Радиусы гибов для металлов

Обновлено: 04.10.2024

При этом методе между листом металла и стенками V-образной матрицы существует воздушный зазор, лист остается "в воздухе" и не соприкасается со стенками матрицы.

Пуансон воздействует на металл сверху в одной точке, а матрица только двумя точками вверху V-образного паза.

Геометрия гиба формируется только за счет глубины погружения пуансона в матрицу.

Ширина ручья на матрице чаще всего выбирается из расчета 10-15 толщин металла, а инструмент имеет угол намного более острый, чем деталь после гибки.

Преимущества «свободной гибки»:

  • Высокая гибкость: без смены гибочных инструментов вы можете получить любой угол гибки, находящийся в промежутке между углом раскрытия V-образной матрицы.
  • Меньшие затраты на инструмент, можно обойтись одним комплектом для многих задач.
  • Меньшее требуемое усилие гибки по сравнению с другими методами гибки.

Недостатки «свободной гибки»:

  • Менее точные углы. В связи с тем что инструмент воздействует на металл только в трех точках то заготовка может повести себя непредсказуемо и угол гиба по всей длине будет неравномерный,
  • Меньшая точность повторений, на которую сильно влияют различия в качестве материала заготовок.
  • Больший эффект обратного пружинения за счет большей упругой деформации.
  • Меньшая универсальность и качество гибки. Раскрытие матрицы при свободной гибке 10-15 толщин листа, это является причиной увеличения минимального отгиба. Отсутствие соприкосновения со стенками матрицы является причиной деформации отверстий («выворот») расположенных близко к линии гиба.

В каких случаях «свободная гибка» предпочтительнее:

  • Большая номенклатура изделий, мелкосерийное производство.
  • Разные углы гибов (в том числе острые).
  • Минимальные требования к точности и качеству гибов.
  • Геометрия конечных деталей не содержит маленьких минимальных отгибов и допустимы внутренние радиусы гибов равные двум толщинам и более.

ГИБКА НА ОСНОВЕ

Данный метод гибки некоторые объединяют с «свободной гибкой», но у него много своих особенностей.

В отличии от классической «воздушной гибки» заготовка в самом конечном положении контактирует со стенками V-образного паза и нижней частью пуансона.

Требуемое усилие выше чем при «свободной гибке» до трех раз. Раскрытие матрицы выбирается из диапазона 6-10 толщин металла.

Преимущества «гибки на основе»:

  • Более точные углы по сравнению с «воздушной гибкой», теоритические значения ±300.
  • Меньший эффект обратного пружинения и большая повторяемость за счет большего воздействия на металл и уменьшения упругих деформаций. Несмотря на это пружинение немного остается, поэтому если необходимо получать на готовой детали 90°, то инструмент следует выбирать 88°-85°.
  • Лучшее качество гибки: «выворот» отверстия уменьшается при достижении пуансоном нижнего положения, относительно небольшие раскрытия матриц позволяют делать небольшие минимальные отгибы и довольно точные внутренние радиусы равные от 1 до 2 толщин металла.

Недостатки «гибки на основе»:

  • Большее требуемое усилие гибки по сравнению со «свободной», не применим для толстых металлов.
  • Меньшая гибкость по сравнению с «воздушной гибкой», чтобы достичь всех преимуществ данного метода на другом профиле или угле необходим другой инструмент.

В каких случаях «гибка на основе» предпочтительнее:

  • Ограниченная номенклатура изделий, мелкосерийное и серийное производство.
  • Повышенные требования к точности и качеству гибов.
  • Внутренние радиусы гибов должны быть от 1 до 2 толщин металла.
  • Часто используется один угол гибов, например 90° и изредка более тупые.
  • Оптимальные минимальные отгибы.

Данный метод заключается в максимальном пространства между пуансоном и матрицей в конечном положении.

Угол гиба определяется усилием и геометрией гибочного инструмента.

Давление продолжается даже при достижении нижней точки, за счет этого отсутствует упругая деформация, лист металла пластически деформируется под давлением инструмента.

Преимущества «чеканки»:

  • Точность углов гиба, несмотря на разницу в толщине и свойствах материала.
  • Маленький внутренний радиус, до 0,5 толщины металла, бывает недостижим другими способами.
  • Обратное пружинение практически отсутствует, максимальная повторяемость.
  • Доступные специльные исполнения, например Z-гибка, U-гибка, несколько гибов за один раз, сложные формы.

Недостатки «чеканки»:

  • Максимальные требования по усилию, причем не только к станку, но и к инструменту и системе крепления.
  • Отсутствие гибкости, один инструмент - один вид профиля.
  • Только тонкий металл, в основном используют на толщинах до 2 мм.
  • Повышенный износ инструмента и оборудования.

В каких случаях «чеканка» предпочтительнее:

  • Крупносерийное производство.
  • Самые высокие требования к точности и повторяемости.
  • Внутренние радиусы гибов должны быть меньше толщины металла.
  • Необходимо не зависеть от качества заготовок.
  • Сложная форма гибов, которую не получить другими методами.

2. РАСЧЕТ УСИЛИЯ ДЛЯ ГИБКИ

Чтобы гибочный инструмент служил долго, необходимо ограничивать нагрузку на инструмент в соответствии с максимально допустимой. На инструменте этот параметр указывается в тоннах или килоньютонах на метр.

Важно понимать, что с уменьшением длины заготовки и инструмента уменьшается максимально допустимое номинальное усилие. Например, инструмент выдерживает нагрузку 60 тонн/метр, соответственно 10 сантиметров такого инструмента выдержит давление только 6 тонн.

Расчитать требуемое усилие для гибки металла можно только примерно, на практике используют таблицы или формулу.

image (8).jpg

image (7).jpg

S - толщина металла, мм
V - раскрытие матрицы, мм
Ri - внутренний радиус гиба на детали, мм
В - минимальный отгиббез толщины металла при 90°, мм
Rm - предел прочности в кг/мм2
F - необходимое усилие, т/м
Формула расчета усилия:



1,42 - это коэффициент, учитывающий̆ трение заготовки о кромки матриц, у горячекатаного и несмазанного металла трение больше чем у холоднокатаного, если металл ржавый̆, то следует добавлять 10-15% к расчетному усилию.
L - длина заготовки, чтобы получить результат в тоннах длину надо указывать в метрах.

Таблица зависимости минимального отгиба от градуса гиба

image (11).jpg


Где В - минимальный отгиб без толщины металла при 90°, указанный в таблицах усилий

Радиусы гибки, применяемые для листовых металлов

При обработке листового металла, путем холодной гибки на листогибочном станке, необходимо знать минимальные радиусы, по которым можно производить гиб изделия из определенного металла. Нарушение данных рекомендаций может привести к порче материала и невозможности его дальнейшего использования.


В таблице 1 представлены минимальные значения радиусов холодной гибки металла (R), которые зависят от материала, подвергаемого обработке и его толщины (S).


Радиусы гибки листовой стали в зависимости от угла сгиба заготовки

Пояснения к таблицам:

  • S - толщина обрабатываемого материала;
  • R - радиус сгиба материала, без специальных технических требований к выполнению гибки;
  • Rc - радиус сгиба материала с притупленными кромками и без заусениц;
  • Rп - радиус сгиба материала с притупленными кромками и без отсутствии заусениц, в том случае, если линия сгиба располагается под углом 90 градусов к направлению волокон проката.





Минимальный радиус сгиба металлов круглого и квадратного сечений, мм



  • R1 – радиус гиба металла для профиля круглого сечения;
  • R2 – радиус гиба металла для профиля прямоугольного сечения.

Мы рады сообщить, что мы стали официальным представителем компании VanMark (США) в России!
Листогибочные станки VanMark находятся в наличии на складе в г. Санкт-Петербурге.

Токарные станки - как часто Вы настраиваете свое оборудование? Основные проблемы, которые возникают с металлоборудованием, часто связаны с неправильной настройкой и подготовкой устройства к работе.

Особенный алюминий – особенности сварочных работ Что общего между алюминием и аргонодуговой сваркой? Для неустойчивого алюминия подходит именно данный вид сварочных работ.

Информация о товарах носит справочный характер и не является публичной офертой (п.2 ст. 437 ГК РФ).

Обращаем Ваше внимание на то, что вся информация, размещенная на настоящем интернет-сайте, носит исключительно информационный характер и ни при каких условиях не являются публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации.

Гибка толстого листового металла

Гибка толстого листового металла

Гибка толстого листового металла осуществляется на профессиональном оборудовании и после составления проекта необходимого изделия. Только при таких условиях можно гарантировать, что будут сохранены необходимые эксплуатационные характеристики, а заказчик не понесет незапланированных трат на приобретение металла или переделку брака.

Сама операция гибки может быть реализована несколькими способами. В нашей статье мы расскажем, как осуществляется данный тип металлообработки, каков порядок расчета технических параметров, а также из чего складывается алгоритм заказа и изготовления гибки металла.

Ключевые правила гибки металла

Гибка толстого листового металла должна выполняться при соблюдении определенных правил:

Ключевые правила гибки металла

  • Для того чтобы на поверхности металлической заготовки не появились разрывы и трещины, минимальный радиус сгиба должен быть больше, чем толщина детали. В таком случае при возникновении риска образования дефектов можно сразу прекратить гибку и по возможности их устранить.
  • В бытовых условиях возможна гибка только тонколистовых металлических листов толщиной не более 0,3–1 см. При работе с более толстыми заготовками требуется профессиональное дорогостоящее оборудование.
  • Прежде чем приступить к гибке толстого листового металла, необходимо выполнить развертку будущей детали, учесть припуски, рассчитать необходимую длину рабочей поверхности. Последняя должна быть не более 4 м, в противном случае результат будет менее точным.
  • Лучше всего для гибки подходят пластичные сплавы, например, листовое железо или заготовки, содержащие в своем составе примеси углерода. Ознакомиться с марками пластичных сплавов можно в специальных таблицах.
  • При нагревании пластичность металлов повышается. В некоторых случаях требуемый угол изгиба можно получить только путем нагрева, без дополнительного механического воздействия. Кроме того, высокая температура при обработке минимизирует риск появления трещин на поверхности металлических заготовок.
  • Гибка выполняется различными инструментами: как ручными (например, тисками для зажима листового железа), так и автоматическими (специальными станками, осуществляющими раскрой заготовок). Последние позволяют учитывать припуски и получать детали высокого качества.

Гибка толстого листового металла осуществляется медленно, поскольку необходимо следить за состоянием поверхности листа, не допуская появления трещин и других дефектов.

2 технологии гибки толстого листового металла

Обработка металлических листов выполняется двумя основными способами:

  • Наиболее распространена «воздушная» (свободная) гибка. При этом способе обработки остается воздушный зазор между деталью и стенками матрицы V-образной формы.
  • «Калибровка», в процессе которой заготовка плотно прижимается к стенкам матрицы. Технология используется уже длительное время, в ряде случаев она является наиболее предпочтительной.

2 технологии гибки толстого листового металла

1. Воздушная (свободная) гибка.

Достоинство это вида гибки толстого листового металла заключается в пластичности, недостаток – в невысокой точности результата.

Листовая заготовка траверсом с пуансоном вдавливается на нужную глубину канавки матрицы по оси Y. Между заготовкой и стенками матрицы остается воздушный зазор. Угол гибки при этом способе зависит от положения оси Y, а не от формы применяемого инструмента.

Рекомендуем статьи по металлообработке

Точность настройки современных прессов составляет до 0,01 мм на оси Y. Однако на угол гибки влияют и другие показатели, в том числе настройка хода опускания траверсы, толщина металла, предел прочности, устойчивость заготовки к деформации, состояние рабочего инструмента.

К плюсам свободной гибки толстого листового металла относятся:

  • высокая гибкость, позволяющая одним инструментом получить любой угол изгиба в пределах диапазона раскрытия V-образной матрицы (от 35° до 180°);
  • доступная стоимость оборудования;
  • меньшие усилия, прилагаемые для деформации заготовки, по сравнению с калибровкой;
  • выбор усилия в зависимости от угла раскрытия матрицы (чем он больше, тем меньшее усилие требуется);
  • небольшие вложения, так как достаточно пресса с меньшим усилием.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Средства, сэкономленные на приобретении гибочного пресса, можно вложить в дополнительное оборудование, к примеру, в покупку осей заднего упора или манипуляторов.

2 технологии гибки толстого листового металла

Минусы воздушной гибки листового металла заключаются:

  • в недостаточной точности углов при обработке тонколистовых металлов;
  • при разнице в качестве материалов заготовок результаты работы также будет различаться;
  • технология не подходит для совершения специфических гибочных операций.

Воздушная гибка оптимальна для обработки металлических листов толщиной более 1,25 мм. Для заготовок меньшей толщины подходит калибровка.

Минимальный внутренний радиус гибки должен быть больше толщины детали. Если толщина листа равна радиусу гибки, то обработку следует выполнять методом калибровки. При работе с мягкими, легко деформируемыми материалами (например, с медью) допускается толщина листа большая, чем радиус изгиба.

Для того чтобы увеличить радиус, необходимо пошагово перемещать задний упор. Если техническое задание предполагает не только определенный радиус изгиба, но также высокую точность и качество детали, то следует воспользоваться калибровкой на специальном оборудовании.

2. Калибровка.

Калибровка – высокоточный способ гибки листового металла. Его недостаток заключается в небольшой гибкости. Угол изгиба зависит от прилагаемого усилия, а также используемого инструмента. Заготовка располагается в V-образной матрице, плотно прижимаясь к ее стенкам. Упругая деформация при этом способе нулевая, характеристики металла не влияют на угол изгиба.

Для получения качественного результата усилие гиба необходимо точно рассчитать. Лучше всего опробовать силу гибки испытательным гидравлическим прессом на пробном коротком образце.

Способ определения усилия для гибки толстого листового металла

Прилагаемые в процессе гибки толстого листового металла усилия зависят от таких параметров, как пластичность материала и интенсивность его упрочнения при деформации. Также необходимо учитывать направление прокатки первоначальной заготовки. По окончании прокатки остаточное напряжение вдоль ее оси ниже, чем в противоположном направлении. Это значит, что гибка металла по направлению волокон снизит риск разрушения заготовки. Учитывая это, ребро изгиба должно быть расположено так, чтобы направление проката имело минимальный угол к металлическому листу заготовки.

Способ определения усилия для гибки толстого листового металла

Чтобы рассчитать усилие, необходимо определиться со способом обработки толстого листового металла. Заготовка может располагаться в матрице на фиксаторах (упорах), деформация будет либо свободной, либо с приложением усилия, при котором в конечном моменте гиба деталь упирается в поверхность матрицы. Свободная гибка – более простой способ изгибания заготовок, но при этом результат будет хуже, чем при гибке с калибровкой.

При незначительном упрочнении металла (например, при работе с алюминиевой заготовкой) используется следующая формула:

в которой σт – предел текучести металла до штамповки.

Интенсивность упрочнения детали зависит от угла изгиба (более 45°) и размеров поперечного сечения. В этом случае необходимо воспользоваться формулой:

в которой b – ширина заготовки.

Для расчета технологического усилия Р при одноугловой свободной гибке используется формула:

Для расчета технологического усилия Р при одноугловой свободной гибке используется формула

в которой Ɛ означает наибольшую деформацию сечения заготовки и определяется следующим образом:

Ɛ означает наибольшую деформацию сечения заготовки и определяется следующим образом

σb – предельное значение прочности металла.

При гибке с калибровкой усилие рассчитывается по формуле:

в которой Fпр – площадь проекции изгибаемой заготовки;

pпр – удельное усилие гибки с калибровкой. Этот параметр различается для разных металлов:

  • для алюминия он составляет от 30 до 60 МПа;
  • для малоуглеродистых сталей – от 75 до 110 МПа;
  • для среднеуглеродистых сталей – от 120 до 150 МПА;
  • для латуней – от 70 до 100 МПа.

Оборудование для гибки толстого листового металла

Для правильного выбора оборудования для гибки толстого листового металла необходимо к полученным при расчетах значениям прибавить 25–30 %, а затем сравнить их с паспортными данными гибочных машин.

Оборудование для гибки толстого листового металла

Для гибки толстого листового металла используют различные виды оборудования. Самые простые станки подходят для производства уголков и швеллеров. На промышленных предприятиях пользуются прессами:

  • Ротационными, в которых листовой металл изгибается, проходя между специальными валиками. Станки могут быть мобильными и стационарными. Подходят для производства небольшого тиража крупногабаритных деталей.
  • Поворотными, в которых гибка осуществляется за счет гибочных балок и плит. В нижней части станка находится стационарная плита, в верхней – поворотная. Оборудование используется для работы с небольшими, простыми по форме изделиями из листового металла.
  • Обыкновенными гидравлическими или пневматическими, в которых заготовка изгибается, располагаясь между матрицей и пуансоном. Станки подходят для изготовления как крупных, так и мелких партий деталей, для гибки толстого листового металла. Большинство предприятий использует гидравлические листогибочные прессы.

Самым современным считается ротационное оборудование для обработки толстого листового металла. Благодаря ЧПУ и автоматическому режиму работы оператору не нужно вручную рассчитывать оптимальное усилие гиба.

В автоматическом режиме работают также станочные аппараты с поворотной балкой. Оператор располагает в станке один оцинкованный или обычный металлический лист, который затем изгибается в соответствии с заданными параметрами. Такими станками оснащают небольшие металлообрабатывающие предприятия.

Этапы гибки толстого металла

До начала гибки толстого листового металла в несколько этапов разрабатывают технологические процессы:

  • анализируют конструкцию детали;
  • рассчитывают необходимое усилие и работу;
  • выбирают типоразмер необходимого гибочного оборудования;
  • готовят чертежи исходной заготовки;
  • рассчитывают переходы деформации;
  • оформляют проект технологической оснастки.

Этапы гибки толстого металла

Перед тем как приступить к гибке толстого листового металла необходимо изучить материал заготовки, определить, соответствует ли он требованиям заказчика. Для того чтобы понять, возможна ли штамповка по заданным параметрам, необходимо обратить внимание на:

  • пластичность материала, т. е. его способность изгибаться, не разрушаясь, под нужные параметры (для малопластичных металлов и сплавов используют термическую обработку и/или несколько переходов);
  • возможность изгибания детали на требуемый угол, радиус гиба, при которых в месте деформации не появляются трещины;
  • вероятность деформирования сложных по форме деталей при большом давлении.

При невозможности гибки представленного металла в соответствии с требованиями заказчика исполнитель предлагает ему несколько вариантов решения проблемы:

  • подобрать металл или сплав с большей пластичностью;
  • предварительно термически обработать заготовку;
  • нагреть деталь до требуемой температуры.

До начала гибки толстого листового металла необходимо рассчитать следующие параметры: угол гиба, радиус сгибания, угол пружинения.

При расчете радиуса гибки учитывают пластичность металла, соотношение размера и скорости деформации. Чем тоньше заготовка, тем меньший радиус должен быть.

Коэффициент уменьшения толщины металла показывает, насколько тоньше станет деталь после окончания гибки. Если этот показатель окажется недопустимым, то необходимо использовать более толстую заготовку.

На минимальный радиус гибки влияют пластичность металла, его толщина, расположение волокон проката.

При обработке изделия из металла с небольшим радиусом гиба может деформироваться верхний слой металлических волокон, что отрицательно скажется на качестве готовой детали.

Поэтому для расчета минимального радиуса гиба необходимо использовать показатели максимальной деформации крайних элементов заготовки, учитывая относительное сужение металла, подвергаемого обработке.

Чтобы рассчитать пружинение, необходимо определить фактические углы пружинения с учетом усилия, прилагаемого для гибки толстого листового металла.

На силовые параметры влияют пластичность металла и интенсивность его упрочнения в процессе обработки. После завершения гибки физические свойства металла изменяются в зависимости от направления гибки.

Чтобы снизить риск появления трещин, заготовку следует изгибать вдоль волокон металлического проката.

Для более точного расчета силовых показателей необходимо учитывать способ гибки толстого листового металла:

  • путем гибки металлического листа, расположенного между фиксаторами;
  • с приложением усилия, когда в конце гибки заготовка упирается в поверхность матрицы.

Первая технология подходит для изготовления простых деталей, не требует серьезных энергозатрат, отличается простотой выполнения. Вторая – оптимальна для производства сложных изделий.

Гибка толстого листового металла возможна для любых сплавов, в том числе, с легирующими примесями в составе. Технологию невозможно использовать только в работе с хрупкими материалами, склонными к деформации.

Несмотря на достаточную сложность процедуры, технология помогает получить изделия нужной формы без деформаций, возникающих, к примеру, при сварке. Чтобы результат имел высокое качество, важно найти опытных специалистов, которые предварительно рассчитают необходимые параметры гибки, а затем выполнят и саму процедуру.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Радиус гибки листового металла

Знать допустимые радиусы гибки листового металла нужно всем, кто собирается использовать именно этот способ обработки материала. Потому что без точных значений и грамотного расчета можно испортить любые заготовки.

В данной статье расскажем о технологии гибки листового металла , особенностях данного типа обработки, способах и применяемых методах. Особое внимание будет уделено минимальному радиусу гибки металлического листа и методологии расчета.

Зачем гнут листовой металл по радиусу

Зачем гнут листовой металл по радиусу

Для придания заготовке необходимой формы, учитывающей ее рельефную модификацию (в т. ч. углы и скругления) принято использовать радиусную гибку листового металла . Это упорядоченный процесс, поэтому, когда требуется использование сразу нескольких гибов, каждый элемент обрабатывается последовательно до тех пор, пока не будет достигнута нужная конфигурация.

Такая технология применяется для придания формы:

  • листовым профилям;
  • уличным карнизам и козырькам;
  • подвесным элементам фасада зданий;
  • металлическим комплектующим мебели;
  • декоративным элементам интерьера и т. д.

Сферические, цилиндрические и конусовидные детали, выполненные из гнутого листового металла или металлопрофиля, пользуются большим спросом в котельном производстве.

Гибка по радиусу может потребоваться в бытовых строительных и ремонтных работах, например, при проведении труб. Не стоит пытаться проделать такую операцию в домашних условиях – для этого нужен специальный станок. Благодаря современным технологиям можно подобрать оптимальные параметры работы с заготовками разного состава листового металла, толщины и формы. Радиус изгиба получается точным и качественным, а материал при этом не теряет свои прочностные характеристики.

Разумеется, существуют и другие способы придания листам нужной конфигурации радиуса: сварка, клепка или резка. Но гибка имеет перед ними целый ряд преимуществ:

  • отсутствие швов и стыковки, что гарантирует естественную прочность металла;
  • стойкость к окислению, коррозии и др. благодаря целостной структуре листовой заготовки;
  • экономичность и отсутствие производственных отходов;
  • сохранение эстетичности исходника.

Существует несколько видов радиусной гибки листового металла, которые подбираются индивидуально в каждом случае (в зависимости от технических характеристик исходника и особенностей желаемого результата). Остановимся подробней на каждом из них.

Технология гибки листового металла: особенности и классификация

Технология гибки листового металла: особенности и классификация

Технология гибки, в зависимости от требуемой модификации листового металла, включает в себя следующие виды:

  • Одноугловая (V-образная) – считается наиболее простой. Под воздействием силы гиба верхняя поверхность заготовки сжимается, а нижняя – прилегает к стенкам механизма и растягивается. Таким образом достигается нужный радиус.
  • Двухугловая (П-образная) – выполняется схожим образом за исключением количества этапов обработки.
  • Многоугловая гибка.
  • Радиусная гибка листового металла (закатка) – позволяет получить плавный изгиб. Применяется для создания петель, хомутов и т. д.

Такая технология обработки заготовок не требует колоссального усилия, поэтому предварительного нагрева материала не требуется.

Горячая гибка по радиусу применяется лишь для толстых листовых заготовок (12–16 мм), а также малопластичных металлов. К последним относятся дюралюминий, высокоуглеродистые стали и их сплавы.

Такой способ обработки листового материала часто применяют в комплексе с другими операциями, например, резкой, вырубкой или пробивкой. В результате получаются сложные объемные изделия из металла. Для их изготовления прибегают к штампам, которые можно использовать в нескольких переходах.

С точки зрения пространственного позиционирования существует два способа гибки по радиусу:

  • Продольная – при этом используется холодная технология работ, что не позволяет обрабатывать толстые листовые заготовки.
  • Поперечная – включает в себя несколько этапов: в первую очередь загибаются кромки металлической детали, затем она нагревается. После начинаются непосредственно производственные операции: гибка, осаживание и вытяжка.

Для радиусной гибки листового металла требуется специализированный ручной или промышленный станок. Его конструкция модифицируется в зависимости от требуемой формы изделия.

Работа в холодной технике требует соблюдения оптимального соотношения радиуса изгиба, толщины металла и размера самого листа. Отступление от предельного значения чревато потерей прочностных характеристик заготовки, возможностью появления повреждений.

Придание радиусной формы заготовке под воздействием высоких температур способно изменить структуру материала. Так, во время охлаждения после нагрева связи между молекулами в листе металла становятся более тесными и упорядоченными, что способствует увеличению его твердости, прочности и упругости. Кроме того, в этот момент сокращается удлинение при разрыве. Пластичность материала изменяется мало.

Не рекомендовано активное тепловое воздействие на металл. Если температура близка к температуре плавления листового материала, то его физические свойства резко ухудшаются – получается пережог. Он сопровождается окислением и обезуглероживанием поверхности. Длительный перегрев является причиной образования крупнозернистой структуры материала.

Со стороны процесс гибки металлического профиля по радиусу кажется простым, но это не значит, что он оказывает несущественное воздействие на структуру материала. Во время воздействия в ней возникает напряжение. Сначала оно упругое, а затем приобретает пластический характер. Важно определить баланс этих напряжений и изменений, часто это бывает сложно.

Со стороны процесс гибки металлического профиля по радиусу кажется простым

Во время гибки листа по радиусу деформация происходит неравномерно. Так, она более заметна в самих углах и практически неощутима у края пластины. Особенностью работы с тонкими металлическими листами является то, что их верхняя часть под воздействием гиба сжимается, а нижняя – растягивается.

Пространство между ними принято называть нейтральным слоем. Точное определение этого промежутка является одним из необходимых условий выполнения качественного изгиба радиуса.

Для квалифицированной закатки важно знать некоторые особенности процедуры:

  • В структуре металлической пластины находятся направленные волокна. Чтобы во время ее обработки не нарушилась целостность материала, лист необходимо расположить поперек волокон или под углом 45° к ним.
  • Для каждого листового металла необходимо предварительно определить предел текучести. Его нарушение чревато разрывами.
  • В месте воздействия гиба происходит ряд деформаций пластины: нейтральный слой, находящийся в середине листа или в центре его тяжести, смещается в сторону меньшего радиуса; происходит изменение в поперечном сечении; уменьшается толщина материала.

Работа с мелкогабаритными заготовками требует большого мастерства. Важно учитывать, что:

  • чем меньше радиус гибки листового металла, тем больше площадь его деформации;
  • при большом радиусе изменения затрагивают не всю пластину.

Особенности выполнения работы такого типа важно учитывать при организации процесса штамповки заготовок.

Этапы и последовательность действий

Закатка происходит в несколько упорядоченных этапов и включает следующее:

  1. Анализ требуемой конфигурации изделия.
  2. Расчет усилия гиба и технология выполнения работ.
  3. Подбор наконечника гиба, настройка оборудования.
  4. Разработка схемы исходника.
  5. Расчет переходов гибки.
  6. Проектирование оснастки технологического процесса.

Соотношение характеристик исходной листовой заготовки и желаемого изделия необходимо для анализа реалистичности штамповки по радиусу в соответствии с приведенным чертежом.

Перед тем как приступить к приданию заготовке требуемой формы, важно определить ее угол пружинения, минимальный угол и радиус гибки.

Расчет минимального радиуса при гибке листового металла

Этапы и последовательность действий

Диаметр окружности нейтрального слоя (D0), который расположен в центре металлического листа длиной L и толщиной S в случае гибки его в барабан, рассчитывается по следующей формуле:

Если толщина стенок металлического барабана равна S, то внутренний диаметр изделия (D) вычисляется таким образом:

Формула вычисления внешнего диаметра (D1) следующая:

Таким образом, разность длины окружности может быть вычислена по формуле:

Таким образом, разность длины окружности может быть вычислена по формуле

Следовательно, отношение 2πS/πD должно быть не более 0,05.

На основании того, что 2πS/πD ≤ 0,05 получается, что D ≥ 2S/0,05 = 40S, т. е. для сохранения прочностных качеств листа минимальный внутренний диаметр его гибки должен превышать его толщину в 40 раз, а радиус – в 20 раз. Например, из пластины толщиной 10 мм можно изготовить цилиндр с минимальным внутренним диаметром 40 мм.

Минимальный радиус гибки листового металла: таблицы

Мы уже не раз упоминали о важности определения минимально допустимого радиуса для того или иного листового материала до начала гибки. Особое значение это имеет при работе в холодной технике. Игнорирование этих параметров способно привести к порче заготовки.

Минимальный радиус гибки листового металла: таблицы

В таблице 1 приведены минимально допустимые показатели радиуса гибки листового металла по ГОСТу (R) в зависимости от толщины пластины (S) и ее состава.

В таблице 1 приведены минимально допустимые показатели радиуса гибки листового металла по ГОСТу (R) в зависимости от толщины пластины (S) и ее состава

Длина участка, подвергнутого гибке на угол α, вычисляется следующим образом:

  • A – длина линии гибки листовой пластины;
  • R –радиус внутренней поверхности гиба металла;
  • К – коэффициент положения нейтрального слоя при гибе;
  • S – толщина металлического листа, мм.

Важно знать, что минимальный радиус гибки листового металла (в т. ч. из стали) при работе в холодной технике устанавливается в соответствии с показателем деформации крайних волокон. Его используют только в случае острой производственной необходимости. В стандартных ситуациях этот параметр устанавливают выше минимального.

Коэффициент положения нейтрального слоя при гибке металла (мм):

Читайте также: