Серебристо белый металл реагирующий с водой при комнатной температуре

Обновлено: 06.07.2024

Тип 6.2 № 3

Какое из веществ, упоминаемых в перечне, соответствует следующему описанию: «Ядовитый газ жёлто-зелёного цвета, тяжелее воздуха, с резким запахом»? В окошке ответа укажите название вещества.

Имеется следующий перечень химических веществ: калий, хлор, алюминий, водород, хлорид калия, серная кислота, сульфат алюминия.

Тип 6.3 № 4

Из данного перечня выберите ЛЮБОЕ СЛОЖНОЕ вещество. Запишите его химическую формулу и укажите, к какому классу неорганических соединений оно относится в формате:

Вещество –____________________. Класс соединений – ____________________________.

1. — соль (средняя соль).

3. — соль (средняя соль).

Тип 6.1 № 14

Напишите химические формулы каждого из указанных веществ.

1. Формулы простых веществ: калий — хлор — алюминий — водород —

2. Формулы сложных веществ: хлорид калия — серная кислота — сульфат алюминия —

Тип 6.4 № 16

Из приведённого перечня веществ выберите ЛЮБОЕ соединение, состоящее из атомов ТРЁХ элементов. Вычислите массовую долю кислорода в этом соединении. Запишите ответ в формате:

Вещества, состоящие из атомов трёх элементов: серная кислота и сульфат алюминия.

1. Если выбрана серная кислота, то: (или 65,3%).

2. Если выбран сульфат алюминия, то: (или 56,1%).

Ответ: 65,3 % или 56,1 %.

Тип 6.5 № 17

Вычислите массу 0,5 моль газообразного водорода.

Данному описанию соответствует хлор

Тип 6.2 № 30

Какое из веществ, упоминаемых в перечне, соответствует следующему описанию: «При нормальных условиях является тяжёлой едкой жидкостью красно-бурого цвета с сильным неприятным «тяжёлым» запахом»? В ответе укажите название вещества.

Имеется следующий перечень химических веществ: бром, магний, натрий, водород, бромид натрия, гидроксид натрия, хлорид аммония.

Тип 6.1 № 29

1. Формулы простых веществ: водород — бром — магний — натрий —

2. Формулы сложных веществ: бромид натрия — гидроксид натрия — хлорид аммония —

Тип 6.3 № 31

Из данного перечня выберите ЛЮБОЕ СЛОЖНОЕ вещество. Запишите его химическую формулу и укажите, к какому классу неорганических соединений оно относится. Ответ запишите в таблицу:

Формула веществаКласс соединения

Формулу вещества введите в формате: Al2(SO4)3.

1. Бромид натрия — — соль (средняя соль).

2. Гидроксид натрия — — основный гидроксид (щёлочь).

3. Хлорид аммония — — соль (средняя соль).

Тип 6.4 № 32

Из приведённого перечня веществ выберите соединение, состоящее из атомов нескольких элементов, один из которых — водород. Вычислите массовую долю водорода в этом соединении. Ответ округлите до сотых процента. Запишите ответ в формате:

Вещества, состоящие из атомов двух элементов: гидроксид натрия и хлорид аммония.

1. Если выбран гидроксид натрия, то: (или 2,50 %).

2. Если выбран хлорид аммония, то: (или 7,48%).

Ответ: 2,50 % или 7,48 %.

Тип 6.5 № 33

Вычислите, сколько молекул содержится в 0,5 моль газообразного водорода

Данному описанию соответствует бром

Тип 6.2 № 49

Какое из веществ, упоминаемых в перечне, соответствует следующему описанию: «При н. у. инертный одноатомный газ без цвета, вкуса и запаха»? В ответе укажите название вещества.

Имеется следующий перечень химических веществ: водород, хлор, медь, аргон, сульфат бария, сульфит натрия, серная кислота.

Тип 6.1 № 48

1. Формулы простых веществ: водород — хлор — медь — аргон —

2. Формулы сложных веществ: сульфат бария — сульфит натрия — серная кислота —

Тип 6.3 № 50

1. Сульфат бария — — соль (средняя соль).

2. Сульфит натрия — — соль (средняя соль).

3. Серная кислота — — кислота.

Тип 6.4 № 51

Из приведённого перечня веществ выберите ЛЮБОЕ соединение, состоящее из атомов ТРЁХ химических элементов. Вычислите массовую долю кислорода в этом соединении. Ответ округлите до сотых процента. Запишите ответ в формате:

Вещества, состоящие из атомов ТРЁХ элементов: сульфат бария, сульфит натрия, серная кислота.

1. Если выбран сульфат бария, то: (или 27,47 %).

2. Если выбран сульфит натрия, то: (или 38,09%).

3. Если выбрана серная кислота, то: (или 65,31%).

Ответ: 27,47 % или 38,09 % или 65,31 %.

Тип 6.5 № 52

Вычислите массу 1,5 моль меди. Молярную массу меди считать равной 64 г/моль.

Данному описанию соответствует аргон

Тип 6.2 № 68

Какое из веществ, упоминаемых в перечне, соответствует следующему описанию: «Кристаллы чёрного цвета с металлическим блеском»? В окошке ответа укажите название вещества.

Имеется следующий перечень химических веществ: магний, сера, железо, кислород, сульфид железа(II), фосфат магния, сернистый газ.

Тип 6.1 № 67

1. Формулы простых веществ: магний — сера — железо — кислород —

2. Формулы сложных веществ: сульфид железа(II) — фосфат магния — сернистый газ —

Тип 6.3 № 69

1. Сульфид железа(II) —  — соль (средняя соль).

2. Фосфат магния —  — соль (средняя соль).

3. Сернистый газ —  — оксид (кислотный оксид).

Тип 6.4 № 70

Из приведённого перечня веществ выберите соединение, состоящее из атомов нескольких элементов, один из которых — сера. Вычислите массовую долю серы в этом соединении. Ответ округлите до сотых процента. Запишите ответ в формате:

Вещества, состоящие из атомов двух элементов, один из которых — сера: сульфид железа(II) и сернистый газ.

Физические свойства

Магний Mg — это щелочной металл. Серебристо-белый, относительно мягкий, пластичный, ковкий металл. На воздухе покрыт оксидной пленкой. Сильный восстановитель.

Относительная молекулярная масса Mr = 24,305; относительная плотность для твердого и жидкого состояния d = 1,737; tпл = 648º C; tкип = 1095º C.

Способ получения

1. В результате электролиза расплава хлорида магния образуются магний и хлор :

2. Нитрид магния разлагается при 700 — 1500º С образуя магний и азот:

3. Оксид магния легко восстанавливается углеродом при температуре выше 2000º С, образуя магний и угарный газ:

MgO + C = Mg + CO

4. Оксид магния также легко восстанавливается кальцием при 1300º С с образованием магния и оксида кальция:

MgO + Ca = CaO + Mg

Качественная реакция

Качественной реакцией для магния является взаимодействие соли магния с любой сильной щелочью, в результате которой происходит выпадение студенистого осадка:

1. Хлорид магния взаимодействует с гидроксидом калия и образует гидроксид магния и хлорид калия:

MgCl2 + 2KOH = Mg(OH)2 + 2KCI

Химические свойства

1. Магний — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :

1.1. Магний взаимодействует с азотом при 780 — 800º С образуя нитрид магния:

1.2. Магний сгорает в кислороде (воздухе) при 600 — 650º С с образованием оксида магния:

2Mg + O2 = 2MgO

1.3. Магний активно реагирует при комнатной температуре с влажным хлором . При этом образуется хлорид магния :

1.4. С водородом магний реагирует при температуре 175º C, избыточном давлении и в присутствии катализатора MgI2 с образованием гидрида магния:

2. Магний активно взаимодействует со сложными веществами:

2.1. Магний реагирует с горячей водой . Взаимодействие магния с водой приводит к образованию гидроксида магния и газа водорода:

2.2. Магний взаимодействует с кислотами:

2.2.1. Магний реагирует с разбавленной соляной кислотой, при этом образуются хлорид магния и водород :

Mg + 2HCl = MgCl2 + H2

2.2.2. Реагируя с разбавленной азотной кислотой магний образует нитрат магния, оксид азота (I) и воду:

2.2.3. В результате реакции сероводородной кислоты и магния при 500º С образуется сульфид магния и водород:

Mg + H2S = MgS + H2

2.3. Магний вступает в реакцию с газом аммиаком при 600 — 850º С. В результате данной реакции образуется нитрид магния и водород:

2.4. Магний может вступать в реакцию с оксидами :

2.4.1. В результате взаимодействия магния и оксида азота (IV) при температуре 150º С в вакууме, в этилацетилене образуется нитрат магния и оксид азота (II):

2.4.2. Магний взаимодействует с оксидом кремния при температуре ниже 800º С в атмосфере водорода образуя силицид магния и оксид магния:

4Mg + SiO2 = Mg2Si + MgO,

а если температуру поднять до 1000º С, то в результате реакции образуется кремний и оксид магния:

Литий — это щелочной металл, серебристо-белого цвета. Самый легкий из металлов, мягкий, низкая температура плавления.

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Качественная реакция на литий — окрашивание пламени солями лития в карминно-красный цвет .


Литий — активный металл; на воздухе реагирует с кислородом и азотом, и покрывается оксидно-нитридной пленкой. Воспламеняется при умеренном нагревании; окрашивает пламя газовой горелки в темно-красный цвет.

1. Литий — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами .

1.1. Литий легко реагирует с галогенами с образованием галогенидов:

2Li + I2 = 2LiI

1.2. Литий реагирует с серой с образованием сульфида лития:

2Li + S = Li2S

1.3. Литий активно реагирует с фосфором и водородом . При этом образуются бинарные соединения — фосфид лития и гидрид лития:

3Li + P = Li3P

2Li + H2 = 2LiH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

1.5. Литий реагирует с углеродом с образованием карбида:

1.6. При взаимодействии с кислородом литий образует оксид.

2. Литий активно взаимодействует со сложными веществами:

2.1. Литий бурно реагирует с водой . Взаимодействие лития с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

2Li 0 + H2 + O = 2 Li + OH + H2 0

Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Литий взаимодействует с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например , литий бурно реагирует с соляной кислотой :

2Li + 2HCl = 2LiCl + H2

2.3. При взаимодействии лития с концентрированной серной кислотой выделяется сероводород.

Например , при взаимодействии лития с концентрированной серной кислотой образуется сульфат лития, диоксид серы и вода:

2.4. Литий реагирует с азотной кислотой:

3Li + 4HNO3(разб.) = 3LiNO3 + NO↑ +2H2O

2.5. Литий может реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .

Например , при взаимодействии лития с аммиаком образуются амиды и водород:

2.6. В расплаве литий может взаимодействовать с некоторыми солями . Обратите внимание! В растворе литий будет взаимодействовать с водой, а не с солями других металлов.

Например , литий взаимодействует в расплаве с хлоридом алюминия :

Натрий — мягкий щелочной металл серебристо-белого цвета

На́трий — элемент первой группы (по старой классификации — главной подгруппы первой группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 11. Обозначается символом Na (лат. Natrium ). Простое вещество натрий — мягкий щелочной металл серебристо-белого цвета.

Картинки по запросу натрий картинки

Натрий (а точнее, его соединения) известен и использовался с давних времён. В Библии, в книге пророка Иеремии, упоминается слово др.-греч. νίτρον — в Септуагинте , а слово лат. nitroet — в Вульгате (Иер. 2:22) как название вещества, это род соды или поташа, который в смеси с маслом, служил моющим средством . В Танахе слову др.-греч. νίτρον соответствуют др.-евр. ברית ‎ — «мыло» и др.-евр. נתר ‎ — «щёлок (мыльная жидкость)» . Сода (натрон), встречается в природе в водах натронных озёр в Египте. Природную соду древние египтяне использовали для бальзамирования, отбеливания холста, при варке пищи, изготовлении красок и глазурей. Плиний Старший пишет, что в дельте Нила соду (в ней была достаточная доля примесей) выделяли из речной воды. Она поступала в продажу в виде крупных кусков, из-за примеси угля окрашенных в серый или даже чёрный цвет .

Название «натрий» происходит от латинского слова natrium (ср. др.-греч. νίτρον ), которое было заимствовано из среднеегипетского языка (nṯr), где оно означало среди прочего: «сода», «едкий натр» .

Аббревиатура «Na» и слово natrium были впервые использованы академиком, основателем шведского общества врачей Йенсом Якобсом Берцелиусом (Jöns Jakob Berzelius, 1779—1848) для обозначения природных минеральных солей, в состав которых входила сода . Ранее (а также до сих пор в английском, французском и ряде других языков) элемент именовался содий (лат. sodium ) — это название sodium, возможно, восходит к арабскому слову suda, означающему «головная боль», так как сода применялась в то время в качестве лекарства от головной боли .

Натрий впервые был получен английским химиком Хемфри Дэви, который сообщил об этом 19 ноября 1807 годав Бейкеровской лекции (в рукописи лекции Дэви указал, что он открыл калий 6 октября 1807 года, а натрий — через несколько дней после калия ), электролизом расплава гидроксида натрия.

Картинки по запросу натрий картинки

Металлический натрий, сохраняемый в минеральном масле

Качественное определение натрия с помощью пламени — ярко-жёлтый цвет эмиссионного спектра «D-линии натрия», дублет 588,9950 и 589,5924 нм.
Натрий — серебристо-белый металл, в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см³ (при 19,7 °C), температура плавления 97,86 °C, температура кипения 883,15 °C.

Под давлением становится прозрачным и красным, как рубин.

При комнатной температуре натрий образует кристаллы в кубической сингонии, пространственная группа I m3m, параметры ячейки a = 0,42820 нм, Z = 2.

При температуре −268 °С (5 К) натрий переходит в гексагональную фазу, пространственная группа P 63/mmc, параметры ячейки a = 0,3767 нм, c = 0,6154 нм, Z = 2.

Картинки по запросу натрий картинки

Щелочной металл на воздухе легко окисляется до оксида натрия. Для защиты от кислорода воздуха металлический натрий хранят под слоем керосина.
При горении на воздухе или в кислороде образуется пероксид натрия. Кроме того, существует озонид натрия NaO3.С водой натрий реагирует очень бурно, помещённый в воду кусочек натрия всплывает, из-за выделяющегося тепла плавится, превращаясь в белый шарик, который быстро движется в разных направлениях по поверхности воды, реакция идёт с выделением водорода, который может воспламениться.
Как и все щелочные металлы, натрий является сильным восстановителем и энергично взаимодействуют со многими неметаллами (за исключением азота, иода, углерода, благородных газов).
Натрий более активен, чем литий. С азотом реагирует крайне плохо в тлеющем разряде, образуя очень неустойчивое вещество — нитрид натрия (в противоположность легко образующемуся нитриду лития):
С разбавленными кислотами взаимодействует как обычный металл.
С концентрированными окисляющими кислотами выделяются продукты восстановления.
Растворяется в жидком аммиаке, образуя синий раствор.
С газообразным аммиаком взаимодействует при нагревании.
С ртутью образует амальгаму натрия, которая используется как более мягкий восстановитель вместо чистого металла. При сплавлении с калием даёт жидкий сплав.
Алкилгалогениды с избытком металла могут давать натрийорганические соединения — высокоактивные соединения, которые обычно самовоспламеняются на воздухе и взрываются с водой. При недостатке металла происходит реакция Вюрца.
Растворяется в краун-эфирах в присутствии органических растворителей, давая электрид или алкалид (в последнем у натрия необычная степень окисления −1).


Применение

Металлический натрий широко используется как сильный восстановитель в препаративной химии и промышленности, в том числе в металлургии. Используется для осушения органических растворителей, например, эфира. Натрий используется в производстве весьма энергоёмких натриево-серных аккумуляторов. Его также применяют в выпускных клапанах двигателей грузовиков как жидкий теплоотвод. Изредка металлический натрий применяется в качестве материала для электрических проводов, предназначенных для очень больших токов.
В сплаве с калием, а также с рубидием и цезием используется в качестве высокоэффективного теплоносителя. В частности, сплав состава натрий 12 %, калий 47 %, цезий 41 % имеет рекордно низкую температуру плавления −78 °C и был предложен в качестве рабочего тела ионных ракетных двигателей и теплоносителя для атомных энергоустановок.
Жидкометаллический теплоноситель в ядерных реакторах на быстрых нейтронах БН-600 и БН-800.
Натрий также используется в газоразрядных лампах высокого и низкого давления (НЛВД и НЛНД). Лампы НЛВД типа ДНаТ (Дуговая Натриевая Трубчатая) очень широко применяются в уличном освещении. Они дают ярко-жёлтый свет. Срок службы ламп ДНаТ составляет 12—24 тысяч часов. Поэтому газоразрядные лампы типа ДНаТ незаменимы для городского, архитектурного и промышленного освещения. Также существуют лампы ДНаС, ДНаМТ (Дуговая Натриевая Матовая), ДНаЗ (Дуговая Натриевая Зеркальная) и ДНаТБР (Дуговая Натриевая Трубчатая Без Ртути).
Металлический натрий применяется в качественном анализе органического вещества. Сплав натрия и исследуемого вещества нейтрализуют этанолом, добавляют несколько миллилитров дистиллированной воды и делят на 3 части, проба Ж. Лассеня (1843), направлена на определение азота, серы и галогенов (проба Бейльштейна).
Хлорид натрия (поваренная соль) — древнейшее применяемое вкусовое и консервирующее средство.
Азид натрия (NaN3) применяется в качестве азотирующего средства в металлургии и при получении азида свинца.
Цианид натрия (NaCN) применяется при гидрометаллургическом способе выщелачивания золота из горных пород, а также при нитроцементации стали и в гальванотехнике (серебрение, золочение).
Хлорат натрия (NaClO3) применяется для уничтожения нежелательной растительности на железнодорожном полотне.

Картинки по запросу натрий картинки

Стихи про натрий

Натрий — это сила наша,
Натрий образует соль.
Натрий в теле, клетка наша
В натрии нужда есть вновь.

Щелочь образует сразу,
Если только воду греть.
Растворится натрий сразу,
Ну, и щелочь будет здесь.

Третий дорогой период
Открывает натрий нам.
Мы храним под керосином,
Кислород он чтоб прогнал.

Натрий — это вам не шутки,
Не шути с ним, детвора.
Коль возьмешь — береги руки.
В щелочи будет вся рука.

Он металл довольно мягкий.
Серо-белый цвет его.
Нож срезает слой до корки,
Но не режьте вы его.

Под давлением краснеет,
Петушится, как рубин.
Но прозрачность он имеет
По давлением, ву-ху.

Незримо бываю я в вашей тарелке,
Я в соли и в соде, а сам я – металл.
И жёлтым окрашу я пламя горелки,
Когда попадёт туда соли кристалл.
Я – Натрий, металл щелочной и активный,
В воде я взорвусь, запылаю огнем!
И хоть я опасный и нравом противный,
Я мягок и режусь обычным ножом!

Литий, калий или натрий
Дома вы встречали вряд ли.
Там, где нужен гвоздь железный,
Эти — просто бесполезны!
Все мягки они, как глина,
Чуть потверже пластилина.
Нож легко разрежет их
(Литий — тверже остальных).

Так активны, что — беда!
Если встретится вода,
Непременно — вот народ! —
Вытесняют водород!

Вам металлы калий, натрий
Пригодятся в доме вряд ли.
Ведь проблем немало с ними,
А хранят их… в керосине!

Керосина легче литий,
Он всплывает в нем, учтите.
Помнить вы должны отныне:
Держат литий в вазелине.

Первый слог – предлог известный,
Слог второй трудней найти:
Часть его составит цифра,
К ней добавьте букву «Й».
Чтобы целое узнать,
Надо вам металл назвать.
(Натрий)

Брат один сердитый,
Другой брат ядовитый.
Первый брат в воде горел,
Брат другой позеленел.
Первый брат – металл у нас,
Брат другой – конечно газ.
Если их объединить,
Можно чудо совершить.
Попадутся братцы эти,
Вам в супу или в котлете!
(Натрий, Хлор)

Картинки по запросу натрий картинки

Платина

платина

Платина (Pt от исп. Platina ) — химический элемент 10-й группы (по устаревшей классификации — побочной подгруппы восьмой группы), 6-го периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 78; блестящий благородный металл серебристо-белого цвета.

платина


тяжёлый, мягкий серебристо-белый металл

платина

Содержание

  • 1 История
  • 2 Происхождение названия
  • 3 Нахождение в природе
    • 3.1 Изотопы
    • 3.2 Месторождения
    • 6.1 Реакционная способность
    • 6.2 Катализатор
    • 8.1 В технике
    • 8.2 В медицине
    • 8.3 В ювелирном деле
    • 8.4 Монетарная функция
    • 8.5 Знаки отличия

    История

    В Старом Свете платина не была известна до середины XVI века, однако цивилизации Анд (инки и чибча) добывали и использовали её с незапамятных времён. Первыми европейцами, познакомившимися с платиной в середине XVI века, были конкистадоры. Считается, что первым в литературе упомянул о платине Скалигер в опубликованной в 1557 году книге «Экзотерические упражнения в 15 книгах», где он, полемизируя с Кардано о понятии «металл», рассказал о некоем веществе из Гондураса, которое нельзя расплавить. Вероятно, этим веществом и была платина.

    В 1735 году испанский король издаёт указ, повелевающий платину впредь в Испанию не ввозить. При разработке россыпей в Колумбии повелевалось тщательно отделять её от золота и топить под надзором королевских чиновников в глубоких местах речки Рио-дель-Пинто (приток Рио-Сан-Хуан (англ.) русск. ), которую стали именовать Платино-дель-Пинто. А ту платину, которая уже привезена в Испанию, повелевалось всенародно и торжественно утопить в море. Королевское распоряжение было отменено через 40 лет, когда мадридские власти приказали доставлять платину в Испанию, чтобы самим фальсифицировать золотые и серебряные монеты. В 1820 году в Европу было доставлено от 3 до 7 тонн платины. Здесь с нею познакомились алхимики, считавшие самым тяжёлым металлом золото. Необычайно плотная платина оказалась тяжелее золота, поэтому алхимики посчитали её непригодным металлом и наделили адскими чертами. Некоторое применение платина нашла позже во Франции, когда из неё был изготовлен эталон метра, а позже эталон килограмма.

    Согласно некоторым источникам, испанский математик и мореплаватель А. де Ульоа в 1744 году привёз образцы платины в Лондон, он поместил описание платины в своём отчёте о путешествии в Южную Америку, опубликованном в 1748 году. В 1789 А. Лавуазье включил платину в список простых веществ. Впервые в чистом виде из руд платина была получена английским химиком У. Волластоном в 1803 году.

    В России ещё в 1819 году в россыпном золоте, добытом на Урале, был обнаружен «новый сибирский металл», который сначала называли белым золотом. Платина встречалась на Верх-Исетских, а затем и на Невьянских и Билимбаевских приисках. Богатые россыпи платины были открыты во второй половине 1824 года, а на следующий год в России началась её добыча. В 1826 году П. Г. Соболевский и В. В. Любарский изобрели метод выработки ковкой платины с помощью прессования и последующей выдержки в раскалённом добела состоянии.

    Происхождение названия

    Название платине было дано испанскими конкистадорами, которые в середине XVI в. впервые познакомились в Южной Америке (на территории современной Колумбии) с новым металлом, внешне похожим на серебро (исп. plata ). Слово буквально означает «маленькое серебро», «серебришко». Объясняется такое пренебрежительное название исключительной тугоплавкостью платины, которая не поддавалась переплавке, долгое время не находила применения и ценилась вдвое ниже, чем серебро.

    Нахождение в природе

    Изотопы

    Месторождения

    самородок платины

    Платина является одним из самых редких металлов: её среднее содержание в земной коре (кларк) составляет 5⋅10 −7 % по массе. Даже так называемая самородная платина является сплавом, содержащим от 75 до 92 процентов платины, до 20 процентов железа, а также иридий, палладий, родий, осмий, реже медь и никель.

    Основная часть месторождений платины (более 90 %) заключена в недрах пяти стран. К этим странам относятся ЮАР (Бушвелдский комплекс), США, Россия, Зимбабве, Китай.

    В России основными месторождениями металлов платиновой группы являются: Октябрьское, Талнахское и Норильск-1 сульфидно-медно-никелевые в Красноярском крае в районе Норильска (более 99 % разведанных и более 94 % оцененных российских запасов), Фёдорова Тундра (участок Большой Ихтегипахк) сульфидно-медно-никелевое в Мурманской области, а также россыпные Кондёр в Хабаровском крае, Левтыринываям в Камчатском крае, реки Лобва и Выйско-Исовское в Свердловской области. Крупнейшим платиновым самородком, найденным в России, является «Уральский гигант» массой 7860,5 г , обнаруженный в 1904 г. на Исовском прииске; в настоящее время хранится в Алмазном фонде.

    платина

    Получение

    Самородную платину добывают на приисках (см. подробнее в статье Благородные металлы), менее богаты рассыпные месторождения платины, которые разведываются, в основном, способом шлихового опробования.

    Производство платины в виде порошка началось в 1805 году английским ученым У. Х. Волластоном из южноамериканской руды.

    Сегодня платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO3. При этом иридий и палладий восстанавливаются до Ir 3+ и Pd 2+ . Последующим добавлением хлорида аммония выделяют гексахлороплатинат (IV) аммония (NH4)2PtCl6. Высушенный осадок прокаливают при 800—1000 °C:

    Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH4)2PtCl6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении растворов солей платины химическим или электрохимическим способом получают мелкодисперсную платину — платиновую чернь.

    Серовато-белый пластичный металл, температуры плавления и кипения — 2041,4 K ( 1768,3 °C ) и 4098 K ( 3825 °C ) соответственно, удельное электрическое сопротивление — 0,098 мкОм·м (при 0 °С ). Платина — один из самых тяжёлых (плотность 21,09—21,45 г/см³ ; атомная плотность 6,62⋅10 22 ат/см³ ) металлов. Твёрдость по Бринеллю — 50 кгс/мм 2 (по Моосу 3,5).

    Кристаллическая решётка кубическая гранецентрированная, а = 0,392 нм , Z = 4 , пространственная группа Fm3m .

    Платина устойчива к вакууму и может применяться в космической технике.

    платина в царской водке

    По химическим свойствам платина похожа на палладий, но проявляет бо́льшую химическую устойчивость. При комнатной температуре реагирует с царской водкой:

    Платина медленно растворяется в горячей концентрированной серной кислоте и жидком броме. Она не взаимодействует с другими минеральными и органическими кислотами. При нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в присутствии галогенидов щелочных металлов):

    При нагревании платина реагирует с серой, селеном, теллуром, углеродом и кремнием. Как и палладий, платина может растворять молекулярный водород, но объём поглощаемого водорода и способность его отдавать при нагревании у платины меньше.

    При нагревании платина реагирует с кислородом с образованием летучих оксидов. Выделены следующие оксиды платины: чёрный PtO, коричневый PtO2, красновато-коричневый PtO3, а также Pt2O3 и смешанный Pt3O4, в котором платина проявляет степени окисления II и IV.

    Для платины известны гидроксиды Pt(OH)2 и Pt(OH)4. Получают их при щелочном гидролизе соответствующих хлороплатинатов, например:

    Эти гидроксиды проявляют амфотерные свойства:

    Гексафторид платины PtF6 является одним из сильнейших окислителей среди всех известных химических соединений, способный окислить молекулы кислорода и ксенона:

    Соединение O2 + [PtF6] − (гексафтороплатинат(V) диоксигенила) летуче и разлагается водой на фтороплатинат(IV), небольшое количество гидратированного диоксида платины и кислород с примесью озона.

    С помощью гексафторида платины, в частности, канадский химик Нейл Бартлетт в 1962 году получил первое настоящее химическое соединение ксенона Xe[PtF6].

    C обнаруженного Н. Бартлеттом взаимодействия между Хе и PtF6, приводящего к образованию Xe[PtF6], началась химия инертных газов. PtF6 получают фторированием платины при 1000 °C под давлением.

    Фторирование платины при нормальным давлении и температуре 350—400 °C даёт фторид платины(IV):

    Фториды платины гигроскопичны и разлагаются водой.

    Тетрахлорид платины с водой образует гидраты PtCl4· n H2O, где n = 1, 4, 5 и 7 . Растворением PtCl4 в соляной кислоте получают платинохлористоводородные кислоты H[PtCl5] и H2[PtCl6].

    Синтезированы такие галогениды платины, как PtBr4, PtCl2, PtCl2·2PtCl3, PtBr2 и PtI2.

    Для платины характерно образование комплексных соединений состава [PtX4] 2- и [PtX6] 2- . Изучая комплексы платины, А. Вернер сформулировал теорию комплексных соединений и объяснил природу возникновения изомеров в комплексных соединениях.

    Реакционная способность

    монета из платины

    Платина является одним из самых инертных металлов. Она нерастворима в кислотах и щелочах, за исключением царской водки. Платина также непосредственно реагирует с бромом, растворяясь в нём.

    При нагревании платина становится более реакционноспособной. Она реагирует с пероксидами, а при контакте с кислородом воздуха — с щелочами. Тонкая платиновая проволока горит во фторе с выделением большого количества тепла. Реакции с другими неметаллами (хлором, серой, фосфором) происходят менее активно. При более сильном нагревании платина реагирует с углеродом и кремнием, образуя твёрдые растворы, аналогично металлам группы железа.

    В своих соединениях платина проявляет почти все степени окисления от 0 до +6, из которых наиболее устойчивы +2 и +4. Для платины характерно образование многочисленных комплексных соединений, которых известно много сотен. Многие из них носят имена изучавших их химиков (соли Косса, Магнуса, Пейроне, Цейзе, Чугаева и т. д.). Большой вклад в изучение таких соединений внес русский химик Л. А. Чугаев (1873−1922), первый директор созданного в 1918 году Института по изучению платины.

    Катализатор

    Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта (этанола) до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» — прибор, широко применявшийся для получения огня до изобретения спичек.

    Добыча и производство

    платина

    1000 кубических сантиметров 99,9%-ной платины общей стоимостью 970 600 долларов США (в ценах на 14 июля 2012 года)

    график цен на платину

    До 1748 г. платина добывалась и производилась только на территории Америки, а в Старом Свете не была известна.

    Когда платину стали завозить в Европу, её цена была вдвое ниже серебра. Ювелиры очень быстро обнаружили, что платина хорошо сплавляется с золотом, а так как плотность платины выше, чем у золота, то незначительные добавки платины позволили изготавливать подделки, которые невозможно было отличить от золотых изделий. Такого рода подделки получили столь широкое распространение, что испанский король приказал прекратить ввоз платины, а оставшиеся запасы утопить в море. Этот закон просуществовал до 1778 года. После отмены закона потребность в платине была небольшой, её использовали в основном для создания химического оборудования, приспособлений и в качестве катализаторов. Добываемой в Америке платины для этих целей было достаточно. Ни о каком значимом промышленном производстве говорить не приходилось.

    В 1819 году платину впервые обнаружили на Урале близ Екатеринбурга, а в 1824 г. были открыты платиновые россыпи в Нижнетагильском округе. Разведанные запасы платины были столь велики, что Россия почти сразу заняла первое место в мире по добыче этого металла. Только в 1828 году в России было добыто 1,5 т платины — больше, чем за 100 лет в Южной Америке. На Урале появились целые платинодобывающие районы, из которых наиболее важными в промышленном отношении стали Исовской и Тагильский.

    К концу XIX века в Российской империи добывалось платины в 40 раз больше, чем во всех остальных странах мира. Причём представлена она была и весьма увесистыми самородками. Например, у одного из найденных на Урале самородков масса составляла 9,639 кг , впоследствии он был переплавлен.

    К середине XIX в. в Англии и Франции были проведены обширные исследования по аффинажу платины. В 1859 году французский химик Анри Этьен Сент-Клер Девиль впервые разработал промышленный способ получения слитков чистой платины. С этого времени почти вся добываемая на Урале платина скупалась английскими и французскими фирмами, в частности, «Джонсон, Маттей и К°». Позже к закупкам платины у Российской империи подключились американские и немецкие компании.

    Даже после значительных зарубежных закупок большая часть добываемой Россией платины не находила достойного применения. Поэтому начиная с 1828 года, по предложению министра финансов Егора Канкрина, в Российской империи начали выпускать платиновые монеты номиналом 3, 6 и 12 рублей . При этом 12-рублёвая платиновая монета имела массу 41,41 г , а в рублёвой серебряной монете было 18 г чистого серебра. То есть по стоимости металла платиновые монеты были дороже серебряных в 5,2 раза . С 1828 по 1845 гг. было выпущено 1 372 000 трёхрублёвых монет, 17 582 шестирублёвых и 3303 двенадцатирублёвых общей массой 14,7 т . Основную выгоду от добычи получали владельцы рудников — Демидовы. Только в 1840 было добыто 3,4 т платины. В 1845 году, по настоянию нового министра финансов Фёдора Вронченко выпуск платиновых монет был прекращён, и все они были срочно изъяты из обращения. Основной версией столь поспешного шага считается повышение европейских цен на платину, в результате которого монеты стали стоить дороже номинала. После прекращения чеканки монет добыча платины в Российской империи упала в 20 раз . Все же к 1915 году на долю России приходилось 95 % от мировой добычи платины. Оставшиеся 5 % добычи осуществляла Колумбия. Причём почти вся российская платина поступала на экспорт. Например, в 1867 году Англия скупила весь запас российской платины — более 16 т .

    К концу XIX в. Российская империя добывала 4,5 тонны платины в год.

    До Первой мировой войны второй после Российской империи страной по объёмам добычи платины была Колумбия; с 1930-х гг. стала Канада, а после Второй мировой войны — Южная Африка.

    В 1952 году Колумбия добыла 0,75 т платины, США — 0,88 т , Канада — 3,75 т , а Южно-Африканский Союз — 7,2 т . В СССР данные по добыче платины были засекречены.

    В 2014 году в мире была добыта 161 т платины. Лидерами добычи были:

    • ЮАР — 110,0 т,
    • Россия — 25,0 т,
    • Зимбабве — 11,0 т,
    • Канада — 7,2 т,
    • США — 3,7 т.

    Лидером добычи платины в России является ГМК «Норильский никель».

    Кроме того, на территории Хабаровского края располагается прииск Кондёр, который является крупнейшим в мире россыпным месторождением платины; его разработку ведёт Артель старателей «Амур» (входит в Группу компаний «Русская платина»), по итогам 2011 года на прииске добыто около 3,7 тонны платины.

    Разведанные мировые запасы металлов платиновой группы составляют около 80 000 т и распределены, в основном, между ЮАР (87,5 %), Россией (8,3 %) и США (2,5 %).

    Читайте также: