Современные методы исследования металлов

Обновлено: 04.10.2024

Основными методами исследования в металловедении и материаловедении являются:

1. Излом - самый простой и доступный способ оценки внутреннего строения металлов. Метод оценки изломов, несмотря на свою кажущуюся грубость оценки качества материала, применяется довольно широко в различных отраслях производства и научных исследований. Оценка излома во многих случаях может характеризовать качество материала.

Излом может быть кристаллическим или аморфным. Аморфный излом характерен для материалов, не имеющего кристаллического строения, таких как стекло, канифоль, стекловидные шлаки.

Металлические сплавы, в том числе сталь, чугун, алюминиевые, магниевые сплавы, цинк и его сплавы дают зернистый, кристаллический излом.

Каждая грань кристаллического излома является плоскостью скалывания отдельного зерна. Поэтому излом показывает нам размеры зерна металла. Изучая излом стали, можно видеть, что размер зерна может колебаться в очень широких пределах: от нескольких сантиметров в литой, медленно остывшей, стали до тысячных долей миллиметра в правильно откованной и закаленной стали. В зависимости от размера зерна, излом может быть крупнокристаллический и мелкокристаллический. Обычно мелкокристаллический излом соответствует более высокому качеству металлического сплава.

В случае если разрушение исследуемого образца проходит с предшествующей пластической деформацией, зерна в плоскости излома деформируются, и излом уже не отражает внутреннего кристаллического строения металла; в этом случае излом называется волокнистым. Часто в одном образце в зависимости от уровня его пластичности, в изломе могут быть волокнистые и кристаллические участки. Часто по соотношению площади излома, занятого и кристаллическими участками при данных условиях испытания оценивают качество металла.

Хрупкий кристаллический излом может получаться при разрушении по границам зерен или по плоскостям скольжения, пересекающим зерна. В первом случае излом называется межкристаллитным, во втором транскристаллитным. Иногда, особенно при очень мелком зерне, трудно определить природу излома. В этом случае излом изучают с помощью лупы или бинокулярного микроскопа.

В последнее время развивается отрасль металловедения по фрактографическому изучению изломов на металлографических и электронных микроскопах. При этом находят новые достоинства старого метода исследований в металловедении - исследований излома, применяя к таким исследованиям понятия фрактальных размерностей.

2. Макроструктура - является следующим методом исследования металлов. Макроструктурное исследование заключается в изучении плоскости сечения изделия или образца в продольном, поперечном или любых иных направлениях после травления, без применения увеличительных приборов или при помощи лупы. Достоинством макроструктурного исследования является то обстоятельство, что с помощью этого метода можно изучить структуру непосредственно целой отливки или слитка, поковки, штамповки и т.д. С помощью этого метода исследования можно обнаружить внутренние пороки металла: пузыри, пустоты, трещины, шлаковые включения, исследовать кристаллическое строение отливки, изучать неоднородность кристаллизации слитка и его химическую неоднородность (ликвацию).

С помощью серных отпечатков макрошлифов на фотобумаге по Бауману определяется неравномерность распределения серы по сечению слитков. Большое значение этот метод исследования имеет при исследовании кованых или штампованных заготовок для определения правильности направления волокон в металле.

3. Микроструктура - один из основных методов в металловедении - это исследование микроструктуры металла на металлографических и электронных микроскопах.

Этот метод позволяет изучать микроструктуру металлических объектов с большими увеличениями: от 50 до 2000 раз на оптическом металлографическом микроскопе и от 2 до 200 тыс. раз на электронном микроскопе. Исследование микроструктуры производится на полированных шлифах. На нетравленых шлифах изучается наличие неметаллических включений, таких как оксиды, сульфиды, мелкие шлаковые включения и другие включения, резко отличающиеся от природы основного металла.

Микроструктура металлов и сплавов изучается на травленых шлифах. Травление обычно производится слабыми кислотами, щелочами или другими растворами, в зависимости от природы металла шлифа. Действие травления заключается в том, что он по-разному растворяет различные структурные составляющие, окрашивая их в разные тона или цвета. Границы зерен, отличающиеся от основного раствора имеют травимость обычно отличающуюся от основы и выделяется на шлифе в виде темных или светлых линий.

Видимые под микроскопом полиэдры зерен представляют собой сечения зерен поверхностью шлифа. Так как это сечение является случайным и может проходить на разных расстояниях от центра каждого отдельного зерна, то различие в размерах полиэдров не соответствует действительным различиям в размерах зерен. Наиболее близкой величиной к действительному размеру зерна являются наиболее крупные зерна.


а б
Рисунок 1.1. Микроструктура однофазного сплава – твердого раствора в отожженном состоянии (а, б). Зерна могут иметь неодинаковые оттенки (б), т.к. в сечение шлифа попадают различные кристаллографические плоскости

При травлении образца, состоящего из однородных кристаллических зерен, например чистого металла, однородного твердого раствора и др. наблюдается часто различно протравленные поверхности разных зерен (рисунок 1.1).

Это явление объясняется тем, что на поверхности шлифа выходят зерна, имеющие различные кристаллографическую ориентировку, вследствие чего степень воздействия кислоты на эти зерна оказываются разной. Одни зерна выглядят блестящими, другие сильно протравливаются, темнеют. Это потемнение связано с образованием различных фигур травления, по-разному отражающих световые лучи. В случае сплавов, отдельные структурные составляющие образуют микрорельеф на поверхности шлифа, имеющий участки с различным наклоном отдельных поверхностей (рисунок 1.2, а).

Нормально расположенные участки отражают наибольшее количество света и оказываются наиболее светлыми. Другие участки - более темные. Часто контраст в изображении зернистой структуры связан не со структурой поверхности зерен, а с рельефом у границ зерен. Существует 3 разновидности границ зерен (рисунок 1.2, б,в,г). Кроме того, различные оттенки структурных составляющих могут являться результатом образования пленок, образованных при взаимодействии травителя со структурными составляющими.


Рисунок 1. 2. Схема образования контраста в изображении рельефных структур: а - формирование контраста; б - граница зерен; в - избирательное растравливание одной из фаз; г - граница с примесями

С помощью металлографического исследования можно осуществлять качественное выявление структурных составляющих сплавов и количественное изучение микроструктур металлов и сплавов, во-первых, путем сравнения с известными изученными микросоставляющими структур и, во-вторых, специальными методами количественной металлографии.

1. Величина зерна определяется:

a) Методом визуальной оценки, состоящей в том, что рассматриваемая микроструктура, приближенно оценивается баллами стандартных шкал по ГОСТ 5639-68, ГОСТ 5640-68. По соответствующим таблицам, для каждого балла определяется площадь одного зерна и количество зерен на 1 мм 2 и в 1 мм 3 .

b) Методом подсчета количества зерен на единице поверхности шлифа по соответствующим формулам. Если S - площадь, на которой подсчитывается количество зерен n, а М - увеличение микроскопа, то средняя величина зерна в сечении поверхности шлифа

фактическое сечение действительного зерна определяется соотношением

2. Определение протяженности границ зерен.

a) Метод, основанный на измерении количества зерен: (Липилин)

где n - количество зерен на данной площади, К - коэффициент, зависящий от формы зерен.

b) Метод секущих. (Салтыков)

где m - количество пересечений случайных секущих с линиями границ на единице длины. В качестве секущих могут быть применены как отрезки прямых, так и окружность.

3. Определение фазового состава.

Фазовый состав сплава чаще оценивают на глаз или путем сравнения структуры со стандартными шкалами.

a) Приближенный метод количественного определения фазового состава может быть проведен методом секущей с подсчетом протяженности отрезков, занятых разными структурными составляющими. Соотношение этих отрезков соответствует объемному содержанию отдельных составляющих.

b) Точечный метод А.А. Глаголева. Этот метод осуществляется путем оценки количества точек (точек пересечения окулярной сетки микроскопа), попадающих на поверхности каждой структурной составляющей. Кроме того, методом количественной металлографии производят:

определение величины поверхности раздела фаз и зерен;

определение числа частиц в объеме;

определение ориентации зерен в поликристаллических образцах.

На основании изучения изменения микроструктуры сплавов под действием различных технологических параметров обработки исследуется механизм протекающих превращений в структуре сплавов.

4. Электронная микроскопия. Большое значение в металлографических исследованиях находит в последнее время электронный микроскоп. Несомненно, ему принадлежит большое будущее. Если разрешающая способность оптического микроскопа достигает значений 0,00015 мм = 1500 А, то разрешающая способность электронных микроскопов достигает 5-10 А, т.е. в несколько сот раз больше, чем у оптического.

На электронном микроскопе осуществляют исследование тонких пленок (реплик), снятых с поверхности шлифа или непосредственное изучение тонких металлических пленок, полученных утонением массивного образца.

В наибольшей степени нуждаются в применении электронной микроскопии исследования процессов, связанные с выделением избыточных фаз, например, распад пересыщенных твердых растворов при термическом или деформационном старении.

5. Рентгеновские методы исследования. Одним из наиболее важных методов в установлении кристаллографического строения различных металлов и сплавов является рентгеноструктурный анализ. Этот метод исследования дает возможность определения характера взаимного расположения атомов в кристаллических телах, т.е. решить задачу, не доступную ни обычному, ни электронному микроскопу.

В основе рентгеноструктурного анализа лежит взаимодействие между рентгеновскими лучами и лежащими на их пути атомами исследуемого тела, благодаря которому последние становятся как бы новыми источниками рентгеновских лучей, являясь центрами их рассеяния.

Рассеяние лучей атомами можно уподобить отражению этих лучей от атомных плоскостей кристалла по законам геометрической оптики. Рентгеновские лучи отражаются не только от плоскостей, лежащих на поверхности, но и от глубинных. Отражаясь от нескольких одинаково ориентированных плоскостей, отраженный луч усиливается. Каждая плоскость кристаллической решетки дает свой пучок отраженных волн. Получив определенное чередование отраженных пучков рентгеновских лучей под определенными углами, рассчитывают межплоскостное расстояние, кристаллографические индексы отражающих плоскостей, в конечном счете, форму и размеры кристаллической решетки.

Кроме того, с помощью рентгеноструктурного анализа решается целый ряд металловедческих задач.

В материаловедении, кроме указанных методов применяются:

дилатометрический метод исследования внутренних превращений в металлах, основанный на измерении изменений индивидуальных объемов фаз в процессе фазовых превращений,

метод термического анализа, основанный на принципе учета и измерения скрытого тепла превращения, происходящего в металле при тех или иных превращениях,

магнитный анализ, основанный на свойствах ферромагнитных материалов изменять магнитные свойства с изменением температуры и протеканием фазовых превращений.

Кроме того, в материаловедении для характеристики превращений, происходящих в металлах и сплавах, используются все доступные измерению химические, физические и механические свойства, изменяющиеся при протекании исследуемых превращений. Очень важными свойствами, определяющими кинетику многих превращений, является электропроводность, растворимость в кислотах, плотность, твердость и др.

Практически все методы исследования, включая чисто металловедческие и изменения физико-механических свойств должны применяться в комплексе, дополняя друг друга.

Методы исследования строения металлов

Исследовани­ем структуры металлов и их сплавов определяется пригод­ность их к эксплуатации в различных условиях работы. К важнейшим методам исследования относят макро- и мик­роанализ, рентгеновский и термический анализ, а также дефектоскопию: магнитную, ультразвуковую, при по­мощи радиоактивных изотопов. С помощью макроанализа изучают структуру, видимую невооруженным глазом или через лупу, по изломам металла и макрошлифам. Для макроанализа отшлифовывают одну из поверхностей образца, затем «травят» ее одной из кислот. Макроанализ выявляет трещины, газовые пузыри, усадочные раковины, расположение волокон в прокате, поковках. По макро­структуре, например коленчатых валов, судят об их каче­стве. На рис. 9 представлены расположения волокон — правильное (а) и неправильное (б).


Микроанализ выявляет структуру по микрошлифам при увеличении в оптических микроскопах до 2500 раз, а в электронных микроскопах — до 25000 раз. Это важней­ший анализ, позволяющий всесторонне изучить качество металла, определить структурные составляющие, форму и размер зерен, микродефекты, лежащие под поверхностью, неметаллические включения, качество термообработки. На основании микроструктуры можно объяснить причи­ны неудовлетворительных механических свойств, не про­изводя их испытаний. Микрошлифы изготовляют путем тонкого шлифования или полирования. При травлении различные составляющие структуры растворяются: одни зерна слабее, другие — сильнее; под микроскопом они вид­ны как более темные или более светлые. Рентгеновский анализ применяют для исследования структур кристаллов и дефектов на определенной глубине внутри металла. Рентгеновские лучи проникают че­рез тело, непроницаемое для видимого света, поэтому возможно обнаружить внутренний дефект, не разрушая металла. Глубина проникновения рентгеновских лучей в сталь составляет 100 мм. Исследование дефектов, ле­жащих на большой глубине, осуществляют с помощью γ-лучей.

Методами спектрального и химического анализов опре­деляют химический состав металлов и сплавов. Спект­ральный анализ производится по спектру, получаемому от свечения металлов в раскаленном состоянии. Одни метал­лы дают линию желтого света, другие - зеленого и т. д. Таким образом можно обнаружить наличие любого метал­ла, даже если его количество ничтожно мало.

Магнитная дефектоскопия позволяет исследовать фер­ромагнитные металлы: сталь, никель, кобальт. Она выявля­ет дефекты на глубине до 2 мм, например в сварных швах: раковины, трещины, неметаллические включения. Дефект­ные места обладают низкой магнитопроницаемостью и рас­сеивают магнитные силовые линии, которые огибают эти места, замыкаясь в магнитных полюсах (рис. 10).

Ультразвуковая дефектоскопия осуществляет эффек­тивный контроль качества изделия и заготовок любых металлов на большой глубине. Ультразвуковая волна направляется на поверхность изделия, проникает вглубь и проходит через всю толщу металла. При отсутствии дефекта звуковые волны распространяются нормально.

Если па пути встретится дефект, то интенсивность ульт­развука изменится. По изменению этой интенсивности выявляют дефект.

Ультразвуковая дефектоскопия широко применяется при контроле качества поковок, проката, роторов турбин, рельсов и т. д.

С помощью радиоактивных изотопов в металлургии обнаруживают попадание в металл шлака, скорость диф­фузии углерода в стали при цементации. Они помогают следить за изнашиванием деталей машин или огнеупорной кладки. Радиоактивность изотопов в изношенных местах изменяется из-за уменьшения количества изотопов на поверхности трения, при этом происходит изменение из­лучения, которое легко обнаружить

Химический анализ металлов и сплавов. Назначение и современные методы исследования

Анализ химического состава металлов и сплавов - неотъемлемая часть многих технологических процессов, используемых в различных отраслях промышленности. Исследование позволяет определить присутствия в образце примесей и включений, а также прогнозировать эксплуатационные характеристики готового изделия.

Для решения этой задачи используются анализаторы - надежные и эффективные приборы, способные работать как в производственных, так и лабораторных условиях.

Назначение

лаборатория спектрального анализа металлов

Химический анализ позволяет:

  • определить количественный состав;
  • исследовать образец на присутствие примесей и определить их концентрацию;
  • идентифицировать сплав;
  • выяснить соотношение примесей сплава для его маркировки.

Проведение исследования необходимо для:

  • экспертизы продукции для определения соответствия действующим стандартам;
  • непрерывного контроля технологического процесса;
  • входного контроля исходного сырья;
  • разработки и создания новых сплавов;
  • сертификации продукции;
  • освидетельствования чистых металлов.

Основные требования

Для проведения химического анализа металлов и сплавов могут быть использованы различные методы. Однако не все они удовлетворяют следующим требованиям:

  • максимальная оперативно;
  • высокая точность результатов;
  • использование неразрушающих методов;
  • простота эксперимента;
  • применение в производственных условиях.

Методы атомно-эмиссионного спектрального анализа

Атомно-эмиссионный спектральный анализ (АЭСА) металлов и сплавов получил наибольшее распространение в различных отраслях промышленности. С его помощью можно исследовать вещества в различных агрегатных состояниях на присутствие многих химических элементов. Он имеет низкий предел обнаружения элементов, отличается простотой и низкой себестоимостью, что делает целесообразным его использование в лабораториях спектрального анализа металлов, решающих различные аналитические задачи.

Спектрографический

спектроскоп для анализа химического состава металлов и сплавов

Проводится с использованием спектрографа, который позволяет относительно быстро получить надежные результаты. Метод предусматривает регистрацию атомных спектров на фотопластинку с последующей идентификацией их с помощью планшета или на спектропроекторе.

Спектрометрический

Для исследования пробы применяются приборы с фотоэлектрической регистрацией спектра. Этот вид химического анализа металлов и сплавов относится к объективным методам и позволяет оперативно получать информацию.

  • экспрессность;
  • высокая точность результатов;
  • полная автоматизация процесса;
  • обработка результатов на ЭВМ и их архивирование.
  • сложность эксплуатации оборудования;
  • возникновение проблем оптической и электрической стабильности;
  • нельзя одновременно регистрировать широкую область спектра.

Визуальный

Отличается от двух предыдущих субъективностью, так как приемником излучения служит человеческий глаз. Несмотря на ограниченные возможности, визуальный спектральный анализ широко используется в промышленности. Особенное значение визуальный метод приобретает при необходимости контроля химического состава легированных сталей в процессе их производства.

  • экспрессность;
  • простота;
  • проведения анализа в месте нахождения проб;
  • низкая стоимость оборудования.
  • невысокая точность результатов;
  • не позволяет определять неметаллические элементы.

Заключение

Атомно-эмиссионный спектральный анализ имеет ряд преимуществ по сравнению с другими методами химического анализа.

Химический анализ металлов и сплавов — современные методы диагностики


Химический анализ металлов и сплавов является важной процедурой, с помощью которой можно контролировать наличие в том или ином металле каких либо, примесей и включений других металлов.

Физико-химические методы анализа металлов и сплавов позволят определить чистоту материала на предмет содержания в нем нежелательных примесей. Это в свою очередь позволит прогнозировать технические характеристики будущих деталей, которые будут производиться с применением того или иного металла либо сплавов нескольких металлов.

Когда и зачем необходим химический анализ металлов и сплавов


Металлы, а также их сплавы широко используются в разных отраслях промышленности и народного хозяйства. В чистом виде металлы практически не существуют – они обязательно имеют в своем составе природные или технологические примеси.

От их типа и концентрации напрямую зависят эксплуатационные параметры будущей продукции, которая производится из металла. Использование химического анализа позволит установить его качественные и количественные свойства.

В процессе проведения этого анализа можно будет:

  • определить количественный состав элементов;
  • выявить наличие инородных соединений и их концентрацию;
  • провести идентификацию сплавов;
  • определять соотношение смесей в металлических сплавах при их маркировке.

Стоит отметить: современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам.

В основном анализ проводится для:

  • экспертизы качества выпускаемых металлов и сплавов на предмет их соответствия текущим стандартам;
  • контроля технологических процессов на этапе производства;
  • выполнения входной экспертизы сырья;
  • разработки и создания новых сплавов;
  • сертификации продукции из металла;
  • освидетельствования чистых металлов.

Методы химического анализа металлов


На сегодняшний день существует много разных методов, которые позволяют провести качественный анализ металлов и их сплавов.

Используемые методы должны обеспечивать:

  • экспрессность проведения процедуры анализа;
  • высокую точность результатов;
  • неразрушающий контроль;
  • простоту проведения эксперимента;
  • возможность использования методик анализа в производственном цикле.

Среди основных методов контроля наиболее часто используется спектральный анализ и эмиссионный химический анализ. Рассмотрим их особенности и преимущества.

Эмиссионный химический анализ

Этот метод исследования металлов позволяет за короткий промежуток времени с высокой вероятностью определить истинный состав исследуемого металлического образца.

На сегодня существует несколько разновидностей этого метода, но наибольшую популярность имеет атомно-эмиссионный спектральный анализ. Именно он используется в научной и промышленной отрасли для экспрессного получения данных о составе исследуемых образцов.


Эти методы анализа металлов и сплавов основаны на том принципе, что кратковременный высокотемпературный нагрев металла приводит к тому, что атомы вещества переводятся в возбужденное состояние и излучают свет в определенном интервале частот. Для каждого химического элемента характерна своя частота, по которой его и можно идентифицировать.

Полихроматическое излучение, которое получается вследствие такого разогрева металлического образца, фокусируется с помощью специальной оптической системы, с последующим раскладыванием в спектр и фиксированием регистратором.

После этого полученные данные обрабатываются с помощью компьютерной техники, на которой установлено специализированное программное обеспечение, позволяющее, используя аналитические инструменты, провести качественный и количественный анализ.

Точность метода


Метод эмиссионного анализа отличается высокими показателями чувствительности, что позволяет определять даже малейшие концентрации примесей в металлах и сплавах.

Показатель чувствительности этого метода находится в пределах 10 -5 …10 -7 %.

Что касается точности, то метод позволяет получить показатель в пределах 5% при небольших концентрациях примесей и до 3% при более высоком содержании примесей.

Преимущества

К основным преимуществам современного эмиссионного анализа относятся:

  • возможность параллельного определения сразу 70-ти элементов в составе металла или его сплава;
  • высокая скорость проводимого анализа;
  • низкий порог обнаружения примесей;
  • высокая точность и чувствительность;
  • информативность полученных результатов;
  • относительная простота проведения эксперимента;
  • возможность исследования больших изделий без ущерба их поверхностям.

Спектральный анализ

Спектральный анализ относится к методам качественного и количественного контроля составов металлических объектов. Он основан на проведении изучения спектров взаимодействия металла с используемым излучением.

Исследованию подлежат спектры электромагнитного излучения, спектры распределения элементарных частиц по энергиям и массам, а также спектры акустических волн. Комплексный анализ перечисленных спектров позволит получить детальную картину о составе исследуемого образца.


Спектральный анализ – это современный метод анализа металлов и сплавов, который основан на излучении и поглощении атомами электромагнитных волн при переходе из одного энергетического уровня на другой. Чтобы перевести атомы вещества в возбужденное состояние, в котором они могут излучать характеристическое излучение, в спектральном анализе используются разные источники света.

Общим для всех используемых источников является использование плазмы (высоко- или низкотемпературной), кинетической энергии частиц которой достаточно, чтобы перевести атомы вещества в возбужденное состояние. С помощью специального регистратора фиксируются полученные спектры, которые обрабатываются посредством программного обеспечения на компьютерной технике.


Химический спектральный анализ относится к высокоточным методам, которые также отличаются и высокой чувствительностью к наличию примесей в исследуемых образцах.

Показатель точности для этого метода находится в пределах от 10 -7 до 10 -6 %, а величина относительного стандартного отклонения составляет порядка 0,15…0,3.

  • простота проведения контроля исследуемых образцов;
  • потребность минимального количества исследуемого вещества;
  • возможность определения различных примесей;
  • высокая точность и надежность измерений;
  • возможность применения метода в условиях технологического процесса.

Выполнение химического анализа металлов и сплавов стало необходимым атрибутом в различных отраслях промышленности. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями.

От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

Читайте также: