При какой частоте света падающего на поверхность металла с работой выхода а возможен фотоэффект

Обновлено: 01.05.2024

1. Какой скоростью обладают электроны, вырванные из натрия светом, длина волны которого 66нм? Работа выхода электрона из натрия Дж. Из уравнения Эйнштейна для фотоэффекта, энергия одного кванта света уходит на работу выхода и кинетическую энергию:

где - работа выхода (по условию Дж), - постоянная Планка ( Дж*с), – масса электрона ( кг), – его скорость.
Энергия фотона:

где - постоянная Планка ( Дж*с), c - скорость света ( м), - длинна волны (по условию 66 нм) Откуда:

2. В опытах по фотоэффекту взяли пластину из металла с работой выхода Дж и стали освещать ее светом частотой Гц. Как изменится работа выхода фотоэлектронов из металла и максимальная кинетическая энергия фотоэлектронов , вылетающих с поверхности металла, если увеличить интенсивность падающего света, не изменяя его частоту? Для каждой величины определите соответствующий характер изменения:

Увеличится, уменьшится, не изменится

Работа выхода - это работу, которую должна совершить частица, чтобы вылететь из пластинки. И она (работа) зависит только от материала пластины. Так как пластина не меняется от опыта к опыту, то и работа выхода остается неизменной.

Запишем уравнение Эйнштейна для фотоэффекта:

где - постоянная Планка; - максимальная кинетическая энергия.

Из первой формулы видно, что максимальная кинетическая энергия зависит только от частоты света, следовательно, при увеличении интенсивности она не изменяется.

3. Скорость фотоэлектрона зависит от энергии фотона, вызывающего фотоэффект: если энергия фотона много меньше энергии покоя электрона то можно применять формулу (3), если же энергия фотона сравнима с , то вычисление необходимо вести по формуле (4).

1. Вычислим энергию покоя электрона:

2. Вычислим энергию фотона по формуле (2):

Энергия фотона много меньше энергии покоя электрона, поэтому

4. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов 5 В . Какова работа выхода Авых , если максимальная энергия ускоренных электронов Ее равна удвоенной энергии фотонов, выбивающих их из металла?

Уравнение Эйнштейна для фотоэффекта:

Энергия ускоренных электронов:

5 .Красная граница фотоэффекта для серебра 0,26 мкм. Определите работу выхода.

1.Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.

2.Частота света красной границы фотоэффекта для некоторого металла составляет 6*1014 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.

3. Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

4. На медный шарик падает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

6. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта λ0=307 нм и максимальная кинетическая энергия Tmax фотоэлектрона равна 1 эВ?

7. На поверхность лития падает монохроматический свет (λ=310 нм). Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода А.

8. Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, нужно приложить задерживающую разность потенциалов U1=3,7 В. Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6 В. Определить работу А выхода электронов с поверхности этой пластинки.

9. На цинковую пластинку падает монохроматический свет с длиной волны λ=220 нм. Определить максимальную скорость vmax фотоэлектронов.

10. Определить длину волны λ ультрафиолетового излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10 Мм/с. Работой выхода электронов из металла пренебречь.

11. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла под действием γ-излучения с длиной волны λ=0,3 нм.

12. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла при облучении γ-фотонами с энергией ε=1,53 МэВ.

13. Максимальная скорость vmax фотоэлектронов, вылетающих из металла при облучении его γ-фотонами, равна 291 Мм/с. Определить энергию ε γ-фотонов.

Примеры решения задач

Задача 1. Определите красноволновую границу фотоэффекта для натрия, если работа выхода электрона из фотокатода А=2,3 эВ.

Задача 2. Работа выхода электронов из пластины Авых=6,3 эВ. Определить, произойдет ли внешний фотоэффект, если на пластину падает свет с частотой ν1=8·10 14 Гц, ν2=3·10 16 Гц.

Дано: СИ: Решение:
Авых=6,3 эВ 1·10 -18 Дж Внешний фотоэлектрический эффект
ν1=8·10 14 Гц произойдет в том случае, если ν>νкр.
ν2=3·10 16 Гц Уравнение для красной границы фотоэффекта
Найти: крвых (1)
νкр-? Из (1) определяем νкрвых/h.
Вычисления дают νкр=1,5·10 15 Гц
При этой частоте фотоэффекта не произойдет.
Во втором случае вычисления покажут, что фотоэффект произойдет.

Задача 3. При облучении фотоэлемента светом с частотой 1,6·10 15 Гц фототок прекращается при задерживающем напряжении U=4,1 В. Определить А- работу выхода электрона с поверхности фотокатода, λ- красную границу фотоэффекта.

Дано: Решение:
ν=1,6·10 15 Гц Электрон может пролететь через тормозящее поле, разность потенциалов которого U, если
U=4,1В eU ≤ (1)
h=6,63·10 -34 Дж·с Уравнение Эйнштейна для фотоэффекта в данном случае имеет вид:
е=1,6·10 -19 Кл е·U=Авых +еU (2), откуда А=hv-еU (3)
Найти: вых, откуда λ=
Авых-? A=6,63·10 -34 ·1,6·10 15 -1,6·10 -19 ·4,1=4·10 -19 Дж
λкр-? λ= 5·10 -7 м.
Ответ: А=4·10 -19 Дж, λ=5·10 -7 м.

Задание 2. Решите количественные задачи.

Задача 1. Длина волны света λ, частота ν, масса фотона mf, импульс Pf, энергия Ef. Определите значение величин, обозначенных «?».

Вариант 1 2 3 4 5 6 7 8 9 10
λ, нм ? ? 600 ? ? ? ? 10 ? ?
ν, Гц ? 5·10 14 ? ? ? ? 10 17 ? ? ?
mf mе ? ? ? ? mр ? ? ? ?
Pf, ? ? ? ? 1,2·10 -27 ? ? ? ? 2·10 -30
Ef, Дж ? ? ? 6,4·10 -19 ? ? ? ? 1,5·10 -20 ?

Задача 2. Работа выхода электронов с поверхности металла равна Ав. Металл облучается светом с длиной волны λ и частотой ν. Скорость электронов выбитых с поверхности металла . Красная граница λк. Определите значение величин, обозначенных «?».

Вариант 1 2 3 4 5 6 7 8 9 10
Ав, эВ 4,3 ? 2,2 ? ? ? 4,4 ? 4 3,8
λ , нм 200 ? ? 250 ? 200 ? ? 280 ?
ν , 10 15 Гц ? ? ? ? 1,25 ? 1,5 0,6 ? 1
, Мм/с ? 0,5 1 ? ? ? ? ? ? ?
λк , нм ? 280 ? 309 326 288 ? 563 ? ?

Задача 3. Задерживающая разность потенциалов в опыте по фотоэффекту равна Uз. Скорость фотоэлектронов , энергия - E. Определите значение величин, обозначенных «?».

Вариант 1 2 3 4 5 6 7 8 9 10
Uз, В 3 ? ? 9 ? ? 4 ? ? 5
, Мм/с ? 1,8 ? ? 3 ? ? 1,2 ? ?
E,10 -19 Дж ? ? 6,4 ? ? 10 ? ? 3,2 ?

Задача 4. Работа выхода электронов с поверхности металла Ав, задерживающая разность потенциалов Uз, частота падающего света ν, масса фотонов mf. Определите значение величин, обозначенных «?».


Вариант 1 2 3 4 5 6 7 8 9 10
Ав, эВ 4 ? 4,4 ? 4,3 4 ? ? 3,8 ?
Uз, В 3,2 4,5 ? 6 ? 5,3 2,8 4,4 ? 5
ν,10 15 Гц ? ? 1,5 2,4 2,17 ? ? 2,1 1,75 ?
mf,10 -35 кг ? 1,17 ? ? ? ? 0,9 ? ? 1,5

Задача 5. При торможении электронов, проходящих разность потенциалов Uобразуется рентгеновское излучение с частотой ν, и длиной волны λ. Определите значение величин, обозначенных «?».

Урок 22. Фотоэффект

Квантовая физика - раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант - (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения - некоторое предельное значение силы фототока.

Задерживающее напряжение - минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10 -34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика - раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.


Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения - максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, - прямо пропорционален интенсивности падающего излучения.


Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin - частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, "затрудняющее" вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение - минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где

Е – заряд электрона;

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны - фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода

Запирающее напряжение

Работа выхода - это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение - это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Решение задач по физике на тему "Фотоэффект" (11 класс)

Задачи на тему: «Световые волны. Световые кванты» 11 класс

А) заряжается положительно, Б) заряжается отрицательно, В) не заряжается.

3. Максимальная кинетическая энергия электронов, выле­тевших при освещении поверхности металла, зависит от: А) интенсивности света, Б) работы выхода электрона,

В) частоты света, Г) работы выхода и частоты света.

4 . В результате фотоэффекта при освещении электрической дугой отрицательно заряженная металлическая пластина по­степенно теряет свой заряд. Если на пути света поставить фильтр, задерживающий только инфракрасные лучи, то ско­рость потери электрического заряда пластиной:

А) увеличится . Б) уменьшится . В) не изменится.

5. График зависимости кинетической энергии фотоэлектро­нов от частоты света имеет вид


6. На поверхность металла с работой выхода А падает свет с частотой v. Фотоэффект возможен в том случае, если

7. При фотоэффекте с увеличением интенсивности падаю­щего светового потока ток насыщения

А) уменьшается . Б) увеличивается . В) не изменяется.

8. Меньшую энергию имеют фотоны: А) красного света . Б) фиолетового света.

9. Энергия фотонов при уменьшении длины световой волны в 2 раза: А) уменьшится в 2 раза . Б) уменьшится в 4 раза, В) увеличится в 2 раза, Г) увеличится в 4 раза.

10. При увеличении длины световой волны в 3 раза импульс фотона: А) увеличится в 3 раза . Б) уменьшится в 3 раза, В) увеличится в 9 раз . Г) уменьшится в 9 раз.

11. Масса фотона связана с частотой соотношением ___.

12. Импульс фотона с длиной волны λ определяется по фор­муле ___.

13. Энергия фотона с длиной волны λ = 630 нм (красный свет) равна ___ Дж.

14. Работа выхода электрона из лития 3,84 • 10 - 19 Дж. При облучении светом с частотой 10 15 Гц максимальная энергия вырванных из лития электронов составит ___ Дж.

15. Крайнему красному лучу ( λ = 0,76 мкм) соответствует частота __ Гц.

16. На дифракционную решетку с периодом 2 • 10 - 6 м нормально падает монохроматическая волна света, при κ = 4 и sin φ = 1 длина волны будет равна ___ м.

Административная контрольная работа по теме:

«Световые волны. Световые кванты» 11 класс

ВЫБЕРИТЕ О Д ИН ПРАВИ Л ЬНЫЙ О Т ВЕТ

1. Под фотоэффектом понимают явление взаимодействия света с веществом, при котором происходит: А) поглощение электронов . Б) вырывание электронов, В) поглощение атомов, Г) вырывание атомов.

2. На незаряженную, изолированную от других тел, метал­лическую пластину падают ультрафиолетовые лучи. При этом пластина: А) заряжается положительно, Б) заряжается отрицательно, В) не заряжается.

3. При увеличении светового потока увеличивается: А) число электронов, Б) скорость электронов, В) энергия электронов, Г) скорость и энергия электронов.

4. Первая из двух одинаковых металлических пластин име­ет положительный электрический заряд, вторая пластина -отрицательный. При освещении электрической дугой быстрее разряжается: А) первая, Б) вторая . В) обе одинаково.

5. При фотоэффекте с увеличением частоты падающего излучения задерживающее напряжение: А) увеличивается, Б) уменьшается . В) не изменяется.

6. Работа выхода электронов с катода вакуумного фотоэле мента равна 2 эВ. При этом график зависимости максимальной энергии фотоэлектронов от энергии падающих на катод фотонов имеет вид:


7. Красную границу фотоэффекта определяет: А) частота света, Б) вещество (материал) катода, В) площадь катода.

8. Большой импульс имеют фотоны: А) красного света . Б) фиолетового света.

9. При увеличении длины световой волны в 3 раза энергия фотона: А) уменьшится в 3 раза . Б) уменьшится в 9 раз, В) увеличится в 3 раза, Г) увеличится в 9 раз.

10. При увеличении интенсивности света в 4 раза количест­во электронов, вырываемых светом за 1 секунду: А) уменьшится в 2 раза . Б) увеличится в 2 раза,

В) увеличится в 4 раза . Г) уменьшится в 4 раза.

Решите задачи:

11. Импульс фотона с частотой определяется по формуле ____.

12. Масса фотона с длиной волны 0,7 • 10 - 6 м равна ___ кг.

13. Красная граница фотоэффекта для калия с работой вы­хода 3,52 • 10 - 19 Дж равна ___ м.

14. При освещении вольфрама с работой выхода 7,2 • 10 - 19 Дж светом с длиной волны 200 нм максимальная скорость вылетевшего электрона равна ___ м/с.

15. Голубому лучу ( λ = 0,5 мкм) соответствует частота ___Гц.

16. На дифракционную решетку с d = 1,2 • 10 - 3 см нормально падает монохроматическая волна света. При κ = 1 и sin φ = 0,043 длина волны будет равна ___ м.

Административная контрольная работа по теме: «Световые волны. Световые кванты» 11 класс

1. Под фотоэффектом понимают явление взаимодействия света с веществом, при котором происходит: А) вырывание электронов . Б) поглощение электронов,

В) вырывание атомов . Г) поглощение атомов.

2. На незаряженную металлическую пластину падают рент­геновские лучи. При этом пластина: А) не заряжается, Б) заряжается отрицательно, В) заряжается положительно.

3. Максимальная кинетическая энергия электронов, выле­тевших при освещении поверхности металла, зависит от: А) работы выхода электрона, Б) частоты света,

В) интенсивности света, Г) работы выхода и частоты света.

4. При увеличении длины световой волны масса фотонов

5. График зависимости кинетической энергии фотоэлектро нов от частоты света имеет вид:


6. На поверхность металла с работой выхода А падает свет с частотой v . Фотоэффект возможен в том случае, если

7. При фотоэффекте с увеличением интенсивности падаю щего светового потока энергия фотоэлектрона: А) уменьшается . Б) увеличивается . В) не изменяется.

8. Большую энергию имеют фотоны: А) красного света . Б) фиолетового света.

9. Энергия фотонов при уменьшении длины световой волны в 2 раза:

А) уменьшится в 2 раза . Б) уменьшится в 4 раза, В) увеличится в 2 раза,

Г) увеличится в 4 раза.

10. При увеличении частоты колебаний в световой волне в 2 раза энергия фотонов

А) увеличится в 4 раза . Б) уменьшится в 4 раза, В) увеличится в 2 раза .

Г) уменьшится в 2 раза.

11. Э н ергия фотона связана с частотой излучения v соотно­шен и ем ___.

12. Масса фотона связана с длиной волны λ соотношением

13. Энергия фотона с длиной волны λ == 440 нм (фиолетовый свет) равна ___ Дж.

14. Работа выхода электрона из калия 3,52 • 10 - 19 Дж. При облучении светом с частотой 10 15 Гц максимальная энергия, вырванных из калия электронов, составит ___ Дж.

14. Голубому лучу ( λ = 0,5 мкм) соответствует частота ___Гц.

15. На дифракционную решетку с d = 1,2 • 10 - 3 см нормально падает монохроматическая волна света. При κ = 1 и sin φ = 0,043 длина волны будет равна ___ м.

1. Под фотоэффектом понимают явление взаимодействия света с веществом, при котором происходит: А) поглощение электронов . Б) поглощение атомов,

В) вырывание электронов, Г) вырывание атомов.

2. На незаряженную, изолированную от других тел, метал­лическую пластину падают ультрафиолетовые лучи. При этом пластина:

А) не заряжается, Б) заряжается отрицательно, В) заряжается положительно.

3. При увеличении светового потока увеличивается: А) скорость электронов,

Б) энергия электронов, В) число электронов, Г) скорость и энергия электронов.

4. Первая из двух одинаковых металлических пластин имеет положительный электрический заряд, вторая пластина — отрицательный. При освещении электрической дугой быстрее разряжается: А) первая . Б) вторая . В) обе одинаково.

5. При фотоэффекте с увеличением частоты падающего из­лучения ток насыщения:

А) увеличивается . Б) уменьшается, В) не изменяется.

6. Работа выхода электронов с катода вакуумного фотоэле­мента равна 2 эВ. При этом график зависимости максимальной энергии фотоэлектронов от энергии падающих на катод фото­нов имеет вид


7. Красную границу фотоэффекта определяет:

А) площадь катода, Б) вещество (материал) катода, В) частота света.

8. Меньший импульс имеют фотоны: А) красного света . Б) фиолетового света.

9. При уменьшении частоты колебаний в световой волне в 3 раза энергия фотонов

А) уменьшится в 3 раза . Б) уменьшится в 9 раз,

В) увеличится в 3 раза, Г) увеличится в 9 раз.

10. При уменьшении интенсивности света в 4 раза количест­во электронов, вырываемых светом за 1 секунду: А) уменьшится в 4 раза . Б) увеличится в 4 раза, В) увеличится в 2 раза .

11. Импульс фотона с длиной волны λ определяется по фор­муле ___.

12. При частоте колебаний в световой волне 8,2 • 10 14 . Гц масса фотона равна ___ кг.

13. Красная граница фотоэффекта для цезия с работой вы­хода 3,2 • 10 - 19 Дж равна ___ м.

14. При освещении цинка с работой выхода 6,72 • 10 - . 19 Дж светом с длиной волны 200 нм максимальная скорость выле­тевшего электрона равна ___ м/с.

15. Крайнему красному лучу ( λ = 0,76 мкм) соответствует частота __ Гц.

Читайте также: