Спектрометр металлов как работает

Обновлено: 16.05.2024

Спектральный анализ – это совокупность физических методов определения состава вещества, основанный на изучении спектров испускания, поглощения, отражения и люминесценции. Атомы каждого элемента испускают излучение определенных длин волн, это в свою очередь, позволяет определить, какие элементы входят в состав данного вещества. Спектры определяются свойствами электронных оболочек атомов и молекул, и воздействием структуры и массы атомных ядер на положение энергетических уровней. Спектральный анализатор – это прибор, помогающий определить состав исследуемого вещества с помощью спектрального анализа.

Виды спектрального анализа

Принято выделять четыре основных группы спектрального анализа.

  • Эмиссионный
  • Абсорбционный
  • Люминесцентный
  • Комбинационный

Эмиссионный анализ основан на регистрации спектра испускания вещества. Он обычно используется для анализа атомного состава. Для этого пробу исследуемого вещества вводят в электрическую дугу или искру, в которой пары вещества нагреваются до температуры в несколько тысяч градусов и испускают излучение, спектр которого определяет атомарный состав. Метод широко применяется для количественного анализа многокомпонентных сплавов в металлургии.

Абсорбционный анализ использует спектры поглощения (абсорбции) вещества. Через исследуемое вещество пропускается пучок света, часть энергии поглощается и в результате в спектре пропущенного излучения появляются полосы поглощения. По положению и интенсивности этих полос определяют состав и строение исследуемого вещества. Метод применяется главным образом для анализа молекулярного состава в инфракрасной области спектра, где лежат основные линии поглощения молекул.

Люминесцентный анализ основан на способности некоторых веществ светится при облучении их возбуждающим излучением, т.е. излучать поглощенный свет. В результате этого излучения происходит изменение длины волны излучения, причём испускаемое люминесцентное излучение имеет спектр, характерный для данного облучаемого вещества.

В комбинационном анализе используется явление комбинационного рассеяния света. Это явление состоит в рассеянии падающего на вещество излучения с изменением длины волны этого излучения. Такое изменение объясняется тем, что при рассеянии света происходит возбуждение колебаний молекул и, таким образом, часть энергии света расходуется на возбуждение. В результате длина волны падающего на вещество излучения с узким спектром смещается в красную сторону на величину характерную для рассеивающей свет молекулы.

По величине изменения длины волны можно судить о частотах собственных колебаний молекул. Для получения спектров комбинационного рассеяния используются высоко интенсивные источники монохроматического излучения.

Спектральный анализ металла, его особенности и применение оптико-эмиссионных спектральных приборов

Оптический эмиссионный спектральный анализ (ОЭСА) – один из наиболее распространенных методов анализа элементного состава металлических сплавов и других материалов. Оптический эмиссионный спектрометр используется для измерения массовой доли химических элементов в металлах и сплавах и применяется в аналитических лабораториях промышленных предприятий, в цехах для быстрой сортировки и идентификации металлов и сплавов, а также для анализа больших конструкций без нарушения их целостности.

В качестве источника света в приборе для оптико-эмиссионного анализа используется плазма электрической искры или дуги, которую получают с помощью источника возбуждения (генератора). Принцип основан на том, что атомы каждого элемента могут испускать свет определенных длин волн - спектральные линии, причем эти длины волн разные для разных элементов.

Для того чтобы атомы начали испускать свет, их необходимо возбудить электрическим разрядом. Электрический разряд в виде искры в атмосфере аргона способен возбудить большое количество элементов. Достигается высокотемпературная (более 10000 К) плазма, способная возбудить даже такой элемент, как азот.

В искровом штативе между вольфрамовым электродом и исследуемым образцом возникают искры с частотой от 100 до 1000 Гц. Искровой стол имеет световой канал, по которому полученный световой сигнал попадает в оптическую систему. При этом световой канал и искровой штатив продуваются аргоном. Попадание воздуха из окружающей среды в искровой штатив ведет к ухудшению пятна обжига и соответственно к ухудшению качества химического анализа пробы.

Оптическая система спектрального анализатор

Оптическая система по схеме Пашена-Рунге

Спектральное разрешение оптической системы зависит от фокального расстояния, количества штрихов используемой дифракционной решетки, параметра линейной дисперсии и квалифицированном выполнении юстировки всех оптических компонентов. Для хорошей видимости спектра оптическая камера должна быть заполнена инертным газом (аргоном высокой частоты) или вакуумирована.

В качестве регистрирующих элементов современные приборы анализаторы металлов, оснащаются CCD детекторами (или ФЭУ), которые преобразуют видимый свет в электрический сигнал, регистрируют его и передают на компьютер для дальнейшей обработки. В итоге на экране монитора мы наблюдаем концентрации элементов в долях процента.

Интенсивность спектральной линии анализируемого элемента, помимо концентрации анализируемого элемента, зависит от большого числа различных факторов. По этой причине рассчитать теоретически связь между интенсивностью линии и концентрацией соответствующего элемента невозможно. Вот почему для проведения анализа необходимы паспортизированный стандартные образцы, близкие по составу к анализируемой пробе. Предварительно эти стандартные образцы экспонируются (прожигаются) на приборе.

Спектральный прибор для анализа металлов

По результатам прожигов для каждого анализируемого элемента строится градуировочный график, зависимость интенсивности спектральной линии элемента от его концентрации. Впоследствии, при проведении анализа проб, по этим градуировочным графикам производится пересчет измеренных интенсивностей в концентрации.

Следует иметь виду, что реально анализу подвергается несколько миллиграммов пробы с ее поверхности. Поэтому для получения правильных результатов проба должна быть однородна по составу и структуре, при этом состав пробы должен быть идентичным составу анализируемого металла. При анализе металла в литейном производстве для отливки проб рекомендуется использовать специальные кокили. При этом форма пробы может быть произвольной. Необходимо лишь, чтобы анализируемый образец имел достаточную поверхность и мог быть установлен в/на штатив. Для анализа мелких образцов, например прутков или проволоки, используются специальные адаптеры.

Анализатор драгоценных металлов — принцип действия детектора для определения пробы золота и других драгметаллов

Фото 1

Драгоценные металлы подделывали всегда.

Портили пробу, добавляя в золотой сплав лишнее количество неблагородных металлов, создавали внешне похожие на благородный аурум желтые сплавы, в которых не было ни грамма золота.

Спрос рождает предложение, при этом спрос на дешевую имитацию золота был велик всегда.

В течение XIX и особенно XX века «промышленность имитаций» развивалась особенно быстро.

Другой пример: существует и так называемой «белое золото» — золотой сплав, который ценится так же высоко, как и классический желтый, а в некоторых случаях и выше. Но при визуальном осмотре отличить белое золото от серебра или платины затруднительно.

Для того чтобы точно определять, из какого металла либо сплава металлов создано ювелирное украшение, отлит слиток или отчеканена монета, и предназначены анализаторы драгоценных металлов.

Суть и назначение анализатора

Анализатор драгоценных металлов — это прибор, предназначенный для того, чтобы определять, из какого металла сделано то или иное изделие — кольцо, монета, слиток и т. д.

Прибор определяет точный количественный состав разных химических элементов в изделии, показывает процентное соотношение благородных металлов к неблагородным.

Упрощенно говоря, современный анализатор драгметаллов определяет, сколько в данном изделии содержится чистого:

  • золота;
  • серебра;
  • палладия;
  • родия;
  • других благородных металлов, а сколько — примесей (никеля, меди, цинка, хрома и т. п.).

Фото 2

По соотношению золота или серебра к количеству примесей определяется проба изделия.

Так, например самая распространенная в России 585-я проба золота содержит 58,5% чистого металла, а все остальное составляют примеси, введенные для придания сплаву большей прочности, т. к. чистое золото слишком мягкое.

Некоторые приборы сразу показывают пробу, другие выдают на экран числовой код либо содержание различных металлов в процентах, и пробу определяет оценщик по специальной таблице.

Разумеется, если драгоценных металлов в изделии нет, прибор тоже это покажет.

Принципы работы прибора

Анализатор драгметаллов с конструктивной точки зрения — это узкоспециализированный детектор металлов, подобный тем, что применяются в других областях, например в металлопрокате.

Только он сертифицирован и заточен под обнаружение и распознавание не железа и углерода в стальном сплаве, и не меди и олова в бронзовом, а именно драгоценных металлов: золота, серебра, платины в сочетании с различными возможными присадками.

Для проверки качества ювелирных изделий может использоваться только неразрушающий контроль. Это налагает ограничения на физико-химические методы, которые можно применять для исследования.

Это вполне логично — нельзя же портить изделие, отделяя от него фрагменты для химических проверок.

На данный момент для создания анализаторов драгоценных металлов применяются два принципа действия: рентгенофлуоресцентный и электрохимический.

Рентгенофлуоресценция

Фото 3

Этот метод основан на воздействии на объект маломощным рентгеновским излучением при помощи искусственного или природного источника.

В ранних устройствах использовались природные — плутоний-238, железо-55 и т. д. Сейчас чаще применяются искусственные.

Мощность излучения настолько мала, что не может повредить человеку даже при длительном использовании прибора.

Поток рентгеновского излучения «ударяет» в объект, вызывая его ответное свечение в невидимом для человеческого глаза рентгеновском спектре. Индуцированное ответное изучение, представляющее собой поток электронов, улавливается высокочувствительным датчиком. Это и есть флуоресценция.

Каждый химический элемент дает свое характерное «свечение» в соответствующем спектре. Чем больше содержание того или иного вещества, тем мощнее оно будет флуоресцировать.

Специальная программа анализирует суммарный спектр излучений и определяет процентное содержание разных металлов с высокой степенью точности — до 0,1%. Для каждого металла необходима индивидуальная программа.

Другое название этого прибора — энергодисперсионный детектор, или спектрометр.

Электрохимический анализ

Этот метод использует электрохимическую реакцию, которая происходит при контакте металла с электролитом — серной или соляной кислотой, разведенной в воде.

Идея этого метода заключается в том, что у каждого металла собственные, уникальные параметры электропроводности.

Фото 4

При проверке этим прибором на ювелирном изделии закрепляют проводящий контакт от анализатора.

Второй контакт совмещен с датчиком, который, в свою очередь, объединен с емкостью, в которой содержится электролит.

На поверхность изделия выдавливается капля электролита.

Сразу же после этого начинается электрохимическая реакция — часть электронов переходит в электролит. При этом становится возможно определить металл, из которого создано изделие — по его электропроводимости.

Электропроводимость определяется по напряжению, которое возникает в точке контакта электролитного пятна и металлической поверхности изделия.

Для определения точного химического состава вещества используется сравнение с эталоном, изготовленным из платины. Платиновым обычно выполняют один из электродов.

Этот метод также требует наличия специальной программной прошивки в памяти прибора. На данный момент он считается устаревающим, хотя большое количество электрохимических детекторов по-прежнему применяются в разных отделениях Пробирной палаты, на таможенных спецпостах, в ломбардах и т. п.

Как провести анализ золота и других драгметаллов детектором?

Все зависит от принципа, на котором построен анализатор, и его конструкции. Проще всего обращаться с портативным спектрометром, который похож на ручной сканер, используемый в магазинах.

Нужно установить в настройках предполагаемый металл (т. е. выбрать, на что будем проверять), ввести дополнительные параметры (в некоторых моделях) — это может быть, например, уставка «белое золото», чтобы прибор изначально отсек некоторые невозможные в нем примеси.

После этого на экране появится информация о химическом составе исследуемого объекта.

Сложнее работать со стационарными приборами, особенно с теми, что работают по электрохимическому принципу.

Для этого требуются определенные знания.

Перед началом работы прибор необходимо:

  • откалибровать;
  • установить правильный режим;
  • корректно подключить контакты к исследуемому образцу.

Обзор детекторов для проверки драгметаллов и их цена

Для сравнения мы возьмем три модели — две отечественного и одну — иностранного производства.

  1. «Призма-М» производства ГК «Гранат».
  2. Детектор золота «ДеМон-Ю» производства «Ультрамаг».
  3. «GoldXpert» производства японской компании

Анализатор «Призма-М» от петербуржской группы компаний «Гранат» является профессиональным устройством, рекомендованным для государственных пробирных палат, таможенных постов, ломбардов и т. д.

Принцип действия — рентгенофлуоресцентный.

Тип — стационарный, переносного типа.

Чтобы просканировать изделие, необходимо положить его в специальную камеру прибора.

Детектор золота «Призма-М» определяет также серебро, палладий, родий, платину и содержание в них различных примесей в концентрации до 0,1%.

Полная масса — 11 кг. Время работы от аккумулятора — до 2 ч. Большое количество режимов обеспечивает гибкость настройки изделия.

Стоимость предоставляется по запросу. Ориентировочно – в пределах 100 000 рублей.

Фото 6

Детектор «ДеМон-Ю» — это портативный прибор для определения пробы золота и других драгметаллов, работающий по электрохимическому принципу.

Комплектуется электродами, щупом-датчиком и емкостью с электролитом.

Прибор способен распознать золото, серебро, палладий и платину самых распространенных проб. Имеет 2 основных рабочих программы — для металлов белого и желтого цвета.

По характеристикам это — тестер, который предназначен только для определения подлинности пробы ювелирного изделия. Его точный химический состав не показывается.

Стоимость — 21 000 рублей.

Прибор для проверки золота и не только «GoldXpert» — профессиональное оборудование японского производства, использующий метод спектроскопии.

С базовой прошивкой способен определить и идентифицировать 25 различных благородных и неблагородных металлов, включая все металлы, причисляемые к драгоценным.

Определяет элементы от серебра до иридия и осмия, и большое количество других, в том числе:

  • медь;
  • железо;
  • цинк; ;
  • марганец;
  • никель;
  • кобальт и другие.

Конструктивно и по габаритам и массе схож с прибором «Призма-М». Стоимость также предоставляется по запросу и примерно сопоставима с ценой отечественного аналога.

Интересное видео

На видео показан процесс работы прибора для определения пробы золота «GoldXpert»:

Заключение

Анализатор драгоценных металлов — необходимый прибор для того, кто по роду занятий часто сталкивается с необходимостью проверить ту или иную драгоценность на подлинность. Пригодится он даже если вы попросту нашли золото — возможно, находка не так уж и ценна, или наоборот.

Современные детекторы профессионального уровня обеспечивают высокую точность проверки. Более простые портативные модели целесообразно использовать, если необходимо провести упрощенную проверку изделия на выезде.

Выбрать спектрометр: по типу и использованию

Рано или поздно перед сотрудниками литейных компаний, либо компаний, занимающихся обработкой металлов, встает вопрос о выборе и приобретении анализаторов, предназначенных для определения химического (элементного) состава металлов.

В нашей стране производятся анализаторы, позволяющие надежно определить химический состав и марку материала. Кроме того, существуют много фирм-посредников, зарабатывающих на перепродаже указанных спектрометров. И, естественно, менеджеры этих фирм продвигают «свою» продукцию. Обычно это приборы зарубежного производства.

В связи с этим, конечному покупателю (не специалисту в спектральном анализе) трудно разобраться какой прибор оптимально подходит для решения его конкретной задачи.

Типы спектрометров

Выбор типа спектрометра

По типу возбуждения наиболее часто применяемые спектрометры можно разделить на следующие большие группы:

Спектрометры с индукционно связанной плазмой (ICP).

Основные достоинства и недостатки данных приборов обусловлены тем, что они измеряют концентрацию химических элементов в жидкостях.

К положительным сторонам ICP-спектрометров следует отнести:

  • Низкие пределы обнаружения 10 -8 - 10 -5 %,
  • Линейность градуировочных характеристик во всем диапазоне измерений,
  • Доступность и небольшая стоимость градуировочных растворов.

Отрицательными сторонами этих приборов являются:

  • Высокая стоимость приборов,
  • Постоянное содержание химико-аналитической лаборатории (высококвалифицированные химики-аналитики, дорогие реактивы),
  • Большое время анализа, обусловленное переводом исследуемых материалов в жидкую фазу (растворение),
  • Невозможность определения углерода (требуется дополнительное оборудование),
  • Не очень надежные измерения больших концентраций (от 5 % и выше),
  • Ограниченное количество ГОСТов на методы спектрального анализа ICP-спектрометров. Требуется разработка МВИ (Методика Выполнения Измерений), а это дополнительные расходы.

Все вышеперечисленное сильно увеличивает стоимость единичного анализа, а большое время анализа (2-8 часов) ставит под сомнение использование указанных приборов как экспресс-анализаторов.

Атомно-абсорбционные спектрометры

Все вышеперечисленное можно отнести и к атомно-абсорбционным спектрометрам. Только последние анализируют спектры поглощения, а не спектры излучения.

Рентгено-флуорисцентные спектрометры (РФА)

Данные приборы определяют концентрации элементов в твердых пробах, порошках, жидкостях.

Сразу сделаю оговорку. В данной статье не рассматриваются мобильные (переносные) спектрометры РФА. Более подробно они описаны в статье на нашем сайте. Здесь будем рассматривать большие стационарные приборы с высокой мощностью рентгеновского излучения. Указанные приборы имеют очень большие перспективы.

К положительным сторонам РФА-спектрометров следует отнести:

  • Перечень измеряемых элементов от бериллия (Be) до урана (U).
  • Диапазон измерения концентраций от 0,0001 до 99 %. И это без ограничений в больших концентрациях.
  • Возможность проведения измерений практически любого материала, используя метод фундаментальных параметров (без калибровки). Хотя в данных приборах можно использовать и традиционные градуировочные характеристики, построенные по эталонам. Это улучшает правильность показаний,
  • Экспресс анализ.
  • Очень высокая стоимость приборов (от 50 миллионов рублей),
  • Форм-фактор. Образцы для анализа должны быть определенной формы и размеров, для помещения их в измерительную кассету,
  • Дорогое сервисное обслуживание, а так же высокая стоимость владения, обуславливается наличием как дорогого прибора, так и дорогого периферийного оборудования (газовый пост аргон, азот, вакуумный пост, чиллеры, куллеры, жидкий азот, стабилизаторы и т.п.)

Оптико-эмиссионные спектрометры с высоковольтной (конденсированной) искрой

У данного типа спектрометров искровой разряд работает на воздухе. Это означает, что сера и фосфор в сталях данному прибору недоступны. Вообще недоступна область ультрафиолета до 190 нм. Углерод измеряется с трудом. Многие легкие элементы окисляются кислородом воздуха и уносятся из зоны горения. Спектр возбужденный высоковольтной искрой имеет перекос в сторону мало стабильных ионных линий.

Отсюда большие погрешности анализа. Однако указанные приборы нашли свое место при анализе цветных сплавов в разбраковке, где не требуется высокая точность и стабильность анализа. Цена этих приборов не велика.

К положительным сторонам указанных спектрометров следует отнести:

  • Невысокие требования к пробоподготовке,
  • Низкая стоимость приборов,
  • Небольшие затраты на сервисное обслуживание.
  • Экспресс анализ.
  • Анализ только монолитных токопроводящих образцов
  • Ограниченный перечень определяемых элементов.
  • Невысокие пределы обнаружения измеряемых элементов (0,01%).
  • Повышенные погрешности при анализе.
  • Данный тип приборов не обеспечивает выполнение анализов в соответствии с требованиями ГОСТов на методы спектрального анализа и требует разработку специальных нормативных документов (МВИ) для проведения анализов.
  • Может использоваться для анализа только цветных сплавов. В сталях не измеряет C, S, P.

Дуговые оптико-эмиссионные спектрометры

Это классические дуговые спектрометры. Область применения указанных приборов ограничена. Предназначены для анализа в основном сыпучих проб: стружки, порошков, руды, почв и др.

Прибор работает на воздухе. Поэтому имеет все те же отрицательные свойства, как и приборы с конденсированной искрой. Однако дуговой разряд позволяет опустить нижний предел обнаружения до уровня 10 -6 - 10 -4 %. И это все без растворения пробы, как в ICP-спектрометрах. То есть это экспресс анализ. Цена указанных приборов средняя.

Оптико-эмиссионные спектрометры с низковольтной искрой в среде аргона

Само название указанного прибора говорит о том, что разряд у него происходит в среде чистого инертного газа аргон. То есть нет никакого окисления, эвакуации элементов из зоны горения. Диапазон длин волн у большинства приборов начинается от 170 нм. Таким приборам доступны углерод, сера, фосфор, мышьяк, азот, бор начиная от 0,001 %, а то и ниже. То есть перечень определяемых элементов не ограничен. Спектр возбужденный низковольтной искрой имеет перекос в сторону стабильных атомных линий.

Это означает хорошую стабильность и повторяемость измерений и, как следствие, низкую погрешность анализа. Практически все металлы и сплавы обеспечены нормативной документацией (ГОСТами на методы спектрального анализа). И указанные приборы обеспечивают выполнение требований этих ГОСТов. Во всяком случае приборы изготавливаемые нашей компанией перекрывают требования ГОСТов в 5-15 раз.

  • Неограниченный перечень измеряемых элементов.
  • Низкие пределы обнаружения (0,001-0,0001%).
  • Низкая погрешность анализа.
  • Проведение измерений в соответствии с нормативной документацией (ГОСТ).
  • Экспресс анализ.
  • Невысокая стоимость приборов.
  • Простота в эксплуатации.
  • Низкая стоимость анализов.
  • Высокие требования к газу-носителю аргон, или использование систем доочистки.
  • Пробоподготовка должна выполняться в соответствие с ГОСТами на методы спектрального анализа.
  • При измерении больших концентраций (10-15 % и выше) надежность измерений падает. Оптимальный диапазон измерения концентраций данного типа спектрометров находится в пределах от 0,001 до 15%.
  • Измеряет только токопроводящие монолитные пробы.

Вот очень короткое описание основных групп спектрометров, существующих на нашем рынке. В данное описание не вошли совсем экзотические, узкоспециализированные приборы.

Теперь перейдем непосредственно к выбору спектрометра.

Выбор спектрометра

Выбор спектрометра спектрометры для черных металлов, цветных металлов

Для подбора нужного спектрометра необходимо сформировать техническое задание на прибор.

  • Требуется ли экспресс анализ?
  • Какие элементы я хочу измерять и в каких концентрация?
  • В каких сплавах я это хочу измерять?
  • Как часто у меня будут проводиться измерения?
  • Если у меня входной контроль, какие сплавы, марки планируются для измерений?
  • Если у меня литейное производство, то буду ли я плавить металл по российским гостам или у меня будут дополнительные требования? Если да, то какие?
  • Где будет находиться прибор? Это лаборатория, цех, склад, улица?
  • Смогу ли я обеспечить прибор стабильным электропитанием или надо ставить стабилизатор?
  • Доступен ли мне газ аргон требуемой чистоты, или надо озаботиться приобретением системы доочистки?
  • Собираюсь ли я аккредитовать будущую лабораторию в органах Госстандарта?

Несколько примеров использование спектрометров

  • Если предприятие занимается производством только цветных сплавов (бронзы, латуни, алюминиевые, цинковые сплавы) или изделий из них и требования к легитимности измерений (государственная аккредитация лаборатории) невелика, то можно использовать приборы с высоковольтным искровым разрядом. Отрицательные стороны указанных приборов компенсируются низкой стоимостью аппаратуры.
  • Если же к этим требованиям добавляется анализ сталей либо увеличивается количество определяемых элементов и требования к погрешности измерений, то без спектрометров с низковольтной искрой в среде аргона не обойтись.
  • В случае, если предприятие планирует производить жаропрочные, жаростойкие стали или изделия из них, можно рассматривать рентгено-флуорисцентные спектрометрах. Если не из самых дорогих, то придется докупать спектрометр с низковольтной искрой в аргоне для легких элементов в малых концентрациях (углерода, серы, фосфора, кремния алюминия).
  • Для анализов жидкостей лучше использовать спектрометры с индукционно связанной плазмой.
  • Для задач горно-добывающей промышленности прекрасно подойдет дуговой спектрометр.

Нельзя выбрать один автомобиль на все случаи жизни и на официальный прием ездить, землю на дачу возить и в гонках участвовать. Точно так же нет одного прибора для использования во всех поставленных задачах.

В общем и целом выбор типа спектрометра это вечный компромисс между ценой, возможностями и качеством.

У вас остались вопросы?
Задать вопрос через сайт и мы ответим вам в течении 1-2 рабочих дней. Или звоните в офис компании.

Принципы работы спектрометров

Спектроскопия - это совокупность методов, позволяющих выполнять спектральный анализ электромагнитного излучения для исследования химического состава вещества и ведения технологических процессов.

Спектрометр представляет собой прибор, который способен разлагать излучение в спектр видимого диапазона. Несмотря на большое разнообразие все атомно-эмиссионные спектрометры имеют одинаковое принципиальное устройство, в котором основные элементы - это оптическая щель, дифракционная решетка, атомизатор и детектор.

Принципиальная схема приборов

фото анализатора металлов Искролайн 100 на производстве

В состав конструкции современных спектрометров входят следующие части:

  • Осветительная. Она состоит из источника света, конденсорной линзы или зеркала, диафрагмы или входного зрачка прибора.
  • Оптическая (спектральная). Ее основные элементы - это коллиматор, диспергирующая система (призма или дифракционная решетка), световое отверстие и выходной объектив. В фокальной плоскости последнего устанавливается окуляр, фотопластинка, выходная диафрагма или более сложные устройства.
  • Приемно-регистрирующая.

В зависимости от типа прибора эта часть включает:

  • окуляр (при визуальном методе);
  • фотопластинку (при использовании фотографического метода;
  • фотоприемник (в случае фотоэлектрического метода).

Современные приборы предусматривают автоматизацию процесса спектрального анализа. Это позволяет упростить подготовку образцов, переход в разные режимы работы и обработку результатов с приведением их в удобную форму.

Оптическая щель

Щель - важный элемент спектрального прибора, который определяет его рабочие характеристики. Она пропускает и визуализирует излучения, поступающие в анализатор устройства. От оптической щели зависит:

  • оптическое разрешение;
  • пропускная способность;
  • угол расходимости света.

Среднее значение ширины щели находится в диапазоне 5-800 мкм. Ее высота в стандартном исполнении равна 1 мм.

Дифракционная решетка

фото получение спектра на спектрометрах

Дифракционная решетка - оптический прибор, состоящий из совокупности равноудаленных друг от друга щелей одинаковой формы, которые нанесены на непрозрачный носитель (плоский или вогнутый). Принцип действия прибора основан на дифракции света.

  • Период (d) - это расстояние между двумя рядом расположенными щелями, которое равно сумме длин прозрачного и непрозрачного участков.
  • Постоянная решетки - величина обратная периоду (1/d).
  • Разрешающая способность - характеризует возможность разделения двух близких спектральных линий, длина волн которых λ и λ + Δλ. Этот параметр равен отношению длины волны к ее минимальному значению:

После преобразований это выражение принимает вид:

  • Дисперсия (линейная или угловая) определяет линейное или угловое расстояние между двумя линиями с разной длиной волны.

m - главный максимум m-ного порядка.

Атомизатор

Для проведения анализа с использованием атомно-эмиссионного метода необходимо, чтобы вещество перешло в атомарное состояние и произошло возбуждение атомов исследуемого элемента. Для этого проба нагревается до высокой температуры, при которой происходит испарение вещества и распад молекул на атомы.

Затем за счет энергии атомизатора происходит их возбуждение, которое сопровождается выделением света определенной длины, индивидуальной для каждого элемента.

В атомно-эмиссионных спектрометрах используются следующие виды источников атомизации и возбуждения, которые определяют тип прибора:

  • Пламя горелки. В качестве топлива используется горючий газ в смеси с кислородом или воздухом. Анализируемое вещество в жидком состоянии распыляется в пламя. Пламя играет роль атомизатора и источника возбуждения при фотометрическом анализе.
  • Электрическая дуга. При подаче напряжения на вертикально расположенные электроды происходит пробой воздуха, находящегося между ними. В результате этого начинается ионизация атмосферного воздуха, а между электродами образуется плазма, которая воздействует на вещество, помещенное в порошкообразном виде в канал одного из электродов.
  • Искровой разряд. При прохождении низко- или высоковольтного разряда между двумя электродами образуется электропроводящая плазма, которая возбуждает атомы исследуемого образца. Порошкообразная проба размещается в углублении одного из электродов.
  • Высокочастотная индуктивно-связанная плазма. Исследование проводится при атмосферном давлении в присутствии инертного газа. Проба переводится в жидкое состояние, и в виде аэрозоля впрыскивается в ИСП.
  • СВЧ разряд. Для атомизации используется микроволновый разряд.
  • Лазер. Атомизация вещества происходит методом лазерной абляции.
  • Тлеющий разряд. Возбуждение спектра происходит плазмой отрицательного тлеющего свечения. Для проведения анализа требуется использовать образец с ровной поверхностью.
  • Низковольтный импульсный разряд. Низковольтная искра получается при разряде конденсатора, который может происходит в заданном режиме.

Детектор

фото Детектор спектрометра

В качестве приемника излученного света в спектрометрах используются различные устройства. Если в стилоскопе детектором служит глаз человека, а в спектрографах - фотопластинка, то в атомно-эмиссионной спектрометрии интенсивность спектральных линий измеряется напрямую.

Наибольшее распространение получили такие приемники, как:

    Фотодиодная матрица (линейка). Представляет собой линейный массив фотодиодов и управляющих и усиливающих транзисторов. Марица накапливает оптический сигнал и преобразует его в электрический сигнал, который пропорционален величине светового потока.

Прибор с зарядовой связью (ПЗС) или CCD. Кремниевый светодиодный детектор работает в широком динамическом диапазоне. Его чувствительный элемент - это МОП-конденсатор накапливающий заряд и разряжающийся при попадании света на его светочувствительную поверхность.

Заряд конденсатора генерируется фотонами. Его величина пропорциональна интенсивности светового потока и времени его воздействия. По истечении момента интеграции заряд буферизуется и переносится на преобразователь. Каждый элемент детектора сохраняет индивидуальный заряд, полученный при воздействии фотона, причем сканирование его может быть выполнено отдельно. ПЗС-детекторы способны перекрывать широкий диапазон спектров и обеспечивают высокое разрешение прибора.

Регистрирующее устройство

В современных приборах для регистрации спектра используется электронное устройство, которое работает совместно с ЭВМ. На экране компьютера шкала разбита по длинам волн, которые подсвечены разными цветами, соответствующими определенному диапазону длины волны.

Особенности работы спектрометров

Основные этапы процесса атомно-эмиссионного анализа:

Атомно-эмиссионная спектрометрия сталкивается со следующими проблемами:

  • Интерпретация результатов элементного анализа осложняется тем, что при атомизации не все молекулы распадаются на атомы, поэтому пламя или плазма содержит различные частицы, излучающие свет с определенным набором длин. Для минимизации этого явления на точность измерения пользуются внутренним стандартом.
  • Количественный анализ невозможно провести по интенсивности спектрального сигнала, так как этот параметр зависит от множества факторов, учесть которые не представляется возможным. Решением этой задачи служит калибровка спектрометра по стандартным образцам с известной концентрацией элементов.

Атомно-эмиссионные спектрометры - эффективные приборы, которые позволяют получить высокоточные характеристики при проведении исследований. При этом анализ не занимает много времени, процессы автоматизированы и достигаются высокие показатели производительности.

Читайте также: