Монолитное перекрытие по металлическим балкам узлы

Обновлено: 18.05.2024

Здравствуйте! Вопрос в следующем: меня интересует расчет монолитной железобетонной плиты по металлическим балкам. Плита устаивается по верху главных и второстепенных балок. Интересует расчет, который учитывает совместную работу балок и плиты. И конечно же по возможности узлы. Есть ли где литература по этому поводу, примеры расчета? Все перерыл. и здесь. и везде, но ничего подходящего не нашел. Скиньте ссылочки, пожалуйста.

вопрос в лоб - а нужно ли Вам обеспечивать совместную работу монолитной плиты и балок? думаете сильно выгадаете на обычном шаге второстепенных балок (1,5-3 м)? обычно это удел мостостроителей. ищите концы там.

работаю на рабочих

это реконструкция. так получается, что шаг главных балок 6м, а второстепенных 7,2м. не хочется терять высоту и расходовать материал.

спасибо. я СНиП смотрел.

Есть вот здесь литература по этому поводу
А вот здесь - расчет в Excel
(там ниже раздел расчеты)
По поводу эффективности и материалоёмкости - эффективно и более экономно.

если система так прелестна и легка (эффективна и экономна), то когда Вы (S_konstr) в последний раз применяли стад-болты и профлист с рифами?

там про разгружающее действие свободно лежащей ЖБ плиты на МК балочную клетку.
Forrest_Gump там участвовал, может прояснит .

если система так прелестна и легка (эффективна и экономна), то когда Вы (S_konstr) в последний раз применяли стад-болты и профлист с рифами?

Спокойствие! Не надо нервничать. Никто не собирается наезжать на "стад-болты" и уж тем более на "профлист с рифами". Вы, видимо, не читали вопрос автора темы, - его несколько другое интересует. Попробуйте задавать вопросы в соответствующих темах (ну или новые создайте).

А что Вас (S_konstr) так обидело в моем вопросе? Если технология интересная и выгодна. то ее с удовольствием будут применять. Вот только, что касаемо технологии Bamtec, что применение профлиста с рифами, что применение стад-болтов - не вижу широкого применения подобных систем. Отчего бы? Вот и спрашиваю, может Вы их применяете? Если нет, то зачем советовать к применению?
P.S. разгружающее действие свободно лежащей ЖБ плиты на МК балочную клетку - ну ежели плиты не разрезается балочной клеткой на независимые участки, то тогда плита выступает не только как передатчик нагрузки от перекрытия на балки, но и как несущий элемент, воспринимающий часть нагрузки.

А что Вас (S_konstr) так обидело в моем вопросе? Если технология интересная и выгодна. то ее с удовольствием будут применять. Вот только, что касаемо технологии Bamtec, что применение профлиста с рифами, что применение стад-болтов - не вижу широкого применения подобных систем. Отчего бы? Вот и спрашиваю, может Вы их применяете? Если нет, то зачем советовать к применению?

Я не уверен что Вы не перепутали тему, хотя возможно Вы не читали вопрос автора темы и уж наверняка не ходили по приведённым ссылкам, а посему про "стад-болты" и "профлист с рифами" без комментариев, ибо оффтоп.

По поводу "разгружающего действия плиты". Посредством жестких и гибких упоров создается совместная работа проката и ж.б. плиты по типу элементов с жесткой арматурой. При этом нейтральная ось сечения проката смещается выше его геометрической оси, а эпюра сжимающих напряжений в плите принимает прямоугольный (как при расчете изгибаемых ж.б. элементов), трапецевидный или ломаный вид. Жесткость рассчитывается по приведённым (через альфа) к стали характеристикам.
В случае шага балок 7.2х6 м эффективность не очевидна, из-за того что получится достаточно "толстая" плита, т.к. в направлении перпендикулярном балкам она рассчитывается независимо.

to S_konstr - ну уж коли наезжаете (". возможно Вы не читали вопрос автора темы. "), то обосновывайте свои слова. автора темы интересует именно технологии, обеспечивающие совместность работы монолита и балок. объясните мне, такому бестолковому, как Вы обеспечите совместную работу монолитной плиты перекрытия и металлических балок, не применяя стад-болты? при чем плита опирается на балочную клетку сверху. ну и какой Ваш ответ?
to Johnny D - на Вашем месте я бы второстепенные балки опирал на нижний пояс главных балок,оставшийся зазор до верха главных балок как раз заполнил бы монолитом.

как Вы обеспечите совместную работу монолитной плиты перекрытия и металлических балок, не применяя стад-болты

я очень извиняюсь,но до стад-болтов ведь были упоры,коих много в советских рекомендациях..
если честно,применял как раз стад-болты,связывались с мостовиками,у них это отработано..думаю не зря..но лишь один раз.
упоры конечно многодельны..но вроде тоже возможны..если сильно надо..

to Vlamos - шпасибо за реакцию (ответ). ткните носом меня в ссылку/документ про упоры, если не сложно.

Offtop: to S_konstr - ну уж коли наезжаете (". возможно Вы не читали вопрос автора темы. "), то обосновывайте свои слова. автора темы интересует именно технологии, обеспечивающие совместность работы монолита и балок. объясните мне, такому бестолковому, как Вы обеспечите совместную работу монолитной плиты перекрытия и металлических балок, не применяя стад-болты? при чем плита опирается на балочную клетку сверху. ну и какой Ваш ответ?

Дело, видимо, в том, что усилиям не известны переживания по поводу как им передаваться, - посредством упоров (жестких или гибких) или "стад-болтов" и "профлистов с рифами". Усилия или передаются или нет. В том числе и при совместной работе плиты и балки.
Автора темы, на мой взгляд, заинтересовало как это возможно рассчитать и обеспечить.

Интересует расчет, который учитывает совместную работу балок и плиты

Поэтому (в ссылке, которую Вы принципиально не открываете) привёл часто используемое решение с упорами и его обоснование.
Если у Вас возникли сомнения по надежности данного решения то это действительно стоит обсудить.

Здравствуйте. Собираемся проектировать монолитное железобетонное перекрытие по металлическим балкам. Возник вопрос как обеспечить совместную работу балки с плитой. Есть два варианта обеспечения совместности работы.
1. Замонолитить верхний пояс балки (двутавр) в плиту на определённую глубину.
2. Приварить анкера к верхнему поясу балки и их замонолитить, плита в данном случае будет лежать на верхнем поясе.
Первый вопрос.
-Какие плюсы и минусы каждого из способов, посоветуйте.
Второй вопрос.
-На какую глубину вводить верхний пояс балки в плиту, какие конструктивные требования существуют для такого случая.
Третий вопрос.
-С каким шагом, на каких участках балки располагать, анкера для обеспечения совместности работы, как их считать (расчёт в перекрытии по профлисту смотрели, но может кто знает где можно посмотреть расчёт без профилированного листа)
Вопрос по расчёту самих балок и плиты на совместную работу не стоит.
Может быть кто то знает литературу в которой это отражено, или поделится своим опытом. Заранее благодарен.

Искать по слову сталежелезобетон. Для совместной работы обычными усами не обойтись, нужны специальные петли. Вопрос в том, а нужно ли ее обеспечивать?

Насколько мне позволяет судить мо скромный опыт..
нженерная общественность не особо любить считать совместную работу плиты и балки - уж очень муторно. Балку считают по стальному снипу нагруженной плитой, но учитывают ее раскрепление из плоскости посредством приваренной арматуры

Насколько мне позволяет судить мо скромный опыт..
нженерная общественность не особо любить считать совместную работу плиты и балки - уж очень муторно. Балку считают по стальному снипу нагруженной плитой, но учитывают ее раскрепление из плоскости посредством приваренной арматуры

Обеспечение совместной работы металлической балки и монолитной плиты перекрытия

Здравствуйте. Собираемся проектировать монолитное железобетонное перекрытие по металлическим балкам. Возник вопрос как обеспечить совместную работу балки с плитой. Есть два варианта обеспечения совместности работы.
1. Замонолитить верхний пояс балки (двутавр) в плиту на определённую глубину.
2. Приварить анкера к верхнему поясу балки и их замонолитить, плита в данном случае будет лежать на верхнем поясе.
Первый вопрос.
-Какие плюсы и минусы каждого из способов, посоветуйте.
Второй вопрос.
-На какую глубину вводить верхний пояс балки в плиту, какие конструктивные требования существуют для такого случая.
Третий вопрос.
-С каким шагом, на каких участках балки располагать, анкера для обеспечения совместности работы, как их считать (расчёт в перекрытии по профлисту смотрели, но может кто знает где можно посмотреть расчёт без профилированного листа)
Вопрос по расчёту самих балок и плиты при совместной работе не стоит.
Может быть кто то знает литературу в которой это отражено, или поделится своим опытом. Заранее благодарен.

В первом способе получить совместность работы не удастся, поскольку сцепление будет минимальным между балкой и жб плитой.

Возник вопрос как обеспечить совместную работу балки с плитой. Есть два варианта обеспечения совместности работы.
Вопрос по расчёту самих балок и плиты на совместную работу не стоит.

Это как понять?
Используйте либо стадболты или другие решения по обеспечению анкеровки. Расчет можете глянуть в Еврокоде или американском нормативе.

Прошу прощения, описка))
Уже поправил, не стоит вопрос о расчёте самих конструкции при совместной их работе. Просто наталкивался тут на темы где это обсуждается.
Не подскажете литературу по расчёту стат болтов и где можно найти конструктивные требования при данном способе их применения

Чтобы плита и балка работали совместно нужно просто обеспечить воприятие продольных касательных напряжений. Поставить например уголки. А чтобы плита вертикально не "отрывалась" можно каркасик приварить по верхнему поясу
З.Ы. А конкретнее. Определяемся с расчетным сечением: балка + плита с грузового участка балки например. Находим приведенные геометрические характеристики относительно главных центральных осей. Определяем погонную касательную нагрузку: QS/I, где S - приведенный статический момент инерции полки, т.е. плиты. А потом,Ю например, задаемся уголком, сварными швами и ищем необходимый шаг уголков.
Я бы вот так сделал. Больше в голову ничего не пришло. Извиняюсь если што

Не подскажете литературу по расчёту стат болтов и где можно найти конструктивные требования при данном способе их применения

Вот здесь посмотрите http://dwg.ru/dnl/9182 , http://dwg.ru/dnl/1190 А вообще то расчет сталежелезобетонных перекрытий рассмотрен в СНиП "Мосты и тоннели"

Ну как же, Leonid555, в моем вложении поз. "6 - стержень, обеспечивающий совместную работу плиты со стальной балкой" , что и просил автор

Монолитное перекрытие по металлическим балкам

Видео-курсы от Ирины Михалевской

Иногда в частном домостроении применяется такой вариант перекрытий - монолитное железобетонное, опирающееся на металлические балки (спаренные швеллеры, двутавры, труба квадратная и т.д.).

Плюсами такого перекрытия является то, что за счет довольно часто расположенных балок (от 1 м до 2,5 м в среднем) само перекрытие можно сделать довольно тонким (но не менее 50 мм). Армируется такое перекрытие в один слой, что тоже дает немалую экономию.


Основным минусом является то, что по требованиям пожарной безопасности металлические конструкции нужно покрывать специальным огнезащитным составом, а это недешевое удовольствие.

В данной статье мы рассмотрим два вопроса: как выполнить железобетонное перекрытие и как подобрать металлические балки.

С чего следует начать? С анализа перекрытия в плане. Допустим, у нас перекрытие размером 4х8 м. Рациональней расположить балки вдоль короткой стороны плиты, т.е. длина балок будет 4 метра (не считая глубины опирания на стены). Чем короче балка, тем меньше металла мы на нее потратим, и тем реже эти балки можно расставить. Конечно, это не жесткое правило, а просто рациональный совет.

Далее необходимо собрать нагрузки на 1 м 2 перекрытия. Как собирать нагрузки, подробно изложено в статье «Собираем нагрузки на ленточный фундамент дома». При этом учитывается:

- временная нагрузка на перекрытие,

- нагрузка от веса перегородок (желательно балки располагать под перегородками, чтобы избежать чрезмерной нагрузки на облегченное перекрытие),

- нагрузка от веса полов,

- собственный вес перекрытия.

Затем нужно задаться шагом металлических балок. Здесь на первый план выходит монолитное перекрытие. Если сделать шаг балок слишком частым, мы рискуем вызвать перерасход как металла, так и железобетона. Если расстояние между балками, наоборот, слишком большое, это вызовет увеличение арматуры в плите, увеличение толщины этой плиты (при этом значительно возрастет нагрузка на балки), а значит увеличится и сечение балок. Поэтому всегда перед началом расчета нужно анализировать и подбирать оптимальное расстояние между балками перекрытия. Изложенные ниже расчеты применимы при условиях: между всеми балками должно быть одинаковое расстояние; должно выполняться условие L 1/ L 2 > 2, где L 1 - длина балки, L 2 - расстояние между соседними балками.

В принципе, есть несколько путей расчета перекрытия такого типа.

Первый путь (более трудоемкий, особенно без достаточного опыта, но иногда необходимый). Можно задаться профилем металлических балок (допустим, у вас уже есть в наличии металл конкретного профиля); затем, задавшись толщиной перекрытия и шагом балок, можно собрать нагрузки и выполнить расчет балки. При этом, выполняя расчет, вы за несколько подходов можете определить максимально допустимое расстояние между балками, при котором выполняются условия прочности и деформативности. После этого можно перейти к расчету перекрытия и определить его толщину и армирование. Если все прошло - хорошо. Если толщина оказалась большей, чем вы задавали, расчет нужно будет повторить с начала - пока не сойдутся все части задачи.

Второй путь. Расчет начинается с железобетонного перекрытия. Задаемся шагом балок и толщиной плиты, собираем нагрузки и выполняем расчет плиты. При необходимости, корректируем шаг балок и толщину плиты до наиболее экономичных результатов. Собираем нагрузку на балку с получившегося пролета и подбираем сечение балок.

Второй путь мы рассмотрим на примере.


Расчет ведется для условно выделенной полосы плиты шириной 1 м.

Необходимо перекрыть помещение размером в плане 6х10 м. Над перекрытием будут жилые комнаты - временная нагрузка 150 кг/м 2 . Материалы плиты: бетон класса В15, расчетное сопротивление бетона Rb = 7,7 МПа, арматура горячекатаная периодического профиля класса А400С, расчетное сопротивление арматур ы Rs = 365 МПа.

Минимальная толщина перекрытия должна быть больше, чем L /35, где L - расстояние между балками.

Задаемся шагом балок - 2,5 м, направление балок - вдоль короткой стороны помещения, толщина ж.б. перекрытия - 80 мм (что больше, чем 2,5/35 = 0,071 м = 71 мм), расстояние от нижней грани плиты до рабочей арматуры - 35 мм.

Шарниры и защемления в конструкциях

Рассмотрим на реальных примерах узлы опирания или соединения конструкций и определим, с чем мы имеем дело: с шарниром или защемлением.

Сборная плита с опиранием по двум сторонам.

Это классический случай шарнира. Глубина опирания плиты диктуется типовыми сериями, и она меньше высоты сечения плиты. В таких условиях, изгибаясь, плита спокойно повернется на опоре – на шарнирной опоре. Мало того, защемлять плиту путем более глубокого заведения в стену нельзя, т.к. в ней тут же появятся моменты на опоре (при шарнирной схеме момент на опоре равен нулю), а верхней арматуры для восприятия этих моментов в сборных плитах практически нет.

Расчетная схема для такой плиты:

Расчетная схема для сборной плиты

Монолитная однопролетная плита (балка) с опиранием на кладку.

Здесь все зависит от глубины заведения плиты в стену.

Если при высоте плиты 200 мм вы опираете плиту на 150-200 мм, то это шарнир.

Если верхняя арматура заходит на опору на длину анкеровки или выполнены специальные мероприятия в виде приварки пластин (шайб) на концах арматуры, то это защемление.

Если глубина опирания «ни то, ни се» - т.е. больше высоты сечения, но меньше длины анкеровки, то это тот неприятный случай, когда нужно не просто законструировать, но и выполнить расчет всех деталей узла и проверить, выдержат ли они такое издевательство. Во-первых, установка верхней рабочей арматуры уже обязательна. Во-вторых, она должна быть рассчитана на возникающие при этом защемлении моменты. В-третьих, достаточность ее анкеровки должна быть проверена расчетом.

Расчетная схема для однопролетной плиты следующая:

Расчетная схема для плиты

Для монолитной балки все аналогично, глубину заделки для защемленного варианта можно только сэкономить, отогнув верхний стержень вниз. Но как у плиты, так и у балки пригруз кладкой должен быть достаточным и проверен расчетом.

Балконная плита (балка) консольная.

Это стандартная схема с опорой в виде защемления – шарнира здесь быть не должно ни в коем случае, даже неполного защемления не должно быть – только стопроцентный жесткий узел. Иначе система будет геометрически изменяемой: балкон под нагрузкой будет проворачиваться на опоре со всеми вытекающими.

Поэтому при конструировании опирания консольного балкона нужно очень тщательно разрабатывать и просчитывать жесткий узел опирания. В типовой серии 2.130-1 вып. 9 можно ознакомиться с узлами опирания балконных плит и понять, по какому принципу достигается защемление. Во-первых, это достаточное заведение плиты в стену. Во-вторых, это значительный пригруз кладкой стены сверху. В-третьих, это обязательная анкеровка верхней части плиты в сжатой конструкции – в решениях серии это осуществляется путем приварки к закладной в балконной плите анкеров, которые надежно крепятся в конструкциях стены (крепление просчитывается). Все три условия должны быть сбалансированы и в сумме давать надежное защемление. При опирании балок нужно использовать тот же принцип: глубина опирания плюс анкеровка верхней части балки.

В случае монолитной консольной плиты или балки, опирающейся на монолитную стену, необходимо завести верхнюю арматуру консоли в стену на длину анкеровки – это обеспечит защемление.

Если балкон переходит в плиту (т.е. по сути это плита с консольным вылетом балкона), то о жестком узле здесь заботиться не надо – достаточно обыкновенного шарнирного опирания на стену.

Если вы делаете балкон в существующем здании, очень сложно разработать и выполнить чистое защемление, поэтому старайтесь избегать чистых консолей, а делать балконы с подкосами.

Расчетная схема для балкона:

Расчетная схема для балкона

Балкон или консольная балка с подкосом.

Такое решение выбирают в нескольких случаях: если это продиктовано архитектурным решением; если конструкция выполняется в существующем здании; если консоль без подкоса не выдерживает значительной нагрузки.

Чем хороша такая консоль? Тем, что в совокупности конструкция является консолью, но по отдельности каждый узел опирания является шарнирным с ограничением перемещений по вертикали и по горизонтали – а такие узлы не требуют расчета, и законструировать и выполнить их значительно легче, чем защемление. Главное здесь – обеспечить надежное ограничение перемещения по горизонтали: если подкос крепится болтами, то чтобы их было достаточно на вырыв; если конструкция просто закладывается в стену, то должны быть анкеры, заведенные в кладку и т.п.

Расчетная схема такого балкона следующая:

Расчетная схема балкона с подкосом

Горизонтальная балка закреплена в стене с ограничением перемещений по вертикали и горизонтали. Она неразрезная по длине. В пролете (или на краю) горизонтальная балка шарнирно опирается на подкос, который в свою очередь опирается на стену с ограничением перемещений по вертикали и горизонтали.

Многопролетная балка с опиранием на стены из кладки.

У такой балки в средних пролетах всегда опирание шарнирное, а вот на крайних опорах может быть как защемление, так и шарнир. Все обусловлено величиной пролетов и возможностью защемить балку. Если пролеты большие, или же если размеры пролетов разные и неблагоприятно влияют на пролетный момент в крайних пролетах (например, крайние пролеты значительно больше средних), то можно попытаться применить защемление на крайних опорах. В основном же крайние опоры делаются шарнирными.

Расчетная схема для многопролетной балки:

Расчетная схема для многопролетной балки

Многопролетная плита с опиранием на металлические балки.

У этой плиты абсолютно тот же принцип, что и у многопролетной балки, описанной в предыдущем случае. Крайние опоры у такой плиты могут быть балками, а могут быть и стенами здания. В случае, если крайние опоры – балки, то защемление при опирании на них организовать сложно, стандартно здесь применяется шарнирное опирание.

Хочется обратить внимание на следующий момент. При многопролетном перекрытии больших размеров в нем приходится делать деформационный шов. Если нагрузки значительные, то при шарнирном опирании на крайние опоры в крайних пролетах возникают значительные изгибающие моменты, требующие значительного армирования – и это не всегда рационально для плит малой толщины. В таком случае, рекомендую рассмотреть вариант устройства шва не на балке, а в пролете: тогда две плиты будут иметь консольный свес. Моменты в таком случае сбалансируются и армирование будет гармоничным.

Расчетная схема с деформационным швом

Монолитная стена подвала.

На стену подвала всегда воздействует горизонтальное давление грунта, причем, чем глубже подвал, тем значительней влияние горизонтального давление на конструкции.

При определении расчетной схемы для стены подвала нужно рассматривать схему в двух направлениях. Первое, и самое главное – это вертикальный разрез по стене. Нужно рассмотреть два узла: верхний и нижний.

В верхнем узле могут быть отсутствие опирания (если на стену не опирается перекрытие); шарнир с ограничением перемещения по горизонтали (если есть шарнирное опирание перекрытия – например, сборные плиты); жесткий узел (если связь стены подвала и перекрытия жесткая – например, монолитная конструкция). Опирание в данном случае имеется в виду в горизонтальном направлении, т.к. основная нагрузка у нас – это горизонтальное давление грунта.

В нижнем узле сопряжения стены с фундаментной лентой в основном встречается жестким – шарнир там организовывать трудоемко, да и не имеет особого смысла.

Теперь насчет другого, горизонтального разреза стены. Если по длине стена ничем не ограничена в перемещениях (нет перпендикулярных стен), то рассматривать горизонтальный разрез в расчете не надо. А вот если есть перпендикулярные стены, расположенные довольно часто, то нужно посчитать стену еще и в горизонтальном направлении, т.к. с одной стороны действует давление грунта, с другой стороны стены служат опорами, и получается многопролетная неразрезная конструкция, в которой возникают как пролетные, так и опорные моменты – соответственно, нужно проверить горизонтальное армирование стены с учетом расположения перпендикулярных стен. Такая стена считается как многопролетная неразрезная плита шириной 1 м (метровая горизонтальная полоса условно вырезается из стены); средние опоры – шарниры, а крайние зависят от связи с перпендикулярными стенами – в основном, это защемление.

Сопряжение железобетонной колонны с фундаментом.

В основном в железобетоне схема сопряжения – защемление, т.к. шарнир организовать сложнее (особенно в монолите).

В сборном варианте колонна глубоко заделывается в стакан (глубина заделки – расчетная), а в монолитном варианте из фундамента делаются выпуски арматуры в колонну, которые заводятся минимум на длину нахлестки в колонну и на длину анкеровки – в фундамент.

Расчетная схема для опирания колонны на фундамент

Если вы хотите разобраться с каким-то конкретным примером соединения конструкций, пишите в комментариях, и ваш случай будет добавлен в статью.

Шарнир или защемление – что выбрать?

Естественно, есть такие схемы, в которых все уже предопределено – однозначный шарнир (как в сборных пустотных плитах перекрытия) или однозначное защемление (консольная балконная плита). Но есть такие варианты, когда выбор предоставляется проектировщику – и поначалу очень сложно определиться, как составить расчетную схему, чтобы получить оптимальный результат. Рассмотрим некоторые случаи.

Связь ростверка со сваями – шарнир или жесткое соединение?

Как известно, ростверк может опираться на сваи либо шарнирно, либо жестко. И часто очень сложно понять, а какой же вариант выбрать? Во-первых, нужно прочесть СНиП «Свайные фундаменты», в котором оговорены условия, допускающие шарнирное опирание – их не так уж много, часть ваших вопросов сразу отсеется. А далее следует проанализировать саму конструкцию в целом.

Если фундамент на одной свае, то однозначно связь сваи с ростверком должна быть жесткой, иначе не будет устойчивости.

В случае куста свай следует определить следующее:

1 – если фундамент воспринимает только вертикальную нагрузку (без моментов и поперечных сил), можно рассматривать шарнирное опирание;

2 – если в сваях возникают отрывающие усилия (при передаче момента от колонны через ростверк), то соединение только жесткое.

В случае ленточного свайного ростверка:

1 – если расчет ростверка показывает значительные перенапряжения в нем в связи с жестким соединением со сваями, следует рассмотреть вариант с шарнирным опиранием;

2 – если на ростверк передаются горизонтальные усилия (ветровые или от давления грунта), соединение со сваями следует делать жестким.

В случае ростверка в виде плиты можно использовать шарнирное соединение, если это не противопоказано СНиПом «Свайные фундаменты» и если нет отрывающих усилий в сваях.

В случае ленточного ростверка в шпунтовой (подпорной) стенке из свай:

1 – если ростверк служит просто обвязочной балкой и на него ничего не опирается, соединение лучше выбрать шарнирным;

2 – при расположении на ростверке опор эстакады или подобных конструкций, передающих усилия от ветровых нагрузок, связь должна быть жесткой.

- для сваи выгодней шарнирное опирание, т.к. тогда на нее не передается изгибающий момент; но этот вид опирания не всегда позволен СНиПом;

- при наличии отрывающих усилий соединение сваи с ростверком всегда нужно делать жестким, чтобы конструкция не потеряла устойчивость (а отрывающее усилие часто выплывает при раскладывании момента от колонны на пару сил);

- и сваи, и ростверк только выигрывают от шарнирного соединения, поэтому если совсем-совсем нет противопоказаний, нужно выбирать шарнир.

Главное запомнить: всегда при жестком соединении сваи с ростверком моменты в ростверке передаются на сваи, и это следует учитывать при расчете сваи.

Опирание металлической или железобетонной рамы на фундамент.

В случае с рамами решение по опиранию на фундамент зачастую приходит после выбора конструкции самой рамы.

Если рама с жесткими узлами соединения ригелей с колоннами, то рациональней всего при опирании на фундамент выбрать шарнирный узел – такая рама при шарнирном опирании не пострадает, а вот фундамент выиграет, т.к. момент равен нулю, а значит фундамент будет меньше и экономичней. Да и при расчете такой рамы сложностей будет на целых шесть степеней свободы меньше – а при ручном расчете это ого-го сколько.

Если в раме ригели опираются на колонны шарнирно, то колонны обязательно должны быть жестко связаны с фундаментом, иначе мы получим геометрически изменяемую систему.

Но иногда, определившись со схемой рамы (например, ригели опираются шарнирно, а колонны защемлены в фундаментах), мы получаем невыгодный результат (например, недопустимо большие в данных условиях фундаменты). Тогда приходится походу менять расчетную схему и проверять вариант с жесткими узлами в раме и шарнирами в месте опирания на фундамент.

Часто сами материалы диктуют нам выбор расчетной схемы: допустим, в монолитном железобетоне сложно организовать шарниры, поэтому там чаще всего все узлы (и в раме, и в месте опирания колонн на фундамент) – жесткие. И это тоже нормально. Главное, чтобы законструировано было соответственно расчетной схеме.

Плиты перекрытия и балки.

В этой теме также нужно многое попробовать, чтобы набраться опыта и научиться выбирать лучший вариант расчетной схемы с первого раза.

В железобетонных плитах и балках при защемлении выплывает значительная верхняя арматура. Естественно, это ведет к удорожанию, но рационально в большепролетных конструкциях. Иногда так получается, что при большом пролете увеличение сечения балки или высоты плиты только ухудшает работу (т.к. растет нагрузка от собственного веса); а вот защемление дает свои положительные плоды – на опорах появляется изгибающий момент, дающий нам верхнюю арматуру, зато в пролете момент уменьшается, и в сумме конструкция проходит по расчету. При этом, правда, никогда не стоит забывать, что защемленная балка или плита передает усилие на конструкции, на которые она опирается.

Еще защемление стоит применять в плитах и балках, в которых важно уменьшить прогиб или уменьшить раскрытие трещин – меньше момент в пролете, значит меньше и деформации.

Еще одна особенная штука – это плита, опирающаяся по четырем сторонам. Она уже за счет такого опирания работает так, что возникает необходимость установить верхнюю арматуру в плите (особенно ближе к углам). Поэтому зачастую рационально, если есть такая возможность, защемить плиту и проверить, не меньше ли будет армирование.

Опирание крайних плит или второстепенных балок.

У любой многопролетной конструкции, будь то плита или второстепенная балка, есть крайний пролет, в котором она опирается на балку с одной стороны. И в связи с такой однобокой загруженностью балка-опора испытывает кручение, зачастую значительное. И в таких случаях, когда при расчете на кручение сечение балки разрастается до немыслимых размеров, нам на помощь приходит шарнир. Если опереть плиту или второстепенную балку шарнирно, то крайная балка-опора разгрузится, моменты на нее передаваться не будут, и ситуация перестанет быть критической. Понятно, что не всегда получается законструировать шарнирное опирание (особенно в монолитном варианте), но иногда даже в монолите лучше сделать крайнюю балку с консолью, и уже на эту консоль шарнирно опереть плиту. Еще есть вариант (но это если позволяет архитектура) – вывести опирающуюся плиту консольно в виде балкона; тогда балка-опора не до конца, но разгрузится.

Также на тему шарниров и защемления можно прочитать здесь.

Ирина, это любопытный вопрос, заранее соглашаюсь с вашим мнением)), по предыдущему моему комментарию был неправ, у Вас всё правильно написано, невнимательно прочитал и представил случай жесткого сопряжения колонны с ростверком и шарнирного (при отсутствии выдергивающих усилий в сваях) сопряжения ростверка со сваями для него и написал, что моменты передаваться не будут, а только вертикальные усилия

Да нет, Ирина в статье все однозначно написано)), просто я невнимательно прочитал, а по поводу того, что раньше как Вам сказали ростверк считали абсолютно жестким мои соображения такие:
считаю надо смотреть в каждом конкретном случае считать или не считать ростверк абсолютно жестким.
Чтобы считать "что-либо" абсолютно жестким телом, надо предполагать, что это "что-либо" имеет под нагрузкой очень малые деформации (перемещения, углы поворота), которые настолько малы, что не создают достаточно больших усилий от этих деформаций, которые бы влияли на несущую способность конструкции.
К примеру если высота ленточного ростверка относительно шага свай жестко соединенных с ним достаточно велика, то ростверк можно считать достаточно жестким (или абсолютно жестким) прогиб ростверка будет минимально малым и соответственно будут минимально малы моменты на опорах (сваях), соответственно этими моментами можно пренебречь и считать сваи только на вертикальные нагрузки от ростверка

В чем разница между шарнирным опиранием и жестким защемлением

Для многих начинающих проектировщиков основной проблемой является выбор расчетной схемы: где должны быть шарниры, а где – жесткие узлы? Как понять, что выгодней, и как разобраться, что вообще нужно в конкретном узле конструкции? Это очень обширный вопрос, надеюсь, данная статья немного внесет ясности в столь многогранный вопрос.

Что такое узлы опирания и обозначение этих узлов на схемах

Начнем с самой сути. Каждая конструкция должна иметь опору – как минимум она не должна упасть с высоты, на которой ей положено находиться. Но если копнуть глубже, для надежной работы элемента, нам мало запретить ему падать.

Как может сместиться любой элемент в пространстве? Во-первых, это может быть перемещение по одной из трех плоскостей – по вертикали (ось Z), по горизонтали (оси Х и У). Во-вторых, это может быть поворот элемента в узле вокруг тех же трех осей.

Степени свободы элемента

Таким образом, мы имеем целых шесть возможных перемещений (а если учесть еще и направление плюс-минус, то их не шесть, а двенадцать), которые еще называют степенями свободы – и это очень наглядное название. Если конструкция висит в воздухе (нереальная ситуация), то она полностью свободна, ничем не ограничена. Если в каком-то месте под ней появляется опора, не дающая перемещаться по вертикали, значит одна из степеней свободы у элемента в месте опоры ограничена по оси Z. Примером такого ограничения является свободное опирание металлической балки на гладкой, допускающей скольжение поверхности – она не упадет за счет опоры, но может при определенном усилии сдвинуться по оси Х и У, либо повернуться вокруг любой оси. Забегая вперед, уточним важный момент: если у элемента в узле не ограничен поворот, этот узел является шарнирным. Так вот, такой простейший шарнир с ограничением только по одной оси обозначается обычно следующим образом:

Шарнир с одним ограничением перемещения

Расшифровать такое обозначение просто: кружочки означают наличие шарнира (т.е. отсутствие запрета поворота элемента в этой точке), палочка – запрет перемещения в одном направлении (обычно из схемы сразу становится понятно – в каком именно – в данном случае запрет по вертикали). Горизонталь со штриховкой условно обозначает наличие опоры.

Следующий вариант ограничения степеней свободы – это запрет перемещения в направлении двух осей. Для той же металлической балки это могут быть оси Z и Х, а по У она может переместиться при приложении к ней усилия; повороты ее, как видно, тоже ничем не ограничены.

Шарнирное опирание балки

Как вообще представить отсутствие ограничения поворотов? Если эту балку попытаться закрутить вокруг собственной оси (допустим, опереть на нее перекрытие только с одной стороны – тогда под весом перекрытия балка начнет крутиться), то ничто не помешает этому кручению, балка по всей длине начнет опрокидываться под действием крутящей силы. Точно также если в центре балки приложить вертикальную нагрузку, балка изогнется и в местах опирания свободно повернется вокруг оси У (слева – по часовой стрелке, справа – против). Вот это мы и понимаем как шарнир.

Хочется сразу оговориться, что в строительстве идеальных шарниров и защемлений не бывает. Всегда есть какая-то условность. Допустим, мы игнорируем силу трения и считаем, что по оси У перемещение балки ничем не ограничено. С опытом обычно приходит способность видеть, жесткий или шарнирный перед нами узел. А еще очень важно научиться избегать неполного защемления (когда при небольших усилиях поворота конструкции нет, а при возрастании воздействующей силы опора не выдерживает, и поворот происходит). Такие ситуации провоцируют непрогнозируемое поведение конструкции – ее считали на одну расчетную схему, а работать приходится по другой.

Допустим, есть жесткий узел опирания балки в раме, который обеспечен путем приварки балки к колонне. Но сварной узел рассчитан неверно и шов не выдерживает приложенного усилия и разрушается. Балка продолжает опираться на колонну, но уже может повернуться на опоре. При этом кардинально меняется эпюра изгибающих моментов: на опорах моменты стремятся к нулю, зато пролетный момент возрастает. А балка была рассчитана на защемление и не готова к восприятию возросшего момента. Так и происходит разрушение. Поэтому жесткие узлы всегда должны быть рассчитаны на максимально возможную нагрузку.

Такой шарнир обозначается следующим образом.

Обозначение шарнира

Слева и справа обозначения равноценны. Справа оно более наглядное: 1 – горизонтальный стержень ограничен в узле в перемещении по вертикали (вертикальная палочка с кружочками на концах) и по горизонтали (горизонтальная палочка с кружочками на концах); 2 – вертикальный стержень также ограничен в узле в перемещении по вертикали и по горизонтали. Слева также очень распространенное обозначение точно такого же шарнира, только палочки расположены в виде треугольника, но то, что их две, означает, что ограничение перемещений идет по двум осям – вдоль оси элемента и перпендикулярно его оси. Особо ленивые товарищи могут вообще не рисовать кружочки, и обозначать такой шарнир просто треугольником – такое тоже встречается.

Теперь рассмотрим, что же означает классическое обозначение шарнирно опирающейся балки.

Шарнирно опирающаяся балка

Это балка, имеющая две опоры, а в левой еще и ограниченная в перемещении по горизонтали (если бы этого не было, система не была бы устойчивой – есть такое условие в сопромате – у стержня должно быть три ограничения перемещений, в нашем случае два ограничения по Z и одно по Х). Конструктор должен продумать, как обеспечить соответствие опирания балки расчетной схеме – об этом никогда нельзя забывать.

И последний случай для плоской задачи – это ограничение трех степеней свободы – двух перемещений и поворота. Выше было сказано, что для любого элемента степеней свободы шесть (или двенадцать), но это для трехмерной модели. Мы же обычно в расчете рассматриваем плоскую задачу. И вот мы пришли к ограничению поворота – это классическое понятие жесткого узла или защемления – когда в точке опирания элемент не может ни сдвинуться, ни повернуться. Примером такого узла может служить узел заделки сборной железобетонной колонны в стакан – она настолько глубоко замоноличена, что возможности как сместиться, таки и повернуться у нее нет.

Защемление колонны в фундаменте

Глубина заделки у такой колонны строго расчетная, но даже по виду мы не можем представить, что колонна на рисунке слева сможет повернуться в стакане. А вот правая колонна – запросто, это явный шарнир, и так конструировать защемление недопустимо. Хотя и там, и там колонна погружена в стакан и паз заполнен бетоном.

Больше вариантов защемления будет по ходу статьи. Сейчас разберемся с обозначением защемления. Оно классическое, и особого разнообразие в отличии от шарниров здесь не наблюдается.

Обозначение защемления

Слева показан горизонтальный элемент, защемленный на опоре, справа – вертикальный.

И напоследок – о шарнирных и жестких узлах в рамах. Если узел соединения балки с колонной жесткий, то он показывается либо без условных обозначений вообще, либо с закрашенным треугольничком в углу (как на верхних двух рисунках). Если же балка опирается на колонны шарнирно, на концах балки рисуются кружочки (как на нижнем рисунке).

Как законструировать шарнирный или жесткий узел

Опирание плит, балок, перемычек.

Первое, что следует запомнить при конструировании узлов – зачастую шарнир от защемления отличает глубина опирания.

Если плита, перемычка или балка опирается на глубину, равную или меньшую высоте сечения, и при этом не выполнено никаких дополнительных мероприятий (приварка к закладным элементам, препятствующая повороту и т.п.), то это всегда чистый шарнир. Для металлических балок считается шарнирным опирание на 250 мм.

Если опирание больше двух – двух с половиной высот сечения элемента, то такое опирание можно считать защемлением. Но здесь есть нюансы.

Во-первых, элемент должен быть пригружен сверху (кладкой, например), причем веса этого пригруза должно быть достаточно, чтобы воспринять усилие в элементе на опоре.

Во-вторых, возможно другое решение, когда поворот элемента ограничивается путем приварки к закладным деталям. И здесь нужно четко разбираться в особенностях конструирования жестких узлов. Если балка или приварена внизу (такое часто встречается и в металлоконструкциях, и в сборном железобетоне – к закладным в опоре привариваются закладные в балке или плите), то это никак не мешает ей повернуться на опоре – это лишь препятствует горизонтальному перемещению элемента, об этом мы говорили выше. А вот если верхняя часть балки надежно заанкерена сваркой на опоре (это либо рамные узлы в металле, либо ванная сварка верхних выпусков арматуры в сборных ригелях – в жестких узлах каркаса, либо сварка закладных элементов в узлах опирания балконных плит, которые обязательно должны быть защемлены, т.к. они консольны), то это уже жесткий узел, т.к. явно препятствует повороту на опоре.

На рисунке ниже выбраны шарнирные и жесткие узлы из типовых серий (серия 2.440-1, 2.140-1 вып. 1, 2.130-1 вып. 9). По ним наглядно видно, что в шарнирном узле крепление идет внизу балки или плиты, а в жестком – вверху. Уточнение: в узле опирания плиты анкер не дает жеского узла, это гибкий элемент, который лишь препятствует горизонтальному смещению перекрытия.

Жесткое и шарнирное опирание

Но законструировать узел правильно – это полдела. Нужно еще сделать расчет всех элементов узла, выдержат ли они максимальное усилие, передаваемое от элемента. Здесь нужно рассчитать и закладные детали, и сварные швы, и проверить кладку в случае, если пригруз от нее учитывается при конструировании.

Соединение колонн с фундаментами.

При опирании металлических колонн определяющим фактором является количество болтов и то, как законструирована база колонны. О металле здесь я распространяться не буду, т.к. это не мой профиль. Напишу только, что если в фундаменте для крепления колонны лишь два болта, то это стопроцентный шарнир. Также если стойка приваривается к закладной детали фундамента через пластину, это тоже шарнир. Остальные случаи подробно приведены в литературе, есть узлы в типовых сериях – в общем, информации много, здесь запутаться сложно.

Для сборных железобетонных колонн используется их жесткая заделка в стакан фундамента (об этом речь шла выше). Если вы откроете «Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений», там вы сможете найти расчет всех элементов этого жесткого узла и принципы его конструирования.

При шарнирном узле колонна (столб) просто опирается на фундамент безо всяких дополнительных мероприятий или заделана в неглубокий стакан.

Соединение монолитных конструкций.

В монолитных конструкциях жесткий узел или шарнир всегда определяется наличием правильно заанкеренной арматуры.

Если на опоре арматура плиты или балки не заведена в конструкцию опоры на величину анкеровки или даже нахлестки, то такой узел считается шарнирным.

Так на рисунке ниже показаны варианты опирания монолитных плит из Руководства по конструированию ЖБК. Рисунок (а) и (б) – это жесткое соединение плиты с опорой: в первом случае верхняя арматура плиты заводится в балку на длину анкеровки; во втором – плита защемляется в стене также на величину анкеровки рабочей арматуры. Рисунок (в) и (г) – это шарнирное опирание плиты на балку и на стену, здесь арматура заведена на опору на минимально допустимую глубину опирания.

Жесткое и шарнирное опирание монолитных плит

Рамные узлы соединения монолитных ригелей и колонн в железобетоне выглядят еще серьезней, чем опирание плит на балки. Здесь верхняя арматура ригеля заводится в колонну на величину одной и двух длин анкеровки (половина стержней заводится на одну длину, половина – на две).

Если в узле железобетонного каркаса арматура и балки, и колонны проходит насквозь и дальше идет больше чем на длину анкеровки (например, какой-то средний узел), то такой узел считается жестким.

Чтобы соединение колонн с фундаментом было жестким, из фундаментов должны быть сделаны выпуски достаточной длины (не менее величины нахлестки, подробнее – в Руководстве по конструированию), и эти же выпуски должны быть заведены в фундамент на длину анкеровки.

Аналогично в свайном ростверке – если длина выпусков из сваи меньше, чем длина анкеровки, соединение ростверка со сваей жестким считаться не может. Для шарнирного соединения длину выпусков оставляют 150-200 мм, больше не желательно, т.к. это будет пограничное состояние между шарниром и жестким узлом – а ведь расчет делался как для чистого шарнира.

Если нет места для того, чтобы разместить арматуру на длину анкеровки, проводят дополнительные мероприятия – приварку шайб, пластин и т.п. Но такой элемент должен быть обязательно рассчитан на выкалывание (что-то вроде расчета анкеров закладных деталей, его можно найти в Пособии по проектированию ЖБК).

Читайте также: