Работа выхода фотона из металла

Обновлено: 26.04.2024

Фотоэффект — это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Напомним, что Герц использовал специальный разрядник (вибратор Герца) — разрезанный пополам стержень с парой металлических шариков на концах разреза. На стержень подавалось высокое напряжение, и в промежутке между шариками проскакивала искра. Так вот, Герц обнаружил, что при облучении отрицательно заряженного шарика ультрафиолетовым светом проскакивание искры облегчалось.

Герц, однако, был поглощён исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведённые Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

Опыты Столетова

В своих знаменитых экспериментах Столетов использовал фотоэлемент собственной конструкции (Фотоэлементом называется любое устройство, позволяющее наблюдать фотоэффект). Его схема изображена на рис. 1 .


Рис. 1. Фотоэлемент Столетова

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод и анод . На катод и анод подаётся напряжение, величину которого можно менять с помощью потенциометра и измерять вольтметром .

Сейчас на катод подан «минус», а на анод — «плюс», но можно сделать и наоборот (и эта перемена знака — существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод (Поэтому поданное на электроды напряжение часто называют анодным напряжением). В данном случае, например, напряжение положительно.

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны , которые разгоняются напряжением и летят на анод. Включённый в цепь миллиамперметр регистрирует электрический ток. Этот ток называется фототоком, а выбитые электроны, его создающие, называются фотоэлектронами.

В опытах Столетова можно независимо варьировать три величины: анодное напряжение, интенсивность света и его частоту.

Зависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента, представлен на рис. 2 .


Рис. 2. Характеристика фотоэлемента

Давайте обсудим ход полученной кривой. Прежде всего заметим, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим .

Если напряжение отрицательно и велико по модулю, то фототок отсутствует. Это легко понять: электрическое поле, действующее на электроны со стороны катода и анода, является тормозящим (на катоде «плюс», на аноде «минус») и обладает столь большой величиной, что электроны не в состоянии долететь до анода. Начального запаса кинетической энергии не хватает — электроны теряют свою скорость на подступах к аноду и разворачиваются обратно на катод. Максимальная кинетическая энергия вылетевших электронов оказывается меньше, чем модуль работы поля при перемещении электрона с катода на анод:

Здесь кг — масса электрона, Кл — его заряд.

Будем постепенно увеличивать напряжение, т.е. двигаться слева направо вдоль оси из далёких отрицательных значений.

Поначалу тока по-прежнему нет, но точка разворота электронов становится всё ближе к аноду. Наконец, при достижении напряжения , которое называется задерживающим напряжением, электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов.

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т.е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под всё большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать. Оно и понятно: электрическое поле теперь разгоняет электроны, поэтому всё большее их число получают шанс оказаться на аноде. Однако достигают анода пока ещё не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т.е. вдоль катода), хоть и развернётся полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

Наконец, при достаточно больших положительных значениях напряжения ток достигает своей предельной величины , называемой током насыщения, и дальше возрастать перестаёт.

Почему? Дело в том, что напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода — в каком бы направлении и с какими бы скоростями они не начинали движение. Стало быть, дальнейших возможностей увеличиваться у фототока попросту нет — ресурс, так сказать, исчерпан.

Законы фотоэффекта

Величина тока насыщения — это, по существу, количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте).

Ничего неожиданного в этом нет: чем больше энергии несёт излучение, тем ощутимее наблюдаемый результат. Загадки начинаются дальше.

А именно, будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. Сделать это несложно: ведь в силу формулы (1) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения при фиксированной интенсивности. Получается такой график (рис. 3 ):


Рис. 3. Зависимость энергии фотоэлектронов от частоты света

Как видим, существует некоторая частота , называемая красной границей фотоэффекта, разделяющая две принципиально разные области графика. Если , то фотоэффекта нет.

Если же \nu_0' alt='\nu > \nu_0' /> , то максимальная кинетическая энергия фотоэлектронов линейно растёт с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом , то фотоэффект не возникает, какова бы ни была интенсивность! Не менее удивительный факт обнаруживается и при \nu_0' alt='\nu > \nu_0' /> : максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта.

Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.

Третий закон фотоэффекта. Для каждого вещества существует красная граница фотоэффекта — наименьшая частота света , при которой фотоэффект ещё возможен. При фотоэффект не наблюдается ни при какой интенсивности света.

Трудности классического объяснения фотоэффекта

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию , называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решётки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

И если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта. Действительно, почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряжённость электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Логично? Логично. Но эксперимент показывает иное.

Далее, откуда берётся красная граница фотоэффекта? Чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растёт и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества — когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жёсткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, неясна безынерционность фотоэффекта. Именно, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно — в момент включения освещения. Между тем, казалось бы, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придётся их раскачивать до заданной амплитуды.

Выглядит опять-таки логично, но опыт — единственный критерий истины в физике! — этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашёл простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлёк к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

Гипотеза Планка о квантах

Классическая электродинамика отказалась работать не только в области фотоэффекта. Она также дала серьёзный сбой, когда её попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Как мы прекрасно знаем, ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах. Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями — квантами. Энергия кванта пропорциональна частоте излучения:

Cоотношение (2) называется формулой Планка, а коэффициент пропорциональности — постоянной Планка.

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света — это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями — квантами, обладающими энергией .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц — фотонов, движущихся в вакууме со скоростью .

Каждый фотон монохроматического света, имеющего частоту , несёт энергию .

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света — это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона ? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода по извлечению электрона из вещества и на придание электрону кинетической энергии :

Слагаемое оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла — тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придётся затрачивать дополнительную энергию — на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку . Этим полностью объясняется ход графика на рис. 3 .

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: . Наименьшая частота , определяемая равенством

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта определяется только работой выхода, т.е. зависит лишь от вещества облучаемой поверхности катода.

Если , то фотоэффекта не будет — сколько бы фотонов за секунду не падало на катод. Следовательно, интенсивность света роли не играет; главное — хватает ли отдельному фотону энергии, чтобы выбить электрон.

Уравнение Эйнштейна (4) даёт возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение , в точности совпадающее с (3) . Такое совпадение результатов двух независимых экспериментов — на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта — означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике — теории микромира, построение которой продолжается и сегодня.

Работа выхода

В 1905 году А. Эйнштейн объяснил фотоэффект на основании квантовых представлений. Согласно Эйнштейну, свет не только испускается квантами в соответствии с гипотезой Планка, но распространяется в пространстве и поглощается веществом отдельными порциями - квантами с энергией E0 = hv. Кванты электромагнитного излучения называютсяфотонами.

Уравнение Эйнштейна (закон сохранения энергии для внешнего фото­эффекта):

Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого тела в вакуум называется работой выхода.

Так как энергия Ферм к ЕF зависит от температуры и ЕF, также изменяется при изменении температуры, то, следовательно, Авых зависит от температуры.

Кроме того, работа выхода очень чувствительна к чистоте поверхности. Нанеся на поверхность пленку (Са, , Ва) на W Авых уменьшается с 4,5 эВ для чистого W до 1,5 ÷ 2 эВ для примесного W.

Уравнение Эйнштейна позволяет объяснить вcе три закона внешнего фо­тоэффекта,

1-й закон: каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интен­сивности (Ф) света

2-й закон: Vmax ~ ν и т.к. Авых не зависит от Ф, то и Vmax не зависит от Ф

3-й закон: При уменьшении ν уменьшается Vmax и при ν = ν0 Vmax = 0, следовательно, 0 = Авых, следовательно, т.е. существует минимальная частота, начиная с которой возможен внешний фотоэффект.


Фотон - элементарная частица, которая всегда (в любой среде!) движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя.

Импульс фотона рg получим, если в общей формуле теории относительности положим массу покоя фотона m0g = 0:

Рассеяние излучения на свободных электронах

Рассмотрим движение электрона в плоской электромагнитной волне: , распространяющейся вдоль оси . Уравнение движения электрона:

и энергия, излучаемая таким электроном,

Своих источников энергии у электрона нет. Фактически он переизлучает (рассеивает) энергию падающей электромагнитной волны в других направлениях, так что

где эрг см -- поток падающей энергии:

и сечение рассеяния

знаменитая формула Томсона. Величина

называется классическим радиусом электрона.

При преобладающей роли электронного рассеяния (процессы поглощения излучения несущественны) изменение интенсивности в монохроматическом пучке фотонов, очевидно, равно

Можно ввести коэффициент ``поглощения'' при томсоновском рассеянии (хотя реально поглощения энергии и нет):

где длина пробега

Интегрируя уравнение для , получаем

т.е. г/см водородной плазмы ( ) уменьшают в раз за счет электронного рассеяния.

Иллюстрация к эффекту Комптона. Излучение с длиной волны направлено слева направо. После взаимодействия с электроном оно меняет длину волны на , а направление на угол относительно первоначального направления. Стрелкой указано направление движения электрона, с которым провзаимодействовал фотон.

При рассеянии фотона на покоящемся электроне частоты фотона и (до и после рассеяния соответственно) связаны соотношением:

где — угол рассеяния (угол между направлениями распространения фотона до и после рассеяния).

Перейдя к длинам волн:

где — комптоновская длина волны электрона, равная м.

Уменьшение энергии фотона в результате комптоновского рассеяния называется комптоновским сдвигом. Объяснение эффекта Комптона в рамках классической электродинамики невозможно, так как рассеяние электромагнитной волны на заряде (томсоновское рассеяние) не меняет её частоты.

Эффект Комптона является одним из доказательств справедливости корпускулярно-волнового дуализмамикрочастиц и подтверждает существование фотонов.

Закон сохранения энергии в случае эффекта Комптона можно записать следующим образом [1] :

где — релятивистская масса электрона, выражаемая через его скорость следующей формулой:

48. Квантовая и ядерная физика Читать 0 мин.

Свет обладает двойственной природой: в некоторых случаях он ведет себя как волна, в других ― как частица. При фотоэффекте свет ведет себя как частица. «Порции» света (кванты) ― фотоны. Энергия одного фотона прямо пропорциональна его частоте и равна Ev = hv, где

h ― постоянная Планка, равная 6,6 ∙ 10-34 [Дж∙с];

Фотоэффект (фотоэлектрический эффект) ― испускание электронов веществом под действием света.

Свет поглощают электроны, свободно расположенные в металле. Поглотив квант света, электрон увеличивает свою энергию настолько, что может вылететь из металла. Таким образом, фотоны «выбивают» электроны из металла, если их энергия достаточно велика для этого. Электроны, вылетевшие под действием света (фотонов) называются фотоэлектронами. Поскольку ток ― это направленный поток заряженных частиц ― то при облучении металла светом достаточной энергии, создается ток, который называется фототоком.

Металлическая пластинка, подключенная к электрической цепи, и облучаемая светом, называется фотокатодом.


Энергия и скорость вылетающих электронов зависит от частоты падающего света ― т. е энергии фотона, который выбивает электрон. Скорость фотоэлектронов тем выше, чем выше частота фотонов. Аналогично, скорость фотоэлектронов тем меньше, чем меньше частота падающих фотонов.

Энергия и скорость вылетающих электронов от интенсивности света не зависят.

Дело в том, что интенсивность (яркость) света определяет не то, какую энергию имеют фотоны (напомним, что энергия фотонов зависит от их частоты), а то, сколько будет этих фотов в свете. Если свет яркий ― в нём находится много фотонов, если свет не яркий ― не много.

Теоретически фотоэффект объяснил Эйнштейн. Формула Эйнштейна для фотоэффекта связывает энергию падающих фотонов и энергию вылетающих электронов: hv = A + , где

― кинетическая энергия фотона. [Дж].

Работа выхода фотоэффекта ― постоянная величина и зависит только от природы металла и состояния его поверхности. Работа выхода не зависит от частоты или интенсивности света.

Как видно из формулы Эйнштейна, энергия фотона идет на совершение работы выхода и на увеличение кинетической энергии электрона. Так как работа выхода постоянна, то при уменьшении частоты света ― уменьшается кинетическая энергия, а значит, и скорость вылетающих электронов. Если частота света уменьшается до предельной величины ― частоты красной границы фотоэффекта, скорость электронов становится равной нулю и фотоэффект прекращается. Если частота света меньше частоты красной границы фотоэффекта ― то фотоэффект не наблюдается, поскольку энергии фотонов недостаточно для того, чтобы выбить электрон из материала.

Красная граница фотоэффекта ― это частота, при которой прекращается фотоэффект. Ее можно определить из условия $hv_> = A$ , где

vкрасная граница ― частота света [Гц];

График зависимости кинетической энергии вылетающих электронов от частоты падающих фотонов:


Запирающее напряжение ― это напряжение, не позволяющее электронам покинуть фотокатод. Если напряжение в цепи больше или равно запирающему напряжению, то электроны не могут достигнуть анода: даже если они покидают ненадолго фотокатод, сила электрического поля возвращает их в металл ― и фототока в цепи нет.

Запирающее напряжение определяется выражением eUзап = Eкинетическая, где

e ― заряд электрона равный 1,6 ∙ 10-19 [Кл];

Uзап ― запирающее напряжение [В];

Eкинетическая ― кинетическая энергия фотоэлектрона [Дж].

Когда напряжение в цепи равно нулю U = 0, а фотокатод облучается светом достаточной энергии, чтоб создавать фотоэффект, ― в сети есть ток, его вызывают выбиваемые светом электроны.

Когда напряжение в цепи равно запирающему напряжению U = ― сила тока становится равной нулю, т. к. фототок прекращается.

Как видно из формулы, запирающее напряжение зависит только от кинетической энергии электронов, которая, в свою очередь, зависит от частоты света (но не интенсивности) и работы выхода.

2.2. Фотоэлектрический эффект

Одним из явлений, подтверждающих гипотезу фотонов, является фотоэлектрический эффект.

Внешний фотоэффект или фотоэлектронная эмиссия — испускание электронов веществом под действием электромагнитного изучения.

Основное влияние на характер протекания фотоэффекта оказывают свойства облучаемого материала (проводник, полупроводник, диэлектрик), а также энергия фотонов, так как для каждого материала существует минимальное значение энергии фотонов, при которой фотоэффект прекращается.


Рис. 2.4. Ге́нрих Ру́дольф Герц (1857–1894)

Впервые явление фотоэффекта было замечено Г. Герцем в 1887 г. Сущность явления состоит в том, что при освещении ультрафиолетовыми лучами металлическое тело теряет электроны. Фотоэффект можно наблюдать, например, при освещении светом электрической дуги цинковой пластинки, соединенной с электрометром (см. рис. 2.5).


Рис. 2.5. Освещение заряженной цинковой пластинки светом электрической дуги:
1
отрицательно заряженная пластинка; 2 положительно заряженная пластинка

Если цинковую пластинку зарядить отрицательно, то при ее облучении электрометр быстро разряжается. Если же пластинка заряжена положительно, то при облучении ее заряд не изменяется.


Рис. 2.6. Алекса́ндр Григо́рьевич Столе́тов (1839–1896)


Рис. 2.7. Филипп Эдуард Антон фон Ленард (1862–1947)

Первые количественные исследования фотоэлектрического эффекта принадлежат русскому физику А.Г. Столетову, который установил основные законы фотоэффекта.


Рис. 2.8. Описание опыта Столетовым А.Г. «Два металлических диска («арматуры», «электроды») в 22 см диаметром были установлены вертикально и друг другу параллельно перед электрическим фонарем Дюбоска, из которого вынуты все стекла. В фонаре имелась лампа с вольтовой дугой А. Один из дисков, близлежащий к фонарю, сделан из тонкой металлической сетки, латунной или железной, иногда гальванопластически покрытой другим металлом, которая была натянута в круглом кольце; другой диск сплошной (металлическая пластинка)» [Столетов А. Г. Избранные сочинения / Под ред. А. К. Тимирязева.— М.; Л.: Гос. изд. техн.-теор. лит., 1950. — 660 с.]. Измерения производились зеркальным гальванометром G, источником тока В служили гальванические батареи из разного числа элементов.

Позже установка Столетова была усовершенствована Ф.Э.А. Ленардом (Нобелевская премия в 1905 г. за исследование катодных лучей) и другими исследователями (рис. 2.2).


Рис. 2.9. Схема опытов по изучению внешнего фотоэффекта

Свет, проникающий через кварцевое окно КВ (кварц пропускает ультрафиолетовые лучи), освещает катод К, изготовленный из исследуемого материала. Электроны, испущенные вследствие фотоэффекта, перемещаются под действием электрического поля к аноду А. В цепи возникает фототок, измеряемый миллиамперметром. С помощью потенциометра П можно изменять напряжение между катодом и анодом, которое показывает вольтметр V.

Исследования привели к установлению следующих основных закономерностей фотоэффекта:

1. Испускаемые под действием света заряды имеют отрицательный знак.

2. Величина испускаемого телом заряда пропорциональна поглощенной им световой энергии.

3. Наибольшее действие оказывают ультрафиолетовые лучи. Максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а определяется при прочих равных условиях лишь частотой падающего монохроматического света и растет с увеличением частоты.

4. Фотоэффект протекает безынерционно, то есть фототок появляется практически одновременно с освещением катода (задержка

Проанализируем вольт-амперную характеристику (то есть зависимость фототока I от напряжения между электродами U), которая получается в результате фотоэлектрического эффекта. Из кривой на рис. 2.10 видно, что при некотором напряжении фототок достигает насыщения — все электроны, испущенные катодом, попадают на анод.

Рис. 2.10. Вольт-амперная характеристика фотоэффекта

Следовательно, сила тока насыщения определяется количеством электронов, испускаемых катодом в единицу времени под действием света. Поэтому сила фототока насыщения прямо пропорциональна световому потоку

где k — коэффициент пропорциональности, характеризующий «чувствительность» данного вещества к свету.


Рис. 2.11. Зависимость силы фототока насыщения от светового потока

Анализ кривой показывает, что электроны вылетают из катода с различными по величине скоростями. Часть электронов обладает достаточными скоростями, чтобы при U =0 долететь до анода «самостоятельно» и создать фототок без помощи ускоряющего поля. Для обращения фототока в нуль необходимо приложить некоторое задерживающее напряжение . По величине тормозящей разности потенциалов , при которой фототок обращается в нуль, можно определить скорость самых быстрых фотоэлектронов:

где — масса, величина заряда (e>0) и максимальная скорость этих электронов. Экспериментально было установлено, что максимальная скорость фотоэлектронов не зависит от интенсивности света, а зависит только от частоты облучения . Растущая линейная зависимость на рис. 2.4 указывает на то, что увеличение частоты приводит к возрастанию максимальной скорости фотоэлектронов.

Рис. 2.4. Зависимость задерживающего напряжения от частоты

Эта экспериментальная зависимость не укладывается в рамки классической электродинамики, так как скорость фотоэлектронов по классическим понятиям должна зависеть от интенсивности электромагнитной волны, а не от ее частоты.

В 1905 г. А. Эйнштейн показал, что все закономерности фотоэффекта легко объясняются, если предположить, что свет распространяется и поглощается такими же порциями (квантами) , какими он, по предположению Планка, испускается. Взаимодействуя с электроном вещества, фотон может обмениваться с ним энергией и импульсом. Фотоэффект возникает при неупругом столкновении фотона с электроном. При таком столкновении фотон поглощается, а его энергия передается электрону. Таким образом, электрон приобретает кинетическую энергию не постепенно, а сразу — в результате единичного акта столкновения. Этим и объясняется безинерционность фотоэффекта.


Рис. 2.13. Схема возникновения фотоэффекта в металле под действием падающих фотонов

Энергия, полученная электроном, доставляется ему в виде кванта . Часть этой энергии электрон тратит на то, чтобы «вырваться» из металла. Для каждого материала имеется своя работа выхода АВЫХ

Работа выхода — это наименьшая энергия, которую необходимо сообщить электрону, чтобы удалить его из вещества в вакуум.

Остаток энергии фотона превращается в кинетическую энергию К электрона. Кинетическая энергия максимальна, если электрон образуется вблизи поверхности вещества и не расходует энергию при случайных столкновениях в веществе. В этом случае будет выполняться соотношение Эйнштейна для фотоэффекта (2.7).

Нобелевская премия по физике за 1921 г. была присуждена Эйнштейну за его «важные физико-математические исследования и особенно за открытие законов фотоэлектрического эффекта». (Знаменитая теория относительности даже не упомянута в приведенной формулировке). Уравнение Эйнштейна позволяет объяснить законы фотоэффекта. Действительно, из соотношения Эйнштейна непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности. Так как с уменьшением частоты падающего света кинетическая энергия фотоэлектронов уменьшается (для данного вещества катода АВЫХ постоянна), то при достижении некоторой критической частоты кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится.

Согласно Эйнштейну, частота

представляет красную границу фотоэффекта для данного вещества. Она зависит лишь от работы выхода электронов, то есть от химической природы вещества и состояния его поверхности.

Используя выражение (2.8) для красной границы и соотношение (2.6), перепишем уравнение Эйнштейна в виде

которое объясняет экспериментальную линейную зависимость (см. рис. 2.4) задерживающего потенциала от частоты падающего электромагнитного излучения.

Таким образом, согласно Эйнштейну, свет с частотой w не только испускается, как это предполагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых

В 1914 г. были проведены модифицированные опыты по фотоэффекту: лучи направлялись на металлическую пыль, помещенную в конденсаторе. Фотоэффект практически мгновенен: при соударении пылинки с фотонами из нее выбиваются электроны, пылинка приобретает заряд и начинает двигаться в поле конденсатора. Движение пылинок наблюдалось сразу после включения источника излучения. Если бы излучение было классической электромагнитной волной, то волне потребовалось бы вполне заметное в эксперименте время для того, чтобы раскачать электроны, сообщить им энергию, равную работе выхода и, тем самым, вырвать их из пылинки. Отсутствие такого запаздывания наглядно продемонстрировало корпускулярную природу фотоэффекта.

На явлении фотоэффекта основано действие приборов, называемых фотоэлементами. На рис. 2.14 показано устройство вакуумного фотоэлемента.


Рис. 2.14. Устройство вакуумного фотоэлемента

На внутреннюю поверхность металлического баллона наносится светочувствительный слой, служащий катодом. Он соединен с отрицательным полюсом источника тока. В центре баллона помещается проволочное кольцо, служащее анодом. Анод соединяется с положительным полюсом источника тока. Через прозрачное окно в передней стенке баллона свет проникает внутрь и, пройдя сквозь проволочное кольцо, выбивает фотоэлектроны из катода. Фотоэлектроны под действием электрического поля движутся в сторону анода, цепь замыкается и по ней начинает течь ток IФ. Если на пути световых лучей появится непрозрачная преграда, то свет перестанет поступать на катод, фотоэлектронная эмиссия прекратится, и ток в цепи прервется. При этом сработает то или иное реле, связанное с регистрирующим устройством.


Рис. 2.15. Солнечные батареи на международной космической станции. При освещении области контакта различных полупроводников возникает фотоэдс, что позволяет преобразовывать световую энергию в электрическую.

Фотоэлементы являются основной частью всевозможных фотореле, нашедших широкое применение в промышленности. С помощью фотореле можно осуществлять управление различными приборами и установками, включая и выключая их автоматически при освещении светом фотоэлемента, либо, наоборот, при его выключении.

Пример 1. На поверхность лития падает монохроматический свет с длиной волны . Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов не менее . Определим работу выхода .

Энергия фотона равна

Максимальная кинетическая энергия электронов равна произведению . Отсюда находим работу выхода

В дальнейшем мы обсудим подробнее уже упоминавшуюся внесистемную единицу энергии — электрон-вольт .

Пример 2. Определить максимальную скорость электронов, вылетающих из металла под действием квантов с длиной волны .

существенно превышает работу выхода электронов из любого металла (не больше нескольких эВэВ). Поэтому в уравнении Эйнштейна (2.7) работой выхода АВЫХ можно пренебречь. Учитывая, что энергия покоя электрона равна примерно , то есть близка к его кинетической энергии , для расчета скорости электронов в данном случае необходимо воспользоваться релятивистскими формулами, а именно: кинетическая энергия К равна

где — максимальная скорость электронов, с - скорость света в вакууме.

Работа выхода фотона из металла

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны . При неизменном световом потоке снималась зависимость силы фототока от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. и – токи насыщения, – запирающий потенциал

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает . Если напряжение на аноде меньше, чем –, фототок прекращается. Измеряя , можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина оказалась независящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты света (рис. 5.2.3).

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от его интенсивности.

Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота , при которой еще возможен внешний фотоэффект.

Число фотоэлектронов, вырываемых светом из катода за , прямо пропорционально интенсивности света.

Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света .

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой , где – постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала от частоты (рис. 5.2.3), равен отношению постоянной Планка к заряду электрона :

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены в 1914 г. Р. Милликеном и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода :
где – скорость света, – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода составляет несколько электрон-вольт (). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

.

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия , что соответствует красной границе фотоэффекта . Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .

Фотон движется в вакууме со скоростью . Фотон не имеет массы, . Из общего соотношения специальной теории относительности, связывающего энергию, импульс и массу любой частицы,

,
следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма . Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Читайте также: