Нагревательные устройства для нагрева металла

Обновлено: 05.07.2024

В прокатном производстве в зависимости от массы, формы и размеров нагреваемого металла, а также способов посад­ки, перемещения при нагреве, способов нагрева и выдачи применяют следующие виды нагревательных устройств.

Нагревательные колодцы

Нагревательные колодцы применяют для нагрева слит­ков. По конструкции они бывают одноместные, многомест­ные, с центральной горелкой или боковым обогревом, ре­генеративные или рекуперативные, а также одноместные с электрическим обогревом для нагрева специальной легиро­ванной стали. Нагревательные колодцы должны обеспечи­вать равномерный нагрев слитков по сечению и высоте, исключать их перегрев и пережог; в результате нагрева давать минимальное окалинообразование; иметь высокую производительность при низком удельном расходе топлива; быть надежными в эксплуатации и обеспечивать полную автоматизацию процесса нагрева.

В нагревательные колодцы слитки сажают в вертикаль­ном положении, обычно прибыльной частью кверху. При таком расположении слитков в колодцах обеспечивается всесторонний нагрев, а вследствие этого улучшаются усло­вия нагрева металла, увеличивается скорость нагрева и повышается качество металла; отпадает необходимость в кантовке слитков. Вертикальное расположение слитков устраняет опасность смещения усадочной раковины при по­садке их в горячем состоянии.

Одноместные колодцы старых конструкций состоят из ячеек, отделенных друг от друга стенками. В каждой ячей­ке помещают один слиток. Загрузку и выгрузку слитков в колодцы этого типа производят непрерывно. Недостатки этих колодцев заключаются в неравномерном нагреве слитков по высоте и сечению, быстром изнашивании раздели­тельных стенок, необходимости остановки всей группы колодцев при ремонте одной ячейки, сложности обслужива­ния многочисленных крышек.

Разрез ячейки регенеративных нагревательных колодцев

В регенеративных колодцах каждая группа состоит из четырех ячеек (рис. 63) по 6—8 слитков в каждой. Ячейка (камера) колодцев представляет самостоятельную нагрева­тельную печь, имеющую регенераторы для подогрева газа и воздуха. Два регенератора, ближайшие к рабочей каме­ре, предназначены для подогрева, газа, два дальние для подогрева воздуха.

Газ и воздух, пройдя регенераторы, встречаются в про­странстве над газовым регенератором, после чего горящая смесь через пламенное окно входит в рабочую камеру ко­лодца и нагревает слитки. Из рабочей камеры продукты го­рения уходят в регенераторы, расположенные с противопо­ложной стороны, а оттуда в борова и дымовую трубу.

Колодцы отапливают доменным газом или смесью до­менного и коксового газов. Шлак удаляют через два отвер­стия в коробку, установленную на вагонетке. Последняя передвигается по пути, расположенному в шлаковом кори­доре, общем для всех групп колодцев.

Нагревательные колодцы этого типа механизированы и имеют высокую производительность. Недостатком колодцев является неодинаковое расположение слитков по отноше­нию к потоку тепла, а следовательно, неодинаковый нагрев их. По этой причине емкость регенеративных колодцев не превышает 8—10 слитков, так как для увеличения емкости потребовалось бы удлинение камеры, что ухудшило бы равномерность нагрева слитков по длине камеры. Кроме того при этом возможно оплавление поверхности крайних слитков, а иногда и пережог, что обычно наблюдают при работ на жидком топливе.

Разрезы рекуперативных колодцев

В настоящее время на новых металлургических заводах строят рекуперативные колодцы (рис. 64), имеющие преи­мущества по качеству нагрева и условиям эксплуатации.

В рекуперативных колодцах с центральной горелкой (рис. 64, а) пламя движется вверх, ударяется о крышку, растекается по ее поверхности и омывает стены сверху вниз. После этого дымовые газы проходят через каналы в нижней части двух боковых стен и через керамические ре­куператоры, расположенные с обеих сторон каждой каме­ры. Группа таких колодцев состоит из двух камер. Емкость камеры составляет 12—22 мелких или 6 крупных слитков.

В настоящее время рекуперативные колодцы строят с подогревом воздуха и газа. Воздух нагревается в керами­ческом рекуператоре, а газ — в металлическом сварном трубчатом рекуператоре, установленном за керамическим. Температура подогрева может достигать 800—850 °С для воздуха и 300—350°С для газа. При таких температурах подогрева воздуха и газа колодцы могут работать только на доменном газе.

Рекуперативные колодцы по сравнению с регенератив­ными более просты по устройству, занимают меньше места и легче поддаются автоматизации.

Кроме рекуперативных колодцев с центральной горел­кой, применяют рекуперативные колодцы с боковыми го­релками. Различают два типа таких колодцев. В одном случае горелки (обычно одна) расположены с одной сторо­ны (рис. 64, б), в другом — с двух сторон (рис. 64, в).

В колодцы первого типа газ и воздух подаются с одной стороны сверху, а снизу выходят продукты сгорания. Ко­лодцы этого типа строят с камерой длиной до 8,5 м, шири­ной 2,6—3,35 м и глубиной до 4,5 м. Емкость одной камеры достигает 180 т, а в отдельных случаях 240 т. В одной груп­пе колодцев объединяют четыре камеры.

В рекуперативных колодцах второго типа вход топлива и выход продуктов горения осуществляются с двух сторон. Размер камер этих колодцев составляет 6,5×5 м; одна ка­мера может вместить до 120—130 т слитков.

Недостатком рекуперативного колодца является нерав­номерность нагрева слитков по высоте. Верхняя часть слитка и поверхность его, обращенная внутрь колодца, бы­вают нагреты значительно больше других частей. Для уменьшения неравномерности нагрева слитки в колодце приходится выдерживать дольше, а это снижает их произ­водительность.

Для нагрева слитков применяют также электрические нагревательные колодцы. Нагревательными элементами в этих колодцах являются карборундовые желоба, наполнен­ные нефтяным коксом, который при прохождении электри­ческого тока раскаляется и передает тепло окружающему пространству. Для лучшего разогрева нефтяного кокса в желоба иногда укладывают электроды.

Электрические колодцы характеризуются компактно­стью благодаря отсутствию рекуператоров, дымоходов и труб. В электрических колодцах можно снизить угар ме­талла до 0,2 % путем создания защитной атмосферы, кото­рая образуется при введении в камеры колодцев небольшо­го количества нефти. При нагреве слитков достигают более равномерный нагрев металла. Расход электроэнергии со­ставляет 60—70 кВт-ч на 1 т слитков при горячем всаде.

Камерные, туннельные, колпаковые печи и печи с выд­вижным подом

Камерные, туннельные, колпаковые печи и печи с выд­вижным подом применяют для нагрева крупных слитков, блюмов и заготовок, толстых и тонких листов, пакетов, труб, рулонов, сутунки.

Для нагрева блюмов на рельсобалочных станах приме­няют регенеративные камерные печи, представленные на рис. 65. Печи располагают по обе стороны подводящего рольганга стана. Подачу блюмов к печам производят те­лежкой. Нагретые блюмы из печей к стану подают такой же тележкой. Посадку блюмов в печи и выдачу из них осу­ществляют при помощи специальных посадочных машин кранового типа, называемых шаржирными. Топливом для печей служит смесь доменных и коксового газов с теплотой сгорания 5250 кДж/м 3 , причем в регенераторах подогревают газ и воздух.

Схема расположения регенеративных камерных печей для нагрева блюмов

Отжиг листов производят в коробах. Стопы листов ук­ладывают на поддоне и закрывают коробом. В зависимости от размеров листов конструкции поддонов и коробов различные. Нагрев листов в коробах производят в туннельных печах и печах с выдвижным подом.

Туннельная печь представляет собой длинный туннель (свыше 90 м) с горизонтальным сводом. Печь состоит из трех зон: нагревательной, томильной и зоны охлаждения. Короба с листовым металлом устанавливают на тележках, которые передвигаются в печи одна за другой. Когда в печь со стороны входа задвигается новая тележка, то другая одновременно выталкивается со стороны выхода.

Для термической обработки стали также применяют колпаковые печи (рис. 66), которые состоят из поддонов, короба и колпака с вертикальными трубчатыми обогревателями. Печь отапливают газом, который через горелки по­ступает в нагревательные трубчатые элементы, расположен­ные вертикально или горизонтально и излучающие тепло. Для отжига рулонов применяют колпаковые печи круглого сечения, чаще с электрическим обогревом. Для более равномерного нагрева рулонов колпаки имеют нейтральный сердечник с проводами электросопротивления, который вхо­дит внутрь рулона.

Печь с выдвижным подом для нагрева крупных слитков

Для нагрева крупных листовых слитков применяют пе­чи с выдвижным подом (рис. 67). Слитки укладывают на платформу 1, передвигающуюся по рельсам. При помощи стационарных блоков 2 и 3, каната и лебедки или крюка крана платформу со слитками вдвигают в камеру печи и выдвигают из нее. Газ по трубам через клапан 4, канал 5, вертикальные каналы 6 поступает к горелкам 11, где сме­шивается с подогретым воздухом, поступающим через клапаны 8, 14, каналы 9, 13 и насадки регенератора 10, 12.

Для термической обработки сортового проката приме­няют такие же печи, но без регенераторов. Платформы пе­редвигаются на колесах или на роликовых цепях, позволяющих уменьшить высоту печи, а также увеличить нагрузку на платформу.

Карусельные печи (рис. 68) применяют на современных трубопро­катных станах, а также для нагрева заготовок при штучной прокатке тонких листов. Горелки расположены по окружности печи с внутренней и наружной сторон. Стены печи покоятся на фундаменте, а под печи имеет катки, которые при вращении пода перемещаются по рельсам, замкнутым по кругу. Загрузку металла произво­дят через загрузочное окно печи. Продолжительность на­грева определяется длиной печи (по окружности) и скоро­стью движения подины.

Карусельная печь для нагрева трубной заготовки

Методические печи

Методические печи (двухзонные, трехзонные и много­зонные) работают с противозонным движением металла и продуктов горения с использованием тепла в рекуперато­рах. Они действуют по одному принципу: движение метал­ла и печных газов происходит во взаимно противополож­ных направленнях. Металл при помощи толкателя продвигается от окна посадки к окну выдачи. По мере продвижения вперед металл отбирает тепло у печных газов, движущихся ему навстречу, и постепенно (методически) нагревается. Печные газы, отдавая тепло металлу в конце печи, уходят через соответствующие каналы в регенерато­ры или рекуператоры (если они имеются) и в боров, а че­рез него в дымовую трубу.

Методические печи отличаются друг от друга формой свода, способом подвода топлива для его сжигания, нали­чием устройств для подогрева воздуха и газа, способом вы­дачи металла из печи и целым рядом конструктивных осо­бенностей.

Кроме соответствующих теплотехнических параметров, нагревательные печи должны удовлетворять современным требованиям с точки зрения надежного дистанционного об­служивания. механизации н автоматизации всего комплек­са операций. Скорость нагрева зависит от марок сталей в усилий теплопередачи. Сначала скорость нагрева должна быть небольшой, затем по мере прогревания заготовок она увеличивается.

Методическая трехзонная рекуперативная печь с торцевой посадкой и выдачей блюмов

На рельсобалочных станах за последние годы применя­ют для нагрева металла методические трехзонные рекупе­ративные печи с подогревом воздуха (рис. 69). В качестве топлива применяют смесь доменного и коксового газов с теплотой сгорания 7560—8400 кДж/м 3 . Производитель­ность одной печи при горячем всаде достигает 80—90 т/ч, температура нагрева блюмов в этих печах достигает 1200°С.

Блюмы по рольгангу от блюминга поступают к наклон­ному транспортеру, оборудованному цепными шлепперами, и далее по загрузочному рольгангу к печам, через которые их проталкивают толкателями. После взвешивания на ве­сах, встроенных в секцию загрузочного рольганга перед первой печью, блюм движется по рольгангу и при помощи упора останавливается на секции загрузочного рольганга соответствующей печи. Загрузку блюмов в печь производят толкателем, имеющим две штанги, снизу которых закрепле­ны зубчатые рейки; последние приводятся в движение че­рез шестерни и редукторы от двух электродвигателей.

После загрузки очередного блюма в печь с противопо­ложной торцовой стороны ее выдают нагретый блюм по литым направляющим листам (склизам) на разгрузочный рольганг. Таким образом, толкатель одновременно является и выталкивателем.

Методическая печь, отапливаемая инжекторными горелками, с нагревом воздуха и газа

На среднесортных и крупносортных станах применяют методические печи (рис. 70) с торцовой посадкой и выда­чей, с керамическими воздушными рекуператорами. В пе­чах последних конструкций применяют инжекторные бес­пламенные горелки высокого давления, что обеспечивает более высокий подогрев воздуха, значительно улучшает сжигание и позволяет автоматически регулировать соотно­шение газа и воздуха самой горелки, это значительно уп­рощает схему автоматики и облегчает управление печью.

Печи этого типа оборудованы керамическими рекупера­торами для подогрева воздуха до 500—600°С и металли­ческими трубчатыми рекуператорами для подогрева газа до 350 °С. Печь работает на сравнительно малокалорийной смесн доменного и коксового газов с теплотой сгорания 3760—6260 кДж/мл.

Для нагрева на мелкосортных н проволочных станах за­готовок сечением менее 100×100 мм и длиной 9 м устанав­ливают одну широкую печь с боковой загрузкой и боковой выдачей без нижнего подогрева, с монолитным подом. Для подогрева воздуха до 300—350 °С в этих печах служат керамические рекуператоры. Заготовки передвигаются по наклонной подине, а в методической части — по подовым брусьям. Передвижение заготовок в печи производят ры­чажным толкателем.

Боковая загрузка заготовок осуществляется при помо­щи заталкивающей тележки, установленной под загрузоч­ным рольгангом, или при помощи тянущих роликов, уста­новленных за загрузочным окном в печи. Выдачу из печи заготовок осуществляют выталкивателем. Печи такого типа отапливают смесью доменного и коксового газов с тепло­той сгорания до 10,5 Мдж/м 3 . На них достигают произво­дительности 70—80 т/ч при наличии горячего всада.

Методические печи последних конструкций имеют полез­ную длину до 18 м; для гарантии надежного проталкивания заготовок сечением 60×60 мм подину по продольной оси делают вогнутой (лекальной).

Удачными но конструкции и тепловому режиму оказа­лись печи с инжекторными горелками, установленными в двух верхних зонах и одной нижней. Такие печи производи­тельностью до 80 т/ч могут работать на одном доменном газе. Эти печи оборудованы керамическими рекуператорами для подогрева воздуха до 600 °С. Активная длина пода со­ставляет 16,5 м при длине заготовок 9 м.

В последних конструкциях этих печей длину заготовок увеличили до 12 м при длине активного пода лекальной формы, равной 18 м. Форсирование тепловой мощности до­стигают применением инжекторных горелок, подогревом газа и воздуха. Воздушный рекуператор керамический, газовый — трубчатый металлический. Эти печи без нижне­го подогрева имеют производительность до 140 т/ч.

Печи с шагающим подом

Для новых мелкосортных станов с использованием метода бесконечной прокатки (сварки нагретых заготовок в бесконечную полосу) приме­няют новый способ нагрева — сначала в печах с шагающим подом, а затем для компенсации понижения температуры при сварке и сохранения равномерности температуры заго­товок по длине они проходят через печи скоростного нагре­ва, установленные перед первой клетью стана.

Такой нагрев позволяет сохранить преимущества мини­мального расстояния между печью и станом и обеспечить возможность компановки не одной, а двух печей; таким об­разом создается резерв по нагреву металла для высокопро­изводительных прокатных станов. Применение двух печей с шагающим подом гарантирует производительность станов до 200—220 т/ч при высоком уровне механизации и автома­тизации участка нагревательных устройств.

С точки зрения теплопередачи печь с шагающим подом имеет преимущество перед остальными, так как в этих пе­чах интервалы между заготовками составляют 200 мм, что обеспечивает их нагрев с трех сторон. Время нагрева в пе­чах с шагающим подом уменьшается, что создает условия для снижения угара и обезуглероживания.

Печь с шагающим подом

На рис. 71 показана печь с шагающим подом с торце­вой загрузкой и боковой выдачей и двумя зонами нагрева. Продукты горения в холодной части печи уходят вверх, ме­таллический рекуператор вынесен в сторону, так как низ печи занят механизмами шагающего пода.

Печи скоростного нагрева

Уменьшение продолжитель­ности нагрева металла в печи обеспечивает не только высо­кую производительность при хорошем качестве, но и реша­ет ряд принципиальных вопросов рациональной компоновки технологического оборудования. Теплофизические свойства большинства сталей обеспечивают большой резерв по уско­рению нагрева заготовок, особенно при температурах выше 700 °С.

Скоростной нагрев металла обеспечивает быстрое повы­шение температуры поверхности, равномерное распределе­ние потоков тепла и организацию сжигания топлива при правильном направлении факела и большую тепловую мощ­ность нагревательных устройств. Скоростная непрерывная печь состоит из ряда небольших секций (часто съемных). Нагреваемые заготовки, трубы или штанги продольно пе­ремещаются по роликам. В секциях обеспечивается полу­чение высоких температур благодаря предварительному смешиванию газа с воздухом, полноте сжигания топлива при небольшом избытке воздуха, а также вследствие уве­личения теплопередачи конвекцией. Конструкция горелок, их размещение обеспечивают симметричный нагрев. Приме­няют и другие печи скоростного нагрева — электрические и индукционные.

Проходные секционные печи работают на трубопрокат­ных и на современных сортовых станах в комплексе с печа­ми с шагающим подом.

Нагрев металлов перед ОМД: условия нагрева

Для повышения пластичности и снижения сопротивления деформированию металл необходимо нагреть до температур рекристаллизации. Нагрев металла перед обработкой давлением является ответственной операцией, от которой во многом зависит не только качество будущих деталей, но и производительность труда, надежность работы оборудования, стойкость инструмента и себестоимость продукции.

Для уменьшения окалинообразования и обезуглероживания применяют нагрев в защитной атмосфере или вакууме, скоростной нагрев, защитные засыпки и обмазки, наносимые на заготовки перед нагревом.

Высокоуглеродистые и высоколегированные стали и многие сложные сплавы, имеющие низкие теплопроводность и пластичность, во избежание трещин требуют медленного нагрева.

Нагревательные устройства

По способу нагрева нагревательные устройства делятся на пламенные и электрические. В пламенных печах требуемой температуры достигают сжиганием в специальных горелках мазута или газа. В свою очередь, электрические нагревательные устройства подразделяются:

• на электропечи сопротивления косвенного нагрева, в которых нагрев осуществляется энергией, выделяющейся в элементах сопротивления, через которые пропускают ток;

• электрические установки прямого контактного нагрева, в которых электрический ток проходит непосредственно через заготовку, нагревая ее;

• установки индукционного нагрева, в которых заготовку помещают в электромагнитное поле, создаваемое токами высокой частоты.

Деление нагревательных устройств на печи и установки условное и означает, что в печах заготовки нагреваются излучением и конвекцией за счет теплоты рабочего пространства печи, а в установках теплота возникает внутри самой заготовки.

При ОМД для нагрева заготовок кроме пламенных и электрических печей применяются электронагревательные установки (устройства). Распространены два типа электронагревательных установок — индукционного и контактного (прямого) нагрева.

37Прокатка. Сущность процесса, виды прокатки, условие захвата.

Прокатка — процесс пластического деформирования тел на прокатном стане между вращающимися приводными валками (часть валков может быть неприводными). Слова "приводными валками" означают, что энергия, необходимая для осуществления деформации, передается через валки, соединённые с двигателем прокатного стана. Деформируемое тело можно протягивать и через неприводные (холостые) валки, но это будет не процесс прокатки, а процесс волочения.

Способ продольной прокатки является наиболее распространенным. При продольной прокатке полоса подводится к валкам, вращающимся в разные стороны, и втягивается в зазор между ними за счет сил трения на контактной поверхности. Полоса обжимается по высоте и принимает форму зазора (калибра) между валками. При этом способе прокатки полоса перемещается только вперед, то есть совершает только поступательное движение. В зависимости от калибровки валков форма поперечного и продольного сечения проката может быть разной. Таким способом получают листы, плиты, ленту, фольгу, сортовой прокат, периодические профили, гнутые профили и др.

При поперечной прокатке обрабатываемое тело (цилиндрической формы) помещается в зазор между двумя валками вращающимися в одну сторону и получает вращательное движение за счет сил трения на контактной поверхности. Деформация тела происходит при встречном сближении валков. В продольном направлении обрабатываемое тело не перемещается (если нет специальных тянущих устройств). Поперечная прокатка используется для изготовления валов, осей, втулок и других тел вращения.

Поперечно-винтовая прокатка занимает промежуточное положение между продольной и поперечной. Этот способ широко используется для получения полых трубных заготовок (гильз). Обрабатываемое тело (цилиндрической формы) проходя между валками, вращается и одновременно совершает поступательное движение, то есть каждая точка тела (за исключением расположенных на его оси) движется по винтовой траектории.

38 Продукция прокатного производства. Инструмент и оборудование.

Продукцией прокатного производства являются полосы, листы, трубы, прутки различного профиля (круглого, квадратного, прямоугольного, шестигранного, углового, двутаврового, швеллерного, таврового и др.), железнодорожные и трамвайные рельсы, колеса, шары, кольца и др. (рис. 3.19) [6].

Инструментом для прокатки являются валки (рис. 3.18).

39Технология производства основных видов проката, производство труб.

Трубы должны отвечать требованиям, изложенным в Государственных стандартах, ГОСТах. В тех случаях, когда характеристики труб, предназначенных не для массового использования, отличаются от стандартных, требования к таким трубам устанавливаются Техническими Условиями, ТУ.

Металлические трубы обычно делают сварными. При этом либо лист сворачивают так, что шов идёт вдоль трубы («прямошовная труба»), либо навивают ленту по спирали («спиралешовная труба»). Современные технологии позволяют заметно усилить прочность шва стальной трубы — его прочность всего на 10—15 % меньше прочности остальной её части.

Бесшовные трубы получают прокаткой слитка на специальном оборудовании, создающем отверстие по центру. Бесшовные трубы используют там, где нужна повышенная прочность и надёжность (например, для газовых баллонов, в нефтяной отрасли и так далее). Медные трубы для водопровода и газа бесшовные в силу технологии.

Можно также изготавливать трубы, просверливая отверстие в цилиндрической заготовке. При этом способе значительная часть металла превращается в стружку, поэтому его используют не для труб как таковых, а только для деталей разных машин и механизмов (в том числе для оружейных стволов).

Одним из современных способов изготовления трубы является формирование трубчатого сечения с продольным фальцевым швом.

Трубы можно изготовлять и литьём. Материал заливают либо в форму с центральным стержнем, либо в быстро вращающуюся пустотелую форму.

Пластмассовые трубы чаще всего получают выдавливанием (экструзией).

40Ковка. Операции ковки: осадка, протяжка, прошивка, инструмент.

Ковка — это высокотемпературная обработка различных металлов (железо, медь и её сплавы, титан, алюминий и его сплавы), нагретых до ковочной температуры. Для каждого металла существует своя ковочная температура, зависящая от физических (температура плавления, кристаллизация) и химических (наличия легирующих элементов) свойств. Для железа температурный интервал 1250–800 °С, для меди 1000–650 °С, для титана 1600—900 °С, для алюминиевых сплавов 480–400 °С. Особым видом ковки является холодная ковка, осуществляемая без нагрева деформируемого металла.

Протя́жка — операция удлинения заготовки или её части за счёт уменьшения площади поперечного сечения. Протяжку производят последовательными ударами или нажатиями на отдельные участки заготовки, примыкающие один к другому, с подачей заготовки вдоль оси протяжки и поворотами её на 90° вокруг этой оси. При каждом нажатии уменьшается высота сечения, увеличивается ширина и длина заготовки. Общее увеличение длины равно сумме приращений длин за каждое нажатие, а уширение по всей длине одинаково. Если заготовку повернуть на 90° вокруг горизонтальной оси и повторить растяжку, то уширение, полученное в предыдущем проходе, устраняется, а длина заготовки снова увеличивается. Чем меньше подача при каждом нажатии, тем интенсивнее удлинение. Однако при слишком малой подаче могут получиться зажимы.

Прошивка — это получение сквозного отверстия или углубления в поковке.

Прошивка производится при помощи пробойников различной конфигурации и формы (при ручной ковке), сплошных и пустотелых прошивней различного сечения, подкладных колец или плит с отверстиями, калибровочных оправок. Если высота поковки превышает длину прошивня, применяются надставки, диаметр которых должен быть несколько меньше диаметра прошивня.

При прошивке отверстия сплошным прошивнем (рис. 66) искажаются форма и размеры заготовки — уменьшается высота, появляется бочкообразность, один торец получается вогнутым, другой - выпуклым. При прошивке пустотелым прошивнем искажение меньшее, но при этом много металла отходит в выдру. Прошивка пустотелым прошивнем применяется для получения отверстий большого диаметра — свыше 400 мм.

41Ковка. Операции ковки: отрубка, гибка, инструмент. Оборудование для ковки.

Рубка применяется для разделения одной большой заготовки на несколько мелких, удаления излишков металла, образования фасонного контура изделия и т. п. (рис. 67).

Рубка производится при помощи зубил и подсечек (ручная ковка), а также различной формы топоров и квадратов (машинная ковка).

В зависимости от размеров сечения заготовок и требований к качеству поверхности рубка может производиться с одной, двух, трех и четырех сторон. Последние два способа применяются при рубке крупных заготовок из слитков. На рис. 68 показана схема рубки с одной и двух сторон. Рубка с одной стороны производится следующим образом. В месте разруба топором 1 или наметкой делают углубление, насыпают туда смазку и нажимом пресса или ударом молота вгоняют топор на такую глубину, чтобы осталась перемычка, равная примерно ширине обуха топора. Затем топор вынимают, заготовку кантуют, на перемычку накладывают квадрат 2, несколько больший, чем лезвие топора, чтобы не образовались заусенцы, и ударом по квадрату окончательно разрубают заготовку. При этом получается некоторый отход металла — обсечка

При рубке с двух сторон топор вгоняют в заготовку на половину ее толщины, затем заготовку кантуют и топором с другой стороны окончательно разрубают. При этом на отделяемой части получается значительный заусенец 3.

Заусенцы, получающиеся при рубке, необходимо тщательно удалять, так как при дальнейших операциях ковки они становятся причиной брака. Удаляют их зубилом (при ручной ковке) или односторонним топором (при машинной ковке).

В процессе рубки топор, углубляясь в металл, затягивает с собой поверхностные слои, вследствие чего угол получается заваленным, не острым. Для получения острых углов предусматривается некоторое утолщение в месте разруба, компенсирующее «утяжку». После отрубки утолщения разгоняются бойками.

Гибка (гнутье) металла Гибкой называется операция, с помощью которой заготовки придают изогнутую форму по заданному контуру (рис. 7.4, е). Этой операцией изготавливаются угольники, скобы, крючки, кронштейны и т.п. При сгибании происходит изменение площади поперечного сечения заготовки в зоне изгиба вследствии сжатия внутренних и растяжения внешних ее слоев, называемое стяжкой. Для компенсации стяжки в месте изгиба заготовки предоставляют увеличенный размер по толщине. При изгибе возможно образование складок по внутреннему контуру и трещин по наружному. Чтобы избежать этого явления подбирают соответствующий радиус закругления и угол изгиба. Кроме заготовок сплошного профиля сгибанию могут подвергаться также трубы, для чего последние наполняются песком и плотно забиваются с обеих сторон пробками.

Машинная ковка выполняется на механических молотах (рессорных, пневматических, паровоздушных и др.) или прессах. Поковки зажимают в клещи и подводят под молот, который ударами бойка изменяет форму заготовки.

Ручная ковка производится последовательными ударами инструмента (молотка или кувалды) по обрабатываемой заготовке, лежащей на опорной площадке - наковальне. Ручная ковка находит применение при индивидуальном изготовлении мелких изделий или при ремонтных работах, но в последнее время ручная ковка все больше и больше вытесняется машинной ковкой.

42. Разработка техпроцесса изготовления поковок горячей объемной штам-
повкой состоит из следующих этапов:
1 Разработка чертежа поковки.
2 Конструирование чистового ручья штампа.
3 Определение усилий деформирования металла и выбор мощности штампо-
вочного молота.
4 Конструирование молотового штампа.
5 Определение профиля и размеров исходной заготовки.
6 Определение термического режима штамповки.

Листовая штамповка — метод изготовления плоских и объемных тонкостенных изделий из листового материала, ленты или полосы с помощью штампов на прессах или без применения прессов. Листовая штамповка подразделяется на горячую и холодную.

Холодная штамповка. Это наиболее прогрессивный метод обработки давлением, так как он позволяет получить детали, не требующие в большинстве случаев дальнейшей обработки резанием. Холодной листовой штамповкой изготовляют как крупные, так и мелкие детали (рамы и кузова автомобилей, шасси самолетов, элементы обшивки судов, детали часовых механизмов и др.).

Нагрев металла перед обработкой давлением

Значение нагрева металла. Нагрев металла при обработке давлением – одна из основных операций, от которой в большой степени зависит точность размеров получаемых изделий, их качество, правильное использование оборудования, инструмента и т.п.

Главная цель нагрева металла при обработке давлением – повышение его пластичности и уменьшение сопротивления деформированию. Нагрев должен обеспечивать равномерную температуру по сечению заготовки, её минимальное окисление и обезуглероживание. Практикой установлено, что интенсификация нагрева снижает окалинообразование, за счёт чего повышается точность изделий и возрастает стойкость инструмента (прокатных валков, бойков, штампов и т.п.).

Температурный интервал горячей обработки давлением. Каждый металл и сплав имеет свой строго определённый температурный интервал горячей обработки давлением.

Верхний предел температуры нагрева, т.е. температуру начала обработки следует назначать, чтобы не было ни пережога, ни перегрева.

Пережог – образование хрупкой плёнки между зёрнами металла, вследствие окисления их границ с частичным оплавлением. При пережоге происходит полная потеря пластичности металла. Пережог – неисправимый вид брака. Пережженный металл отправляют на переплавку. Пережог наступает, если температура нагрева близка к линии солидус (для сталей – линия АЕ на рис.3.4). Например для стали 20 пережог наступает при 1470 о С, а для стали У11 – при 1180 о С.

Ниже зоны пережога лежит зона перегрева. Перегрев приводит к резкому росту зерна. Так как крупнозернистому аустениту (первичная кристаллизация) соответствует крупное зерно структур, образовавшихся при вторичной кристаллизации (феррит + перлит, перлит + цементит), то механические свойства изделия, полученного из перегретой заготовки, оказываются низкими. Перегрев – исправимый брак, для этого проводят отжиг II рода.

В процессе обработки давлением металл остывает, соприкасаясь с более холодным инструментом и внешней средой. Заканчивать горячую обработку следует не ниже определённой температуры. Если температура окончания обработки давлением будет близкой к температуре рекристаллизации или ниже её, то металл упрочнится, так как рекристаллизация не успеет произойти. Если же температура окончания обработки давлением будет значительно выше температуры рекристаллизации, то в процессе остывания зерно металла успевает вырасти (особенно у металлов, не испытывающих фазовых превращений), а следовательно, снизиться пластичность и вязкость металла.

Для сталей верхний предел температуры нагрева – температура начала обработки давлением – находится на 100 – 200 о С ниже линии солидус АЕ диаграммы состояния (см. рис.3.4), а нижний предел выбирают на 50 – 60 о С выше линии PS.

Скорость нагрева также должна лежать в определённом интервале. Скорость нагрева не должна быть слишком большой, так как с её увеличением увеличивается разность температур по сечению заготовки и, как следствие, опасность образования внутренних микро- и макротрещин. На практике пользуются эмпирическими формулами, устанавливающими связь между скоростью нагрева и размерами заготовки.

Рис.3.4. Температурный интервал обработки давлением углеродистых сталей.

Скорость нагрева не должна быть также слишком низкой, так как с уменьшением скорости нагрева возрастает время нагрева и интенсифицируется скорость окисления поверхности металла. Окисление называют угаром. При угаре на поверхности образуется окалина (на стали – оксиды FeO, Fe3O4, Fe2O3), которая увеличивает износ деформирующего инструмента, так как твёрдость некоторых оксидов, входящих в состав окалины выше твёрдости нагретого инструмента. На угар теряется около 5 % всей стали, подвергаемой обработке давлением. При высоких температурах окисляется не только железо, но и углерод – происходит так называемое обезуглероживание. Толщина обезуглероженного слоя может достигать 1,5… 2 мм. Для уменьшения окисления и обезуглероживания при нагреве в печи применяют нейтральные, защитные и восстановительные атмосферы. А после нагрева перед обработкой давлением применяют различные способы удаления окалины.

Режим охлаждения после обработки давлением также важен для качества получаемой стали: чем меньше теплопроводность материала заготовки, чем больше её масса и сложнее конфигурация, тем медленнее должно быть охлаждение.

Нагревательные устройства. Применяемые при обработке давлением нагревательные устройства классифицируются по следующим признакам:

1. По источнику энергии. Различают следующие типы печей:.

· Пламенные печи. В них осуществляется косвенный нагрев заготовки, т.е. за счет соприкосновения поверхности с какой – либо средой (газообразной жидкой, твердой). Передача тепла в этом случае идет за счет конвекции или излучение (основной способ при высоких температурах). Печи (пламенные) чаще применяют для нагрева слитков и крупных заготовок.

· Электронагревательные устройства. В них может реализоваться как прямой способ нагрева, т. е. когда тепло выделяется в самой заготовке, так и косвенный. Эти устройства наряду с нагревательными печами применяются для нагрева средних и мелких заготовок.

2. По назначению. По этому признаку различают:

· Устройства для нагрева под прокатку:

· Устройства для нагрева под ковку и штамповку

· Устройства для нагрева под прессование (выдавливание)

3. По принципу действия. В зависимости от принципа действия печи делятся на следующие типы:

· Устройства с периодической загрузкой. Заготовки в них неподвижны, загрузка и выдача их производится через то же сядочное окно.

· Устройства с непрерывной загрузкой (методические печи). В них заготовки в процессе нагрева непрерывно продвигаются от места загрузки к месту выдачи.

Характеристика пламенных печей.

Камерные печи (рис.3.5, а). Температура в камерных печах одинакова по всему объему рабочему. Для уменьшения температурных напряжений температура печи при загрузке заготовок (особенно из легированной стали) должна быть значительно ниже необходимой конечной. Эти печи универсальны поэтому очень распространены в мелкосерийном производстве; могут быть использованы для нагрева слитков массой до 300 т. Рабочее пространство 1 печи, выложенное огнеупорным кирпичом, нагревается с помощью двух форсунок 2. Заготовки 3 загружаются и выгружаются через окно 4. Продукты сгорания отводятся через дымоход 5


Рис.3.5. Схемы пламенных печей: а – камерная печь, б – методическая печь.

Нагревательные колодцы (они могут быть также электрическими) относятся к печам периодического действия; в них нагреваются крупные слитки под прокатку; слитки помещаются в колодце вертикально и загружаются сверху. Применяются, как правило, в прокатных цехах.

Щелевые печи – печи периодического действия для нагрева только концов прутков, имеют загрузочные окна в виде круглых отверстий.

Методические печи (рис.3.5, б) – печи непрерывного действия (непрерывной загрузки). Бывают пламенными и электрическими, последние чаще применяют в цехах по обработке цветных металлов и сплавов. Методическая печь имеет вытянутое рабочее пространство, разделенное на две (двухзонная печь) или три (трехзонная печь) зоны. В последнем случае различают: I – подогревательную зону (600…800 ºС), II – зону максимального нагрева (1250…1350 ºС); III – зону выдержки (томления), в ней температура выравнивается по сечению заготовки. Заготовки 1 с помощью толкателя 2 проталкиваются по водоохлаждаемым трубам 3 и постепенно проходят по зонам подогрева и максимального нагрева, где происходит основное сгорание топлива с помощью форсунок 4. Выгружаются заготовки через окно 5. Методические печи применяют в прокатном производстве и крупносерийном штамповочном.

Основные показатели эффективности работы пламенных печей:

а) Напряженность пода:

, где H – напряженность пода, Gт – производительность печи (кг/ч), Fп – площадь пода (м²).

Напряжённость пода определяет производность печи. Для методических печей Н = 800…1000.

б) Коэффициент полезного действия печи η:

, где Q – тепло, затраченное на нагрев (Дж), Qп – тепло, внесенное в печь (Дж).

Основные потери теплоты происходят с уходящими газами, имеющими высокую температуру; чем выше температура уходящих газов, тем ниже η. Поэтому к. п. д. методических печей выше чем у камерных, и достигает 40…60 %. Тепло уходящих газов в пламенных печах может использоваться для подогрева воздуха и топлива, подаваемых в печь. Для подогрева служат рекуператоры (в рекуператорных печах) – подогреватели непрерывного типа, и регенераторы (в регенеративных печах) – подогреватели периодического действия. В рекуператорах холодный воздух пропускается по трубам, омывающимся снаружи уходящими газами. Устройство регенераторов такое же, как и применяемых в доменных и мартеновских.

в) Удельный расход топлива – отношение количества затраченного топлива к весу нагретого металла.

Характеристика электронагревательных устройств.

1) Электропечи сопротивления имеют вместо форсунок, вмонтированные в стены металлические или карборундовые (силитовые) элементы сопротивление, подключаемые к силовой электросети. Используются в основном для нагрева под обработку давлением цветных сплавов, имеющих сравнительно невысокую по сравнению со сталью температуру начала ковки. Для стальных заготовок нагрев в электропечах – дорогостоящий, т. к. стойкость нагревательных элементов при температурах нагрева стали под обработку – низка. Главное преимущество электропечей сопротивления – возможность точного регулирования температуры рабочего пространства.

2) Индукционные электронагревательные устройства. Заготовка в этих устройствах помещается внутрь многовиткового соленоида, по которому пропускается переменный ток. В заготовке возникают вихревые токи, которые нагревают установку.

3) Электроконтактные устройства. Нагрев в них осуществляется путем пропускания через заготовку электрического тока большой силы.

Способы нагрева и нагревательные устройства

Часто используются пламенный и бесокислительные способы нагрева.

Пламенный нагрев. Пламенные печи чаще используют для нагрева слитков и крупных заготовок. При пламенном нагреве используются печи, в рабочем пространстве которой сгорает топливо и отходящие газы нагревают заготовку. Могут также использоваться горны, колодцы. Горны отличаются от нагревательных печей небольшими размерами, отапливаются каменным углем или коксом, металл нагревается в них при непосредственном контакте. Горны находят ограниченное применение, т. к. они малопроизводительны. В них трудно создать равномерный нагре и они применяются для нагрева мелких деталей. Пламенные печи работают на мазуте и газе. Таким образом, по виду использования топлива печи делятся на мазутные и газовые. При пламенном нагреве на поверхности заготовки образуется окалина как результат окисления металла кислородом воздуха. Потеря металла в результате окисления называется угаром и достигает до 3 % за один нагрев.

Безокислительный нагрев.Применяют следующие способы безокислительного нагрева.

1. Нагрев в ваннах с расплавленной смесью солей. Применяют для мелких заготовок до 1050 о С.

2. Нагрев с образованием защитных пленок на поверхности заготовок. применяют до 980 О С при покрытии пленкой окисла лития.

3. Нагрев в расплавленной стекломассе. Применяется до 1300 о С.

4. Нагрев в муфельных печах, заполненных защитным газом.

В качестве нагревательных устройств применяются печи и нагревательные установки.

Нагревательные устройства. По характеру распределения температур и способу загрузки металла печи делятся на камерные и методические.

В камерных печах (рис. 3.8) металл загружается периодически и все его количество нагревается одновременно. Эти печи применяются в мелкосерийном производстве вв иду их универсальности и для нагрева очень крупных заготовок массой до 300 т.Камерные печи – неэкономичны, т. к. очень большое количество тепла теряется с отходящими газами, температура которых не ниже температуры нагрева металл и доходит до 1150…1200 о С.

Значительно экономичнее методические печи (рис. 3.9).Они применяются в крупносерийном штамповочном и прокатном производстве. Рабочее пространство печи имеет несколько зон: например, зону нагрева I, зону с максимальной температурой II, зону выдержки III. Заготовка 2 проталкивается толкателем 5 через загрузочное окно. Далее заготовки сами проталкивают друг друга по поду 1 печи и после полного цикла нагрева выгружаются через окно выгрузки 4.


Рис. 3.9 Схема методической печи: 1-под; 2-заготовка; 3-горелка;

4-окно для выгрузки; 5- толкатель; I. Зона подогрева (600-800 о С); II.

Зона максимальной температуры ( 1200-1350 о С); III. Зона выдержки.

В зоне выдержки Ш происходит выравнивание температуры по сечению заготовки.

Горячие газы, поступающие в зону нагрева через горелки 3 движутся навстречу перемещающимся заготовкам, что обеспечивает высокую эффективность нагрева.

Электрический нагрев.Различают печи косвенного нагрева, прямого (контактного ) электронагрева и идукционные нагревательные устройства.

Камерные электропечи сопротивления (косвенный нагрев) применяются в промышленности для нагрева мелких заготовок. Металл в электропечах нагревается за счет тепла, выделяющегося при прохождении электротока по спиралям из жаростойких металлов с большим сопротивлением. Электрический нагрев дает незначительную окалину. Их конструкция аналогична пламенным камерным печам, но вместо форсунок или горелок и спользуют металлические или керамические нагреватели. Для нагрева до 1150 О С в качестве материала нагревателей используется сплав нихром марки Х20Н80.

Контактный нагрев (рис.3.10) основан на (законе Джоуля – Ленца) свойстве электрического тока выделять тепло при прохождении тока до 10000 А через проводник (заготовку). Достоинства: небольшой расход электрической энергии, быстрота, хорошее качество. Таким способом можно нагревать заготовки до 75 мм.

Индукционный нагрев (рис.3.11). При индукционном нагреве заготовка помещается внутри катушки 1(индуктора, изготовленного из медной трубки, по которой для охлаждения протекает холодная вода). По катушке пропускается ток, который создает электромагнитное поле и появляющееся при этом в заготовке 2 вихревые токи нагревают ее.

Достоинства: большая скорость и равномерность, отсутствие окалины, нагрев заготовок любой формы. Недостаток: сложность и дороговизна оборудования, большой расход электроэнергии.

Процессы обработки металлов давлением с предварительным подогревом, в которых полностью успевает произойти процесс рекристаллизации и отсутствуют признаки упрочнения, принято называть «горячими».

Исходные заготовки, обрабатываемые ковкой и штамповкой

Для ковки и объемной штамповки применяют различные металлические материалы: стали (углеродистые, легированные, высоколегированные), жаропрочные сплавы, а также цветные сплавы.Широко применяются для ковки и объемной штамповки стали.

Исходными стальными заготовками для ковки и объемной штамповки являются слитки (рис. 3.12), обжатые болванки (блюмы) и сортовой прокат.Слитокявляется заготовкой для крупных поковок, может использоваться для одной или нескольких поковок. Слитки получают разливкой стали в изложницы из конверторов или мартеновских и электрических печей.

Слиток имеет массу от 135 кг до 350 т. Конфигурация слитков может быть различной в зависимости от способа переплава и завода изготовителя.


Рис. 3.12. Стальной слиток Новокрамоторского металлургического завода

Меньшие значения отхода соответствуют слиткам из углеродистой стали, а большие — из легированной. Донная и прибыльная части отделяются от слитка кузнечной рубкой в начале ковки (после биллетировки) или от концов поковки на заключительной стадии и отправляются на переплав. Прибыльная и донная часть получаются дефектными и идут на переплав. Средняя часть, пригодная для наковок, представляет собой расширяющуюся к верху пирамиду с углом наклона граней от 30 о – 1 о . Пирамида имеет грани с числом сторон 4-12. Грани - вогнутые под большим радиусом.

Слитки производственного объединения «Ижорский завод» им. А.А. Жданова. Имеют вид усеченного конуса.

Резка на кривошипных пресс-ножницах.

Кроме этих слитков в промышленности применяют удлиненные, полые, малоприбыльные слитки, слитки с повышенной конусностью, укороченные с двойной конусностью, трехконусные и др.

Слитки обычно используются для получения крупных кованых наковок, масса которых исчисляется в тоннах, а минимальное сечение превышает 1200 см 2 (Ø >100 мм, ٱ>350 мм). Слитки редко применяют для объемной штамповки.

Обжатая болванка ( блюмы) является заготовкой для средних кованых наковок с площадью поперечного сечения 130…1200 см 2 или Ø 130…400 мм. Блюмы также используются для крупных наковок. Блюмы в сечении имеют вид показанный на рисунке, стороны квадрата вогнутые, углы закруглены. Размер А= 140…450 мм, длина 1…6 м. ГОСТ 4692-71.

Сортовый прокат является заготовкой для большинства штампованных наковок. Из него изготавливают также мелкие кованые наковки сечением 20…130 см 2 . Поперечное сечение обычно круглое или квадратное. Круглое сечение имеет размеры 5…250 мм (ГОСТ 2590-71), квадратное также от 5 до 250 мм ( ГОСТ 2591-71). Длина сортового проката 2…6 м.

Кроме обжатой болванки и сортового проката для объемной штамповки используют профильный прокат:

прокат периодического профиля:

и полосовую заготовку:

Сортовой прокат используют для большинства штампованных и мелких кованых поковок. Длина прутков составляет 2…6 м. Поперечное сечение горячекатаного проката может быть квадратное (ГОСТ 2591—88) или круглое (ГОСТ 2590—88). Размеры поперечного сечения (диаметр, сторона квадрата) устанавливаются этими стандартами и по сортаменту составляют: 5; 6; 8; 10; 12; 15; 18; 20; 22; 24; 25; 26; 28; 30; 32; 34; 36; 38; 40; 42; 45; 48; 50; 56; 60; 65 70; 75; 80; 85 90; 95; 100; 105 110; 120; 125; 130; 140; 150; 160; 170; 180; 190; 200; 210; 220; 240; 250 мм.

Пример обозначения проката квадратного сечения из Стали 45 при стороне квадрата 60 мм и круга диаметром 60 мм из Ст 3:

Нагревательные печи кузнечно-штамповочных цехов

Нагревательная печь – это технологический энергетический агрегат, в котором в результате горения топлива или преобразования электрической энергии выделяется теплота, используемая для тепловой обработки металлов. Печи должны удовлетворять ряду основных требований, к которым относятся: обеспечение высокой производительности при заданных технологических условиях нагрева (температуре, перепаде температур по сечению заготовки и пространству печи); минимальный удельный расход топлива; возможность регулирования производительности; нагрев различных сортаментов; наличие механизации процессов загрузки и выгрузки; простота и безопасность эксплуатации и обслуживания; возможность автоматического управления процессами нагрева.

В кузнечных цехах используют большое разнообразие печей, что позволяет их классифицировать по технологическим, конструктивным и иным признакам. По технологическим признакам печи подразделяются на прокатные, кузнечные (для нагрева металла под ковку и штамповку) и термические. По конструктивным особенностям различают кузнечные горны, наочковые, щелевые, камерные, методические, полуметодические, карусельные и др. В кузнечных цехах массового и крупносерийного производств большое распространение получили печи, имеющие высокую производительность: методические, полуметодические и карусельные. В проходных печах (методических и карусельных) загрузка и выгрузка заготовок осуществляются непрерывно.

В цехах с индивидуальным и мелкосерийным производством, к каким относятся кузнечные цеха авиамоторостроительных предприятий, используют камерные и щелевые печи; в небольших кузницах – кузнечные горны и очковые печи. В камерных печах загрузка и выгрузка заготовок осуществляется через одно и то же окно, заготовки в процессе нагрева остаются неподвижными. Для нагрева цветных металлов и сплавов в кузнечных цехах авиационного производства применяют камерные электропечи, позволяющие выполнять процесс нагрева в защитных атмосферах.

По виду энергоносителя печи подразделяют на пламенные и электрические, а первые, в свою очередь, делят на газовые и мазутные. Иногда пламенные печи классифицируют по способу утилизации теплоты отходящих газов: рекуперативные и регенеративные.

Более общим признаком классификации печей служит температурный режим, в соответствии с которым все нагревательные печи подразделяют на три класса: с постоянной температурой рабочего пространства; с его переменной температурой и проходные печи. Для первого класса печей характерен одноступенчатый режим нагрева, для второго – многоступенчатый. В проходных печах могут быть реализованы как одно-, так и многоступенчатые режимы нагрева.

В зависимости от максимальной рабочей температуры камерные электропечи также можно подразделить на: низкотемпературные, с температурой рабочего пространства 650…700 °С (сушильные, отпускные, для нагрева цветных металлов и сплавов под горячую обработку давлением). В этих печах значительная часть теплоты заготовки передается конвекцией.

К среднетемпературным относятся печи с температурой рабочего пространства 700…1250 °С. В этих печах основной вид теплоотдачи происходит излучением. Печи с рабочей температурой >1250 °С относят к высокотемпературным.

Газовые камерные печи с постоянной температурой рабочего пространства предназначены для нагрева заготовок под высадку и штамповку массой до нескольких килограммов. Они имеют мощность в диапазоне 100…150 кВт, обладают высокой производительностью, но отличаются низким коэффициентом полезного действия (КПД), не превышающим 15 %. Рабочее пространство камерной печи характеризуется размерами: длиной А, шириной Б, высотой В. Номенклатурный ряд камерных печей представлен ниже:

На рис. 8 приведена схема камерной нагревательной печи.

Камерные щелевые печи используют для нагрева концов прутковых заготовок под ковку, штамповку, высадку и другие кузнечные операции. Схема камерной щелевой печи приведена на рис. 9. Применяется большой ряд типоразмеров рабочего пространства этих печей.

Схема камерной нагревательной печи

Рис. 8. Схема камерной нагревательной печи

Схема камерной щелевой печи

Рис. 9. Схема камерной щелевой печи

Номенклатурный ряд размеров рабочей зоны щелевых печей

Производительность печей при нагреве углеродистых и низколегированных сталей составляет ~400 кг/(м 2 ч). При нагреве легированных сталей она снижается в 2 раза.

Расход топлива: мазут 110…125 кг/т; природный газ 130…150 м 3 /т. При нагреве легированных сталей расход увеличивается вдвое.

Схема печи с вращающимся подом

Рис. 10. Схема печи с вращающимся подом: 1 – под печи; 2 – каналы; 3 – рекуператор; 4 – пятовый упорный подшипник; 5 – водяной затвор; 6 – механизм вращения печи

Камерные печи с вращающимся подом (рис. 10) обычно используют для нагрева под ковку, штамповку заготовок небольшой массы. В данных печах удается получить высокую равномерность прогрева заготовок вследствие хорошего их промывания печными газами.

Схема трехзонной методической печи

Рис. 11. Схема трехзонной методической печи: 1 – заготовки; 2 – толкатель; 3 – под печи; 4 – горелки; 5 – окно извлечения нагретых заготовок

Традиционно печи имеют шесть горелок, создающих равномерное температурное поле.

Для кузнечных цехов массового и крупносерийного производств целесообразно применение механизированных методических печей. На рис. 11 приведена схема трехзонной методической печи.

Рабочее пространство методической печи имеет вытянутую форму и включает в себя три (иногда две – полуметодические) зоны с различной температурой: I – зона подогрева (методическая) с температурой нагрева 600…800 °С, II – зона максимального нагрева (1250…1350 °С), III – зона выдержки (томильная)

Заготовки 1 проталкиваются толкателем 2 и, перемещаясь по поду 3 печи, последовательно проходят все три зоны нагрева. Горячий газ от горелок 4 подается навстречу движущимся заготовкам, которые извлекаются из печи через окно 5.

Благодаря встречному движению газов, имеющих высокую температуру, и нагреваемых заготовок температура уходящих газов используется более рационально, чем в обычных камерных печах, потери теплоты ниже, а коэффициент полезного действия выше и достигает 40…60 %.

Трехзонные методические печи позволяют нагревать заготовки толщиной (диаметром) > 100 мм. Их применение позволяет выровнять температуру нагрева заготовки по всему ее объему путем выдержки в томильной зоне.

В табл. 1 рассмотрены основные типы пламенных печей, применяемых в кузнечных цехах для нагрева заготовок под ковку и штамповку.

Камерные и карусельные электрические нагревательные печи сопротивления получили широкое распространение в кузнечно-штамповочных цехах авиационного производства для нагрева высоколегированных сталей, никелевых, титановых и алюминиевых сплавов. Камерные электропечи дают возможность получить любой

Таблица 1. Типы пламенных печей для нагрева заготовок под ковку и штамповку

температурный режим с обеспечением его автоматического регулирования. Электрическая энергия в печах сопротивления преобразуется в тепловую с помощью нагревательных элементов, изготавливаемых из материалов с высоким электрическим сопротивлением.

Как уже отмечалось, печи сопротивления подразделяют на низко-, средне- и высокотемпературные. В низкотемпературных печах основной теплообмен осуществляется путем конвекции, поэтому в них организуют искусственную циркуляцию печной атмосферы печными вентиляторами. В средне- и высокотемпературных печах основной теплообмен выполняется посредством излучения. Электронагреватели печей сопротивления изготавливают в зависимости от рабочей температуры из различных материалов. Материалы, применяемые для изготовления нагревателей, и их рабочие температуры приведены ниже.

Материалы нагревателей и рабочие температуры, С

Металлокерамический материал — До 1600

Дисилицид молибдена (MoSi2) — 1400…1450

Карбидокремниевые (корундовые SiC) — 1450…1500

Модели низко- и среднетемпературных камерных печей, выпускаемые отечественной промышленностью, приведены в табл. 2 и 3.

В качестве примера ниже представлена структура условного обозначения камерной электропечи модели СНО-3.4.3/6: С — нагрев сопротивлением; Н — камерная;

Таблица 2. Перечень выпускаемых низкотемпературных камерных печей

Таблица 3. Перечень выпускаемых промышленностью среднетемпературных камерных печей

О — среда в рабочем пространстве — окислительная (воздушная) (если вместо О стоит З, то в рабочем пространстве — защитная атмосфера); 4 — длина рабочего пространства в дециметрах; 3 — высота рабочего пространства в дециметрах; 6 — номинальная температура, сотни °С.

Некоторые технические характеристики выпускаемых промышленностью карусельных электропечей сопротивления приведены в табл. 4.

Таблица 4. Технические характеристики карусельных электропечей сопротивления с номинальной температурой нагрева 1100 °С

Читайте также: