения изгиба на себя.

Работа плиты на изгиб

Теперь вернемся к сборным плитам. Мы знаем, что рабочая арматура плиты расположена только вдоль плиты и только у ее нижней грани.

Рассмотрим ниже различные ситуации опирания плит перекрытия.

Как можно опирать сборные плиты перекрытия

1) Классический способ опирания плиты: по двум сторонам.

Опирание плиты по двум сторонам

Здесь все выдержано в лучших традициях: плита изгибается под весом нагрузки, рабочая арматура подхватывает напряжения изгиба, и если нагрузка не превышает несущей плиты, никакого разрушения не происходит – все работает по плану.

2) Опирание плиты по трем сторонам (двум коротким и одной длинной).

Этот способ опирания называется еще опиранием с задвижкой плиты на стену. Его допускается применять, когда по ширине пролета плиты не размещаются, а монолитный участок делать нецелесообразно. По сравнению с предыдущим вариантом этот вариант для работы плиты похуже, но в принципе, он не запрещен. Главное помнить: желательно плиту по длинной стороне не заводить в стену глубже, чем на высоту плиты (при высоте плиты 220 мм плиту не опирать глубже, чем на 220 мм), чтобы не образовалось защемление. Что такое защемление, и чем оно вредно для сборных плит, будет рассмотрено в статье чуть дальше.

Опирание плиты по трем сторонам

В данном случае изгибается не вся плита, а только свободный ее край. Но все равно при этом в работу вступает продольная рабочая арматура и подхватывает растягивающие напряжения – просто не во всей плите, а в ее части.

Как нельзя опирать сборные плиты перекрытия

1) Опирание плиты по двум длинным сторонам.

Опирание плиты по двум длинным сторонам

Как мы помним, рабочая арматура в плите есть только в продольном направлении. В поперечном направлении есть только незначительная сетка, которая может воспринять нагрузку от собственного веса плиты на периоде монтажа (когда петля поднимается краном за четыре петли). И если мы обопрем плиту по двум длинным сторонам, под нагрузкой она начнет изгибаться как на рисунке, и просто не будет достаточной площади арматуры в этом направлении – плита начнет трещать. На начальном этапе нагрузку сможет воспринять имеющаяся сетка, но (повторюсь), площадь арматуры этой сетки рассчитан только на собственный вес плиты.

2) Устройство дополнительной опоры в пролете плиты.

Дополнительная опора в пролете сборной плиты

Нужно запомнить раз и навсегда: сборные плиты работают исключительно как однопролетные. Если где-то в пролете появляется стена или колонна, происходит то, что показано на рисунке выше. Плита между опорами изгибается вниз, а над опорой происходит выгиб в противоположную сторону – с растянутой зоной вверху. Но в верхней зоне плиты у нас нет рабочей арматуры, и нам нечем воспринять растягивающие напряжения изгиба. В итоге, появляются трещины в верхней зоне плиты, как показано на рисунке. Это может быть всего одна трещина, но ее достаточно будет, чтобы со временем или сразу привести к аварийному состоянию.

3) Опирание сборной плиты на две стены с выносом части плиты в виде балкона (консоли).

Вынос части сборной плиты в виде балкона

Эта ситуация примерно такая же, как в предыдущем случае. Верхней арматуры нет, воспринять растяжение нечем. Чем больше длина консоли и чем больше нагрузка на ней (особенно на краю), тем быстрее произойдет разрушение.

Свес плиты в другом направлении будет таким же аварийным, как и показанный на рисунке.

4) Опирание сборной плиты на колонны (точечные опоры).

Если вы захотите опереть плиту не на стены или балки, а прямо на колонны, запомните: этого делать нельзя. Принцип работы арматуры в железобетоне следующий: растянутая арматура в плите работает только тогда, когда ее концы заведены на опору. Если под краем плиты (и под концом арматурного стержня) опоры нет, такая арматура превращается в бесполезный балласт.

На картинке мы видим вариант опирания плиты на 4 колонны. Во-первых, плита прогибается не только в продольном, но и в поперечном направлении – а как мы выяснили из пункта 1, в таком случае могут образоваться трещины. Но это не самое страшное – эти трещины просто не успеют образоваться из-за аварийной ситуации в другом направлении. Итак, во-вторых, на опору у нас попадают всего две крайние арматурины, остальные «зависли в воздухе» и в работу не включаются. А это значит, что площадь рабочей арматуры в плите уменьшилась во много раз в сравнении с требуемой. Естественно, такая плита будет стремиться разрушиться.

Лучшим выходом из такой ситуации будет устройство балок в нужном месте опирания плиты – между близко расположенными колоннами.

5) Защемление сборной плиты перекрытия.

Что такое защемление? В случае опирания плит перекрытия – это заведение плиты на стену более, чем на величину высоты сечения плиты и пригруз сверху стеной. Дело в том, что защемленные плиты работают совсем не так, как шарнирно опирающиеся. Все сборные плиты рассчитаны на шарнирное опирание (когда плита, прогинаясь, как бы поворачивается на опоре). В нормативных документах по сборным плитам четко оговорена глубина опирания, и она не должна быть не только меньше указанной – ее нельзя делать слишком большой.

Рассмотрим на рисунке, к чему приводит защемление плиты на опоре.

Защемление сборной плиты

При шарнирном опирании плита просто поворачивается чуток на опоре и растягивается в нижней зоне – там и срабатывает нижняя рабочая арматура.

При защемлении плита слишком глубоко заведена, чтобы провернуться, в итоге она изгибается хитрым образом, когда в центре оказывается растянутой нижняя зона плиты, а у опор – верхняя. А в этой верхней зоне у нас нет достаточно арматуры, чтобы воспринять растягивающие усилия. В итоге, образуются трещины, которые особенно опасны тем, что их не видно (они скрыты под полом), но со временем они расширяются и приводят к аварийному состоянию.

Я надеюсь, данная статья наглядно продемонстрировала, как можно опирать сборные (пустотные, ребристые и полнотелые) плиты, а как нельзя.

Здравствуйте! У нас в частном доме возникла ситуация от которой кровь стынет и это не преувеличение. При стройке первого этажа, 27 лет назад, две плиты перекрытия были уложены с грубым нарушением, они легли на стену всего по 5 см с каждой стороны. Плиты длиной 4.20. Теперь эти плиты, особенно одна, смещают стену, на которую опираются, наружу. Короче, через какое-то время все рухнет. Не вижу больше никакого выхода, кроме как внутри комнаты построить дополнительные стены по периметру комнаты. Если успею. Денег нет от слова совсем. Если снять пол, сделать фундамент и выложить стены в кирпич, чтобы плите создать опору, исправит это ситуацию? Полон дом детей, деваться некуда, все придется делать без выезда из дома. Ответьте, пожалуйста.

Я вас проконсультирую . Бесплатно

Я вас проконсультирую. Бесплатно

Доброго дня, просьба опишите, как решать проблему, о которой написала Ксения.
Вопрос важный для многих. Заранее спасибо

Ирина, раз уж вы рассматриваете в том числе варианты грубых ошибок, то, думаю, в эту статью хорошо впишется дополнение о том, что нельзя под плиту в зоне опирания укладывать арматурный пруток (и тем более закладывать в проект!). Некоторые строители даже с немалым опытом допускают эту ошибку и требуют от молодых проектировщиков соответствующег о узла опирания. Встречал я такое. Строители это делают якобы для соблюдения толщины раствора под плитой. Если в проекте заложен раствор под плитой 10 мм, то они, вредители, закладывают пруток диаметром 10 мм.
Почему нельзя? Одно из главных назначений раствора под плитой - равномерное распределение нагрузки, а арматурный пруток - это концентратор напряжений. Т.е. нагрузка будет передаваться через такой металлический клин. Кирпич под этим прутком может потрескаться/ск олоться, т.к. раствор зальют либо вровень с прутком, либо излишки раствора выдавятся при выравнивании, и плита начнет опираться на этот металлический клин.

Ирина, раз уж вы рассматриваете в том числе варианты грубых ошибок, то, думаю, в эту статью хорошо впишется дополнение о том, что нельзя под плиту в зоне опирания укладывать арматурный пруток (и тем более закладывать в проект!). Некоторые строители даже с немалым опытом допускают эту ошибку и требуют от молодых проектировщиков соответствующего узла опирания. Встречал я такое. Строители это делают якобы для соблюдения толщины раствора под плитой. Если в проекте заложен раствор под плитой 10 мм, то они, вредители, закладывают пруток диаметром 10 мм.
Почему нельзя? Одно из главных назначений раствора под плитой - равномерное распределение нагрузки, а арматурный пруток - это концентратор напряжений. Т.е. нагрузка будет передаваться через такой металлический клин. Кирпич под этим прутком может потрескаться/сколоться, т.к. раствор зальют либо вровень с прутком, либо излишки раствора выдавятся при выравнивании, и плита начнет опираться на этот металлический клин.


Олег, ценное замечание! Не встречала такого. Спасибо. Полностью согласна насчет концентратора напряжений. Раствор же для того и закладывается, чтобы максимально выровнять поверхность опирания и осбеспечить полноценное опирание по всей поверхности


При аварийном состоянии нужно прежде всего тщательное обследование с выяснением всех факторов. Без этого любые инструкции могут привести к ухудшению ситуации.

Раз вы цените обратную связь, то позволю в дополнение упомянуть ещё один хитрый нюанс, который вы, скорее всего, знаете. Но вот вашим читателям будет полезно по теме опирания ж-б плит владеть некоторыми тонкостями.
Если у вас ж-б плиты используются в покрытии, и поверх плит в "кровельном пироге" не укладывается утеплитель, то в проекте необходимо предусматривать зазор между торцами плит покрытия и кладкой стен! А ещё следует под опорные участки плит укладывать рубероид/толь и т.п. для уменьшения трения плит о кладку. Для чего? Летом такие покрытия сильно нагреваются солнечными лучами и происходят значительные температурные деформации В кирпичных зданиях с такими покрытиями при неправильном опирании плит происходит отрыв торцевых стен в их верхней части от продольных. Образовавшиеся в кирпичной кладке трещины не полностью закрываются при понижении температуры. И со временем происходит накопление повреждений.
Не помню, в какой книге читал: что-то про дефекты зданий и обследования стр. конструкций. Когда общался к экспертами, они подтвердили, что при больших пролетах, это правило точно действует, а вот про малые пролеты - лучше просто перестраховатьс я.

Если есть желание делиться, можете оформить в статью свои знания по нюансам устройства сборного перекрытия, а я размещу ее на сайте с указанием вашего авторства. Людям будет полезно, а я за пользу.

Для меня тоже на первом месте польза, а не авторство. Не так уж много я знаю, чтобы на отдельную статью тянуло. Но в случае чего, буду иметь в виду этот почтовый адрес.


Добрый день,
Есть план перекрытия первого этажа. Сверху будет ещё мансарда.

Есть несколько вопросов для консультации:
1) Некоторые плиты опираются на 3 стороны (все плиты ПК). Возможно ли такое опирание ? Понимаю, что плита будет прогибаться только по одной длинной стороне. В данном случае косметика не волнует, т.к. потолок снизу будет подшиваться.
2) У некоторых плит опирание достигает 210 мм. по короткой стороне. Это всё ещё шарнир ? Или уже защемление ?
И ещё один вопрос, немного не по-теме :)
Стены превого этажа газобетон (AEROC D500 400x200x600). Несущие Перегородки из полнотелого кирпича в 1 кирпич. Конструктор предусмотрел заливку армопояса под перекрытие над первым этажом и по наружным стенам из газобетона, и по несущим перегородкам из полнотелого кирпича. Читал, что газобетон имеет свойство давать усадку(около 0,3мм/1м длинны), кирпич такой усадки не имеет. Как Вы можете это пркоментировать.

Заранее спасибо за ответ.


1) Да, иногда конструкторы допускают задвижку на стену. Чем короче по длине плита, тем невиннее это решение.
2) Есть четкая рекомендация по глубине опирания плит. И эта глубина меньше 210мм. Глубже - это риски. Оценка степени рисков - не ко мне.
3) Конструктор связал несущие стены армопоясом. Это надежнее, чем не связывать. Вы бы конструктора спросили, он ответит.

Монтаж плит перекрытий по металлическим балкам

ГОСТ12767—94. Плиты железобетонные сплошные для перекрытий жилых и общественных зданий. Технические условия.

Отклонения от номинальных размеров плит, указанных в рабочих чертежах, не должны превышать следующие значения:

— по длине плит до 4 м — ±8 мм;

— по толщине плит — ±5 мм;

— по ширине плит до 2,5 м — ±6 мм.

Технические требования

СНиП 3.03.01-87 п. 3.7, табл. 12 Альбом 69 НП Ленжилпроекта

Перекрытия из плит, металлическая балка

Допускаемые отклонения:

— отклонение отметок опорных узлов ригелей, балок— Ю мм;

— прогиба (кривизны) между точками закрепления сжатых участков
ригеля или балки — 0,00)3 длины закрепленного участка, но не более 15 мм;

— ровности поверхности со стороны потолка при проверке двухметровой
рейкой — 5 мм.

Указания по производству работ

СНиП 3.03.01-87 п. 3.21 Альбом 69 НП Ленжилпроекта

Стальные конструкции должны быть огрунтованы и окрашены на предприятии-изготовителе. Окраске не подлежат зоны монтажной сварки на ширину 100 мм по обе стороны от шва и части стальных конструкций, подлежащие обетонированию.

Изготовленные конструкции должны быть замаркированы в соответствии с чертежами КМД.

Предприятие-изготовитель стальных конструкций обязано выдать сертификаты на конструкции. Металлическая балка по нижним полкам должна быть обернута сеткой «Рабица» для штукатурного слоя.
Плиты укладываются по металлическим балкам на слой, цементного раствора Ml00 толщиной не более 20 мм, с совмещением поверхности смежных плит вдоль шва со стороны потолка. Замоноличивание стыков плит производится таким же раствором.
При пролете балок свыше 5,0 м до 7,5 м устанавливаются связи из арматуры 020 мм посередине пролета, при пролете от 7,6 до 9,0 м — в каждой трети пролета. Величина опирания балок на стену — по проекту, но не менее 250 мм. При пролете балок свыше 6,0 м под их опорные части необходимо устанавливать опорные подушки.

Subscribe via RSS

  • В СберЛизинге появилась программа для стартапов 20.09.2022
  • Применение комплексного минерального вяжущего Holcim снижает затраты на ремонт одного километра дороги в 3,5 раза 20.09.2022
  • Наталья Сергунина: Познавательная акция «День без турникетов» пройдет в Москве 22-24 сентября 20.09.2022
  • Спортивные площадки оборудуют на территории ОЭЗ «Технополис Москва» 20.09.2022
  • АВТОДОМ Ducati запустил услуги сезонного хранения мотоциклов 20.09.2022
  • Первый в мире сервис автоматического проектирования зданий на металлокаркасе любых размеров создан в России 19.09.2022
  • Корпоративные пенсионные программы СберНПФ позволили россиянам накопить более 1 млрд рублей 19.09.2022
  • Ауди Центр Таганка, Ауди Центр Варшавка и Ауди Центр Восток предлагают воспользоваться привилегиями на покупку оригинальных аксессуаров 19.09.2022
  • Уникальные цифровые насосы-дозаторы начали производить в технополисе «Москва» 19.09.2022
  • В ЖК «Полис Приморский» уже ведется благоустройство территории 19.09.2022
  • Наталья Сергунина: Летний турпоток в Москву вырос на 20 процентов 19.09.2022
  • ТехноФест ОЭЗ «Технополис Москва» может стать традиционным 19.09.2022
  • Стандартизирована система госзакупок в сфере укладки и эксплуатации путей трамвая и метро столицы 19.09.2022
  • Геокупол как всесезонный планетарий 19.09.2022
  • 5 идей как украсить городской парк геокуполом 19.09.2022

Читайте также: