Процесс образования стружки при резании металлов

Обновлено: 17.05.2024

Процесс резания (стружкообразования) является сложным физическим процессом, сопровождающимся большим тепловыделением, деформацией металла, износом режущего инструмента и наростообразованием на поверхности инструмента. Знание закономерностей процесса резания и сопровождающих его явлений позволяет рационально управлять этим процессом и изготовлять детали более качественно, производительно и экономично.

При резании различных материалов образуются следующие стружки (рис. 2.6): сливные (непрерывные), скалывания (элементные) и надлома.

Сливная стружка (рис. 2.6, а) образуется в процессе резания пластичных металлов (например, мягкой стали, латуни) при высокой скорости резания, малых подачах и температуре 400. 500°С. Образованию сливной стружки способствует уменьшение угла резания δ (при оптимальном значении переднего угла γ) и высокое качество СОЖ. Угол резания δ= 90° - γ = α + β, где α — задний угол резания; β — угол заострения.

Стружка скалывания (рис. 2.6, б)состоит из отдельных связанных один с другим элементов и имеет пилообразную поверхность. Такая стружка образуется в процессе резания твердой стали и некоторых видов латуни при малой скорости резания и больших подачах. При изменении условий резания стружка скалывания может перейти в сливную, и наоборот.

Стружка надлома (рис. 2.6, в)образуется при резании малопластичных материалов (чугуна, бронзы) и состоит из отдельных кусочков.

Режущий инструмент деформирует не только слой, но и поверхностный слой обрабатываемой детали. Деформация поверхностного слоя металла зависит от различных факторов, ее глубина составляет от сотых долей до нескольких десятых долей миллиметра. Под действием деформации поверхностный слой металла упрочняется, увеличивается его твердость и уменьшается пластичность, т.е. происходит так называемый наклеп обрабатываемой поверхности.

Чем мягче и пластичнее обрабатываемый металл, тем интенсивнее процесс образования наклепа. Чугуны обладают значительно меньшей способностью к упрочнению, чем стали. Глубина и степень упрочнения при наклепе возрастают с увеличением подачи и глубины резания и уменьшаются с увеличением скорости резания. При работе плохо заточенным инструментом глубина наклепа примерно в два-три раза больше, чем при работе острозаточенным инструментом. Применение СОЖ значительно уменьшает глубину и степень упрочнения поверхностного слоя.

При обработке металлов и, особенно, пластичных материалов (например, резцом) в непосредственной близости к режущей кромке резца на его переднюю поверхность налипает обрабатываемый материал, образуя металлический нарост. Этот нарост имеет клиновидную форму, а его твердость в два-три раза превышает твердость обрабатываемого материала. Являясь «продолжением» резца, нарост (рис. 2.7) изменяет геометрические параметры резца ( δ11 — угол резания с учетом нароста), участвует в резании металла и оказывает влияние на результаты обработки, износ резца и силы, действующие на резец.

Рис. 2.6. Типы стружек:

а — сливная; б — скалывания; в — надлома

Рис. 2.7. Нарост на резце:

α — величина нароста; δ и δ1, — углы резания соответственно до и после образования нароста

При обработке нарост периодически скалывается и образуется вновь; отрыв частиц нароста происходит неравномерно по длине режущего лезвия, что приводит к мгновенному изменению глубины резания. При черновой обработке образование нароста, напротив, благоприятно сказывается на процессе резания.

Процесс стружкообразования. Классификация стружки

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!



Сливная стружка (рис. 2.6, а) образуется в процессе резания пластичных металлов (например, мягкой стали, латуни) при высокой скорости резания, малых подачах и температуре 400. 500 °С. Образованию сливной стружки способствует уменьшение угла резания δ (при оптимальном значении переднего угла γ) и высокое качество СОЖ (смазочно-охлаждающая жидкость). Угол резания δ= 90° - λ = α + β, где α — задний угол резания; β — угол заострения.

Стружка скалывания (рис. 2.6,5) состоит из отдельных связанных один с другим элементов и имеет пилообразную поверхность. Такая стружка образуется в процессе резания твердой стали и некоторых видов латуни при малой скорости резания и больших подачах. При изменении условий резания стружка скалывания может перейти в сливную, и наоборот.

Стружка надлома (рис. 2.6, в) образуется при резании мало- пластичных материалов (чугуна, бронзы) и состоит из отдельных кусочков.

Чем мягче и пластичнее обрабатываемый металл, тем интенсивнее процесс образования наклепа. Чугуны обладают значительно меньшей способностью к упрочнению, чем стали. Глубина и степень упрочнения при наклепе возрастают с увеличением подачи и глубины резания и уменьшаются с увеличением скорости резания. При работе плохо заточенным инструментом глубина наклепа примерно в два-три раза больше, чем при работе острозато- ченным инструментом. Применение СОЖ (смазочно-охлаждающая жидкость) значительно уменьшает глубину и степень упрочнения поверхностного слоя.

При обработке металлов и, особенно, пластичных материалов (например, резцом) в непосредственной близости к режущей кромке резца на его переднюю поверхность налипает обрабатываемый материал, образуя металлический нарост. Этот нарост имеет клиновидную форму, а его твердость в два-три раза превышает твердость обрабатываемого материала. Являясь «продолжением» резца, нарост (рис. 2.7) изменяет геометрические параметры резца (δ11 — угол резания с учетом нароста), участвует в резании металла и оказывает влияние на результаты обработки, износ резца и силы, действующие на резец.

При обработке нарост периодически скалывается и образуется вновь; отрыв частиц нароста происходит неравномерно по длине режущего лезвия, что приводит к мгновенному изменению глубины резания. Эти периодически повторяющиеся явления увеличивают шероховатость обработанной поверхности. При скорости резания v < 5 м/мин и обработке хрупких металлов, например чугуна, нарост, как правило, не образуется. С увеличением пластичности обрабатываемого металла размеры нароста возрастают. Наибольший нарост на инструменте из быстрорежущей стали образуется при скорости резания v = 10. 20 м/мин, а на инструментах из твердых сплавов — при и v >90 м/мин. На этом основании не рекомендуется производить чистовую обработку на этих скоростях.

С увеличением подачи нарост увеличивается, поэтому при чистовой обработке рекомендуется подача 0,1. 0,2 мм/об. Глубина резания существенного влияния на размеры нароста не оказывает.

Для уменьшения нароста рекомендуется уменьшать шероховатость передней поверхности режущего инструмента, по возможности, увеличивать передний угол лезвия γ (например, при γ= 45° нарост почти не образуется) и применять СОЖ. При черновой обработке образование нароста, напротив, благоприятно сказывается на процессе резания.

Процесс образования стружки

В машиностроении обработка металлов резанием осуществляется различными режущими инструментами , отличающимися между собой по форме и размерам. Но принцип работы и снятие срезаемого слоя у всех видов режущих инструментов одинаков. Проследим его на примере работы токарного резца. Головка резца представляет собой клин, который под действием приложенной к нему внешней силы Р вдавливается в металл и, срезая с него слой, превращает срезаемый слой в стружку ( рис. 253 ). При этом имеют место деформации: упругая, пластическая, а затем— разрушение. При обработке пластического металла (стали, меди, латуни и т. п.) наибольшее место занимает пластическая деформация.

В процессе образования стружки на внешней стороне срезаемого слоя происходят следующие фазы стружкообразования:

  • Под действием внешней силы Р (рис. 253) резец (клин) вдавливается в металл. В срезаемом слое возникают упругие, а затем пластические деформации и создается сложное напряженное состояние как впереди передней поверхности, так и ниже линии среза I — I ( рис. 253, а ).
  • Вдавливаясь далее в металл, резец производит последующее сжатие срезаемого слоя. Пластические деформации нарастают и наступает момент, когда металл, находящийся перед передней поверхностью, выпучивается вверх ( рис. 253, б ), появляются деформации растяжения. Упругие и пластические деформации распространяются далее вперед.
  • Когда пластические деформации дойдут до своего предела и напряжения превзойдут силы сцепления частиц металла, происходит отрыв или скалывание элемента 1 от основного материала по плоскости скалывания А1В1.

Рис. 253. Схема процесса образования стружки.

В процессе резания металлов и стружкообразования происходят сложные физические процессы, сопровождающиеся многими внутренними и внешними явлениями.

Образование и скалывание элемента стружки в процессе резания происходит при больших напряжениях, соответствующих пределу прочности данного металла.

Научное обоснование явлений, происходящих при резании металлов, было впервые выполнено в России. Опубликованные профессором Петербургского горного института И. А. Тиме труды «Сопротивление металлов и дерева резанию» в 1870 г., а затем «Мемуар о строгании металлов» в 1877 г. Были переведены на французский и немецкий языки. После этого И. А. Тиме был признан основоположником науки о резании металлов. Профессор И. А. Тиме установил, что скалывание элементов стружки происходит по поверхности, названной им плоскостью скалывания, а угол ψ (рис. 253), определяющий положение этой плоскости, он назвал углом скалывания. Величина угла скалывания ψ для всех вязких металлов постоянная, равная 145 — 150°; она не зависит от положения передней поверхности резца.

Деформации металла в срезаемом слое происходят между плоскостью скалывания и передней поверхностью резца в пределах угла η, названного И. А. Тиме углом действия.

Глубокие и обширные исследованиями стружкообразования были проведены русским ученым А. Г. Усачевым в 1908 г.

Деформациям срезаемого слоя сопутствует ряд физических явлений: усадка стружки, появление опережающих трещин и нароста на резце, теплообразование и нагрев материала, трение и сопутствующий ему износ, возникновение вибраций.

В результате удаления срезаемого слоя с обрабатываемой поверхности образуются три вида стружки: скалывания, сливная и надлома.

Стружкой скалывания ( рис. 254, а ) называют стружку, элементы которой остаются соединенными между собою, образуя сплошную ленту с гладкой внутренней стороной, примыкающей к передней поверхности резца, и наружной стороной с зазубринами в местах скалывания отдельных элементов. Сливной стружкой ( рис. 254, б ) называют стружку, у которой отсутствуют зазубрины на внешней стороне. Стружкой надлома называют отдельные элементы неопределенной формы ( рис. 254, в ), не соединенные между собой, получающиеся при обработке хрупких металлов (чугун, фосфористая бронза и др.). Вид получающейся стружки зависит от качества обрабатываемого металла, режимов резания, геометрии режущего инструмента. Однако следует отметить, что при обработке одного и того же пластичного или хрупкого металла могут получиться все виды стружек, так как пластичность и хрупкость являются состоянием вещества, а не его свойствами.

Рис. 254. Виды стружек: а — скалывания; б — сливная; в — надлома.

Усадкой стружки называют ее укорочение и утолщение по сравнению с длиной и шириной срезанного слоя вследствие пластических деформаций обрабатываемого металла. Величина усадки стружки является одним из приближенных способов оценки деформации обрабатываемого материала:

где К — усадка стружки; L0 — путь резца в теле заготовки; L — средняя длина стружки.

Как видно, величина усадки показывает, во сколько раз укоротился снятый слой металла и характеризует пластичность металла, т. е. его способность претерпевать под действием силы большие или меньшие пластические деформации. Чем пластичнее металл, тем больше величина усадки.

Процесс образования стружки и типы стружек

В зависимости от условий обработ­ки стружка может быть разных видов. При обработке пластичных материа­лов (конструкционные стали) образу­ется элементная стружка (рис. 5), ступенчатая и сливная, а при обра­ботке малопластичных материалов— стружка надлома. Эта классификация стружек предложена в 1870 г. Н. А. Тиме. Ею пользуются и в настоящее вре­мя.

Элементная стружка (рис. 5, а) состоит из отдельных, пластически деформированных элементов, сла­бо связанных или совсем не связан­ных между собой. На рис. 6 и 7 пока­заны схемы образования элементной стружки. Резец, установленный на глубину а, перемещается под действи­ем силы Р, передаваемой суппортом станка, и постепенно вдавливается в

Рис. 5. Виды стружек, образующихся при резании


Рис. 6. Схема образования стружки (по И. А. Тиме)

металл заготовки, сжимает его своей передней поверхностью я вызывает сначала упругие, а затем пластические деформации. Различают следующие фазы образования элемента (по И. А. Тиме). В начале резания (рис. 6, а) происходит соприкосновение рез­ца с обрабатываемой заготовкой. За­тем резец своей вершиной вдавлива­ется в металл (рис. 6,6), который претерпевает деформацию сдвига. По мере углубления резца в срезаемом слое растут напряжения и, когда они достигнут величины предела прочно­сти обрабатываемого металла, про


Рис. 7. Схема образования стружки: — плоскостьскалывания

изойдет сдвиг (скалывание) первого элемента (1) по плоскости сдвига АВ, составляющей с направленным перемещением резца угол , равный 30—40 °. Угол называется углом сдвига. Внутри каждого элемента про­исходят межкристаллические сдвигипод углами =60—65° (рис. 7).

После скалывания первого элемен­та стружки резец сжимает следующий близлежащий слой металла, в резуль­тате чего образуется второй элемент (2), отделяющийся от заготовки по плоскости наибольших касательных напряжений под тем же углом и т. д. (рис. 6, в,г).

Цифрами 1, 2, 3. 10 обозначены последовательно образуемые элемен­ты стружки.

Ступенчатая стружка (см. рис. 5, б) получается при обработке сталей со средней скоростью резания. Ступенчатая стружка имеет одну сто­рону (со стороны резца) гладкую, а другая сторона имеет ступеньки (за­зубрины) с выраженным направлени­ем отдельных элементов, прочно меж­ду собой связанных. У ступенчатой стружки разделение ее на части не происходит.

Сливная стружка (см. рис. 5, в) сходит с резца в виде ленты без зазубрин, присущих ступенчатой струж­ке. Она получается при обработке ста­лей с высокой скоростью резания. Поверхность стружки, прилегающая к пе­редней поверхности резца, сравнитель­но гладкая, а при высоких скоростях отполирована. Ее противоположная сторона покрыта мелкими зазубринками — насечкой и имеет бархатистый вид.

Стружка надлома (см. рис. 5, г) получается при обработке мало­пластичных металлов (твердый чугун, твердая бронза). Стружка состоит из отдельных, не связанных между собой кусочков различной формы и разных размеров. Обработанная поверхность при такой стружке получается шерохо­ватой с впадинами и выступами.

Тип стружки во многом зависит от рода и механических свойств обраба­тываемого материала. При резании пластичных материалов возможно об­разование элементной, ступенчатой и сливной стружки. По мере увеличения твердости и прочности обрабатываемо­го материала сливная стружка перехо­дит в ступенчатую, а затем в элемент­ную. При обработке хрупких материа­лов образуется или элементная, или стружка надлома.

Процесс образования и виды стружки. Силы действующие на резец


Процесс образования стружки. Если закрепить заготовку 1 (рис. 3.2.2, а) на станке, а резец 2 установить на некоторую глубину резания и перемещать под действием силы Р по направлению стрелки, то после соприкосновения с заготовкой резец передней поверхностью постепенно будет вдавливаться в металл и сжимать его поверхностный слой. При этом слой металла будет упруго деформироваться. При дальнейшем вдавливании резца в металл наступит момент, когда напряжение в металле превысит сначала предел упругости, а затем и предел прочности. В результате произойдет сдвиг(рис. 3.2.2, 6) по плоскости скалывания N—N и от основной массы металла отделится первый элемент срезаемого слоя.

Следующие элементы срезаемого слоя (рис. 3.2.2, в) отделяются по плоскостям скалывания, параллельным плоскости N—N.

Плоскости скалывания и обработанная

поверхность составляют угол ска­лывания ∆, который для разных металлов ко

Рис 3.2.2. леблется в пределах 145—155°.

Элементы срезаемого слоя металла, образующие стружку, пластически деформируются — укорачиваются по длине и увеличиваются по сечению. Это явление называют усадкой. В общем случае усадка стружки зависит от физико-механических свойств обрабатываемого материала, геометрии резца, режима резания, охлаждения и других условий. С увеличением переднего угла резца, скорости резания и применением смазочно-охлаждающих жидкостей коэффициент усадки снижается. При резании различных металлов получают три вида стружек — сливную, скалывания и надлома.

Сливная стружка имеет вид непрерывной ленты, завивающейся в плоскостную или винтовую спираль; она как бы «стекает» с резца. Такая стружка образуется при обработке вязких металлов (малоуглеродистой стали, меди, алюминия, свинца и т. д.) с малыми подачами и большими скоростями резания и резцом с большим передним углом.

Стружка надлома представляет отдельные частицы металла неправильной формы; образуется при обработке хрупких металлов — чугуна, некоторых сортов бронзы и др.


При обработке резанием металл оказывает сопротивление режущему инструменту. Это сопротивление преодолевается силой резания, приложенной к передней поверхности резца. Работа силы резания затрачивается на деформацию и отрыв элемента стружки от основной массы металла, а также на преодоление трения стружки о переднюю поверхность резца и задней поверхности резца о поверхность резания. Сила резания зависит от свойств обрабатываемого металла, подачи и глубины резания, углов заточки резца, скорости резания, охлаждения и ряда других факторов.

При продольном точении силу резания Р обычно раскладывают на три составляющие Pz, Рх и Ру. Сила Рz действует по касательной к поверхности резания в направлении главного движения; ее называют вертикальной, или тангенциальной, силой резания. Сила Рx действует параллельно оси заготовки; ее называют осевой силой, или силой подачи. Сила Рy направлена по радиусу обрабатываемой заготовки; ее называют радиальной силой.

Равнодействующая трех составляющих сил

По некоторым опытным данным для резцов с углом в плане φ=45° при обработке стали 45 между силами Рх, Ру и Рг установлены следующие соотношения:

Наибольшей составляющей является сила Рг. Она создает крутящий момент на обрабатываемой детали, который определяют по формуле

Для определения силы Pz, возникающей, например, при точении, пользуются следующей экспериментальной формулой:

где ср — коэффициент, характеризующий условия обработки (определяется по таблицам); kp — общий поправочный коэффициент, учитывающий обрабатываемый материал и ряд других факторов (также определяется по таблицам).

При наружном точении и растачивании заготовок из конструкционной стали резцом из быстрорежущей стали ср = 225, а заготовок из серого чугуна ср = 98; для заготовок из стали и чугуна показатель степени для глубины резания t x p — I, а для подачи s y p — 0,75.

В процессе резания резец и деталь испытывают некоторую упругую деформацию, что приводит к частичному сжатию (перемещению) их в направлении действия сил и является одной из причин неточности обработки. Так, сила Рz отжимает резец книзу, а резец под действием этой силы стремится изогнуть деталь вверх; сила Рх отжимает резец в направлении, противоположном продольной подаче, и стремится ее уменьшить; сила Ру отталкивает резец от обрабатываемой детали и стремится уменьшить глубину резания.

Для получения большей точности размеров деталей, учитывая действие указанных сил, при чистовом проходе обычно уменьшают сечение срезаемого слоя. Правильный выбор углов резца и применение смазочно-охлаждающих жидкостей также способствует улучшению качества и точности изготовления деталей.

Читайте также: