Сплавы цинка с другими металлами

Обновлено: 17.05.2024

Сплавы этой группы в основном применяют для производства отливок, получаемых литьем под давлением, реже - в кокили и песчаные формы. В зависимости от состава и назначения сплавы подразделяются на следующие подгруппы: системы Zn-Al (ЦА4, ЦА15, ЦП1); системы Zn-Cu (ЦМ1, ЦАМО, 2-4); системы Zn-Al-Cu (ЦАМ4-1, ЦАМ2-5, ЦАМ10-5 и т.п.); системы Zn-Al-Me (Mg, Мn, Ti, Si) (ЦП2, ЦПЗ и т.п.).

По стандарту TGL-0-1743, цинковые литейные сплавы для литья под давлением, приведенные для сравнения, имеют близкие к отечественным стандартам составы и свойства (верхняя таблица).

Свойства/сплав цинка ЦА4 ЦАМ4-1 ЦАМ4-3
Плотность при 25 °С, г/см 3 6,65 6,75 6,85
Температура, °С:
ликвидуса(солидуса)
386(380) 387(381) 390(378)
Температурный интервал литья под давлением, °С 393-427 393-427 393-427
Усадка при затвердевании с темепратуры 470 °С 1,17 1,17 1,17
Средний коэффициент линейного расширения (20-250 °С), % 27,4*10 -6 27,4*10 -6 27,7*10 -6
Удельная теплоемкость при 20 °С, Дж/(т*К) 420 420 420
Теплопроводность (70-140 °С), вт/(см*К) 113 110 105
Удельное электрическое сопротивление при 20 °С, Ом*м 63*10 -9 65*10 -9 68*10 -9
Температурный коэффициент электрического сопротивления (20-100 °С) 0,0038 0,0035 0,0033
Временное сопротивление, МПа 220-250 270-330 320-380
Относительное удлинение, % 3-6 2-5 2-3
Твердость по Бринеллю, МПа 600-800 700-900 850-1100

В зависимости от химического состава установлен ряд марок чушковых цинковых сплавов (табл. 15), применяемых для литья под давлением (ГОСТ 19424-74 с изменениями).

В табл. 16 приведены химический состав и области применения цинковых литейных сплавов.

Указанные сплавы имеют исключительную способность к литью под давлением. Из этих сплавов можно получать очень точные по размерам со сложными очертаниями контуров отливки со стенкой толщиной порядка 0,6 мм. Они также пригодны для отливки в кокиль и песчаные формы.

Цинковые сплавы в отличие от чистого нелегированного цинка имеют хорошие механические и технологические свойства и находят в связи с этим широкое промышленное применение. Характерным требованием к цинковым литейным сплавам для литья под давлением, в кокиль и песчаную форму является жесткое ограничение по предельно допустимому содержанию вредных примесей, особенно свинца, железа, кадмия и олова, вызывающих образование межкристаллитной коррозии в отливках.

Ниже рассмотрены основные сведения о структуре и свойствах сплавов на основе цинка.

Система цинк-алюминий

Согласно диаграмме состояния в системе Zn-Аl (рис. 10, а) образуются твердый раствор алюминия в цинке (а-фаза), содержащая при температуре эвтектики 382 °С 1,02% А1, твердый раствор цинка в алюминии (0-фаза), содержащая при 382 °С 17,8 %А1, и эвтектика (а + B), содержащая 95 % Zn и 5 % А1.

При медленном охлаждении до 275 °С происходит эвтектоидный распад B-твердого раствора (г.ц.к. решетка) на а-твердый раствор (гексагональная решетка) и B-твердый раствор (г.ц.к. решетка) с резким изменением растворимости цинка - твердый раствор цинка в алюминии, содержащий около 30% Zn; фаза B имеет состав 78 % Zn и 22 % А1.

На рис. 11, а показана микроструктура сплава Zn - 4% А1. Сплав состоит из первичных кристаллов (а-фаза) и эвтектики (а + B). При хранении отливок из сплавов системы Zn-Al даже при комнатной температуре происходит полиморфное превращение кубической гранецентрированной решетки B-фазы в гексагональную. Этот процесс часто называют старением. При старении происходит изменение линейных размеров отливок, а также изменение электропроводности и твердости.

Значительное влияние на скорость распада B-фазы оказывают добавки магния и лития. Небольшие добавки магния (до 0,1 %) не только затормаживают распад B-фазы, но и повышают прочность сплавов.

Свойства сплавов системы Zn-А1 улучшаются с повышением содержания алюминия. Так, при 4% А1 временное сопротивление возрастает почти в три раза и составляет около 300 МПа; удлинение возрастает при добавке алюминия с 5 до 30 %; ударная вязкость - от 500 до 4000 кДж/м 2 .

Легирование цинка алюминием улучшает также литейные свойства и способствует измельчению структуры сплавов. При добавке алюминия уменьшаются насыщение цинковых расплавов железом при плавке в стальных и чугунных тиглях, а также прилипаемость сплава к пресс-форме, повышаются температура рекристаллизации цинка и его стойкость против коррозии под напряжением.

Система цинк-медь

Сплавы этой группы выгодно отличаются от сплавов системы Zn-Al тем, что в них не наблюдается процесс старения, однако сплавы системы Zn-Сu имеют более низкие механические свойства. Характер взаимодействия цинка с медью определяется диаграммой состояния (см. рис. 10, б). При температуре перитектики 424 °С цинк растворяет около 2,6% Си с образованием твердого раствора меди в цинке (n-фаза). При охлаждении медноцинкового сплава, содержащего более 1,7% Си, из пересыщенного твердого раствора на основе цинка (n-фазы) выделяется е-фаза. Поэтому при содержании меди от 1,7 до 12,5% медноцинковые сплавы имеют две фазы (n и е ). Например, промышленный сплав Zn - 4 % Си находится в двухфазной области и имеет перитектическую структуру (рис. 11, б), образующуюся в результате процессов кристаллизации.

Отсутствие упрочнения цинк-медных сплавов, по-видимому, обусловлено структурным и размерным соответствием цинка и е -фазы, имеющих гексагональную решетку, а также их почти одинаковыми удельными объемами, вследствие чего при образовании е -фазы в отливках не возникают внутренние напряжения. Образование е -фазы и n-фазы связано с некоторым изменением объема.

Присадка меди повышает временное сопротивление, твердость, но одновременно понижает пластичность сплава. Следует иметь в виду, что механические свойства сплавов системы Zn-Cu все же ниже, чем сплавов системы Zn-Al. При увеличении содержания меди растут температура рекристаллизации, усталостная прочность и обрабатываемость резанием, а также антифрикционные свойства, но уменьшается межкристаллитная коррозия сплавов, ухудшается жидкотекучесть сплавов и заполняемость форм при литье.

Автор: Администрация

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Цинк и его сплавы: химический состав, физические свойства, применение

Цинк и его сплавы: химический состав, физические свойства, применение

Цинк — хрупкий голубовато-белый металл. В природе без примесей не встречается. В 1738 году Уильям Чемпион добыл чистые пары цинка с помощью конденсации. В периодической системе Менделеева находится под номером 30 и обозначается символом Zn.

Свойства цинка

Химические свойства цинка

Цинк — активный металл. При комнатной температуре тускнеет и покрывается слоем оксида цинка.

  • Вступает в реакцию со многими неметаллами: фосфором, серой, кислородом.
  • При повышении температуры взаимодействует с водой и сероводородом, выделяя водород.
  • При сплавлении с щелочами образует цинкаты — соли цинковой кислоты.
  • Реагирует с серной кислотой, образуя различные вещества в зависимости от концентрации кислоты.
  • При сильном нагревании вступает в реакции со многими газами: газообразным хлором, фтором, йодом.
  • Не реагирует с азотом, углеродом и водородом.

Физические свойства цинка

Цинк — твердый металл, но становится пластичным при 100–150 °C. При температуре выше 210 °С может деформироваться. Температура плавления — очень низкая для металлов. Несмотря на это, цинк имеет хорошую электропроводность.

  • Плотность — 7,133 г/см³.
  • Теплопроводность — 116 Вт/(м·К).
  • Температура плавления цинка — 419,6 °C.
  • Температура кипения — 906,2 °C.
  • Удельная теплота испарения — 114,8 кДж/моль.
  • Удельная теплота плавления — 7,28 кДж/моль.
  • Удельная магнитная восприимчивость — 0,175·10-6.
  • Предел прочности при растяжении — 200–250 Мн/м 2 .

Подробный химический состав цинка различных марок указан в таблице ниже.

Обозначение марок Цинк, не менее Примесь, не более
свинец кадмий железо медь олово мышьяк алюминий всего
ЦВ00 99,997 0,00001 0,002 0,00001 0,00001 0,00001 0,0005 0,00001 0,003
ЦВ0 99,995 0,003 0,002 0,002 0,001 0,001 0,0005 0,005 0,005
ЦВ 99,99 0,005* 0,002 0,003 0,001 0,001 0,0005 0,005 0,01
Ц0А 99,98 0,01 0,003 0,003 0,001 0,001 0,0005 0,005 0,02
Ц0 99,975 0,013 0,004 0,005 0,001 0,001 0,0005 0,005 0,025
Ц1 99,95 0,02 0,01 0,01 0,002 0,001 0,0005 0,005 0,05
Ц2 98,7 1,0 0,2 0,05 0,005 0,002 0,01 0,010** 1,3
Ц3 97,5 2,0 0,2 0,1 0,05 0,005 0,01 - 2,5
* В цинке, применяемом для производства сплава марки ЦАМ4-1о, массовая доля свинца должна быть не более 0,004%. ** В цинке, применяемом для проката, массовая доля алюминия должна быть не более 0,005%.

Содержание примесей в цинке зависит от способа производства и качества сырья.

В России основной процент цинка получают гидрометаллургическим способом — металл восстанавливают из солей в растворах. Такой способ позволяет получить наиболее чистый металл. Но часть цинка обрабатывают при высоких температурах. Такой метод называют пирометаллургическим.

Свинец — особая примесь в цинке, так как основная его часть оседает из-за нерастворимых анодов, содержащихся в металле. Катодный цинк, помимо всех указанных примесей, состоит из хлора и фтора.

Как примеси изменяют свойства цинка

Производители ограничивают содержание кадмия, олова и свинца в литейных сплавах цинка, чтобы подавить межкристаллитную коррозию.

Олово — вредная примесь. Металл не растворяется и выделяется из расплава — способствует ломкости цинковых отливок. Кадмий напротив — растворяется в цинке и снижает его пластичность в горячем состоянии. Свинец увеличивает растворимость металла в кислотной среде.

Железо повышает твердость цинка, но снижает его прочность. Вместе с тем оно усложняет процесс заполнения форм при литье.

Медь увеличивает твердость цинка, но уменьшает его пластичность и стойкость при коррозии. Содержание меди также мешает рекристаллизации цинка.

Наиболее вредная примесь — мышьяк. Даже при небольшом ее количестве металл становится хрупким и менее пластичным.

Чтобы избежать растрескивания кромок при горячей прокатке цинка, содержание сурьмы не должна быть выше 0,01%. В горячем состоянии она увеличивает твердость цинка, лишая его хорошей пластичности.

Сплавы цинка

Сплавы на цинковой основе с добавлением меди, магния и алюминия имеют низкую температуру плавления и обладают хорошей текучестью. Они легко поддаются обработке, свариванию и паянию.

Латунь

Различают латуни двухкомпонентные и многокомпонентные.

Двухкомпонентная латунь — сплав цинка с высоким содержанием меди. Существует желтая латунь с медью в количестве 67%, золотистая медь или томпак — 75%, и зеленая — 60%. Такие сплавы могут деформироваться при температуре 300 °C.

Многокомпонентные латуни, помимо 2-х основных металлов, состоят из других добавок: никеля, железа, свинца или марганца. Каждый из элементов влияет на свойства сплава.

ЦАМ — семейство цинковых сплавов. В их состав входят магний, алюминий и медь. Такие сплавы цинка используются в литейном производстве. В них содержится алюминий в количестве 4%.

Основная область применения сплавов ЦАМ — литье цинка под давлением. Сплавы этого семейства обладают низкой температурой плавления и хорошими литейными свойствами. Их высокопрочность позволяет производить прочные и сложные детали.

Вирениум

Сплав состоит из цинка (24,5%), меди (70%), никеля (5,5%).

Производств цинка

Добыча металла

Цинк как самородный металл в природе не встречается. Добывается из полиметаллических руд, содержащих 1–4% металла в виде сульфида, а также меди, свинца, золота, серебра, висмута и кадмия. Руды обогащаются селективной флотацией и получаются цинковые концентраты (50–60% Zn).

Цинковая руда

Концентраты цинка обжигают в печах. Сульфид цинка переводится в оксид ZnO. При этом выделяется сернистый газ SO2, который используется в производстве серной кислоты.

Получение металла

Существуют два способа получения чистого цинка из оксида ZnO.

Самый древний метод — дистилляционный. Обожженный концентрированный состав подвергают термообработке, чтобы придать ему зернистость и газопроницаемость.

Затем концентрат восстанавливают коксом или углем при температуре 1200–1300 °C. В процессе образуются пары металла, которые конденсируют и разливают в изложницы. Жидкий металл отстаивают от железа и свинца при температуре 500 °C. Так достигается цинк чистотой 98,7%.

Иногда используется сложная и дорогая обработка цинка ректификацией — разделением смесей за счет обмена теплом между паром и жидкостью. Такая чистка позволяет получить металл чистотой 99,995% и извлечь кадмий.

Второй метод производства цинка — электролитический. Обожженный концентрат обрабатывается серной кислотой. Готовый сульфатный раствор очищается от примесей, после чего подвергается электролизу в свинцовых ваннах. Цинк дает осадок на алюминиевых катодах. Полученный металл удаляют с ванн и плавят в индукционных печах. После этого получается электролитный цинк чистотой 99,95%.

Литье металла

Горячий цинк — жидкий и текучий металл. Благодаря таким свойствам он легко заполняется в литейные формы.

Примеси влияют на величину натяжения поверхности цинка. Технологические свойства металла можно улучшить, добавив небольшое количество лития, магния, олова, кальция, свинца или висмута.

Литье металла

Чем выше температура перегрева цинка, тем лучше он заполняет формы. При литье металла в чугунные изложницы его объем уменьшается на 1,6%. Это затрудняет получение крупных и длинных цинковых отливок.

Применение цинка

Для защиты металлов от коррозии

Чистый цинк используется для защиты металлов от коррозии. Основу покрывают тонкой пленкой. Этот процесс называется металлизацией.

В автомобильной отрасли

Сплавы на цинковой основе используют для оформления декора автомобильного салона, в производстве ручек дверей, замков, зеркал и корпусов стеклоочистителей.

В автомобильные покрышки добавляют окись цинка, которая повышает качество резины.

В батарейках, аккумуляторах и других химических источниках тока цинк используется как материал для отрицательного электрода. В производстве электромобилей применяются цинк-воздушные аккумуляторы, которые обладают высокой удельной энергоемкостью.

В производстве ювелирных украшений

Ювелиры добавляют цинк в сплавы на основе золота. В итоге они легко поддаются ковке и становятся пластичными — прочно соединяют мелкие детали изделия между собой.

Металл также осветляет ювелирные изделия, поэтому его часто используют в изготовлении белого золота.

В медицине

Окись цинка применяется в медицине как антисептическое средство. Окись добавляют в мази и другие составы для заживления ран.

Благодаря своим свойствам, цинк широко применяется в различных областях промышленности. Металл пользуется спросом из-за относительно низкой цены и хороших физических свойств.

Цветные металлы и их сплавы

Цветные металлы и их сплавы

Цветная металлургия занимается добычей руд цветных металлов, а также обогащением и выплавкой чистых металлов и их сплавов. Цветные металлы имеют множество ценных свойств: малую плотность (магний, алюминий), высокую теплопроводность (медь), устойчивость к коррозии (титан) и др. Условно они делятся на тяжелые, легкие, благородные и редкие.

Группы металлов

К тяжелым металлам относятся вещества, которые отличаются высокой плотностью. Это кобальт, хром, медь, свинец и др. Некоторые из них (свинец, цинк, медь) применяют в чистом меде, но обычно используют в качестве легирующих элементов.

Плотность легких металлов — менее 5 г/см3. В этой группе относятся алюминий, натрий, калий, литий и др. Их используют как раскислители при изготовлении чистых металлов и сплавов, а также применяют в пиротехнике, медицине, фототехнике и других областях.

Благородные металлы отличаются высокой устойчивостью к коррозии. В данную группу входят платина, золото, серебро, осмий, палладий, родий, иридий и рутений. Они применяются в медицине, электротехнике, приборостроении, ювелирном деле.

Редкие металлы объединены в отдельную группу, так как имеют особые свойства, не характерные для других металлов. Это уран, вольфрам, селен, молибден и др.

Также выделяется группа широко применяемых металлов. В нее входят титан, алюминий, медь, олово, магний и свинец.

Сплавы на основе цветных металлов бывают литейные и деформируемые. Они различаются технологией создания заготовок: из литейных производят детали с помощью литья в металлические или песчаные формы, а из деформируемых делают листы, фасонные профили, проволоку и другие элементы. В этом случае используются методы прессования, ковки и штамповки. Литейные сплавы относятся к металлургии тяжелых металлов, деформируемые — к металлургии легких металлов.

Алюминий и его сплавы


Чушки из сплава алюминия

Алюминий — цветной металл, который имеет серебристо-белый оттенок и плавится при температуре 650°С. В периодической системе ему соответствует символ Al. Этот элемент занимает третье место по распространенности среди всех пород в земной коре (на первом месте — кислород, на втором — кремний). В атмосферных условиях на поверхности алюминия образуется оксидная пленка, препятствующая появлению коррозии.

Важные свойства алюминия:

  • Низкая плотность — всего 2,7г/см3 (например, у меди — 8,94г/см3).
  • Высокая электрическая проводимость (37*106 См/м) и теплопроводность (203,5 Вт/(м·К)).
  • Низкая прочность в чистом виде — 50 МПа.
  • Структура кристаллической решетки — кубическая гранецентрированая.

Металл легко обрабатывается давлением. Находит широкое применение в электропромышленности: из алюминия изготавливают проводники электрического тока. При производстве стали его используют для раскисления. Из алюминия также делают посуду, однако она не подходит для приготовления солений и хранения кисломолочных продуктов — элемент неустойчив в щелочной и кислой среде. Некоторые стальные детали покрывают алюминием (процесс алитирования), чтобы повысить их жаростойкость. Из-за невысокой прочности алюминий практически не применяется в чистом виде.

При маркировке алюминия используется буква А в сочетании с числом, которое указывает на содержание металла. Например, марка A99 содержит 99,95% алюминия, а марка А99 — 99,99%. Существует также марка особой чистоты — А999, в которой 99,999% алюминия.

Деформируемые сплавы алюминия

Деформируемые алюминиевые сплавы

Деформируемые алюминиевые сплавы делятся на упрочняемые и неупрочняемые.

Упрочняемые деформируемые сплавы алюминия — это дуралюмины (система А-Сu-Mg) и высокопрочные сплавы (Аl-Сu-Mg-Zn). Высокие механические свойства и небольшой удельный вес позволяют широко применять эти сплавы в области машиностроения, особенно — в изготовлении деталей для самолетов.

Основными легирующими элементами для дуралюминов служат магний и медь. Эти сплавы маркируются буквой Д с числом. Из Д1 делают лопасти винтов, Д16 используется для лонжеронов, шпангоутов, обшивки самолетов, а Д 17 — для крепежных заклепок.

Высокопрочные сплавы, помимо алюминия, меди и магния, содержат цинк. Обозначаются буквой В и числом, применяются для изготовления деталей сложной конфигурации, лопастей вертолетов, высоконагруженных конструкций.

Неупрочняемые деформируемые алюминиевые сплавы — это сплавы алюминия с марганцем (маркировка — АМц1) и с магнием (AМг2 и АМг3). Они хорошо обрабатываются сваркой, вытяжкой, прокаткой, горячей и холодной штамповкой. Отличаются высокой пластичностью, но при этом не очень прочные. Они выпускаются преимущественно в виде листов, которые применяются для изготовления изделий сложной формы (заклепки, рамы и др.).

Литейные сплавы на основе алюминия

Наиболее широкое применение получили литейные сплавы алюминия и кремния, которые называются силуминами. Они содержат более 4,5% кремния и обозначаются буквами АК с номером марки. Силумины сочетают малый удельный вес с высокими механическими и литейными свойствами. Они применяются для сложного литья авто-, мото- и авиадеталей, а также для производства некоторых видов бытовой техники — мясорубок, теплообменников, санитарно-технических арматур и др.

Сплавы на основе меди


Сплавы на основе меди

Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.

Важные свойства металла:

  • Температура плавления — 1083°С.
  • Структура кристаллической решетки — кубическая гранецентрированая.
  • Плотность — 8,94 г/см3.

Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.

При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.

Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.

Бронзы

Бронзовый сплав

Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.

Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.

Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.

Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:

  • Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
  • Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
  • Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
  • Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.

Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.

Латуни


Прутки из латуни и сплавов /><br /> <br /></p>
<p>Латунями называют сплавы меди и цинка с добавлением других металлов — алюминия, свинца, никеля, марганца, кремния и др. В простых латунях содержится только медь и цинк, а многокомпонентные сплавы включают от 1% до 8% различных легирующих элементов, которые добавляют для улучшения различных свойств.</p>
<ul>  <li>Марганец, никель и алюминий повышают устойчивость сплава к коррозии и его механические свойства.</li>  <li>Благодаря добавкам кремния сплав становится более текучим в жидком состоянии и легче поддается сварке.</li>  <li>Свинец упрощает обработку резанием.</li></ul>
<p>Процентное содержание цинка в любой латуни не превышает 50 %. Эти сплавы стоят дешевле, чем чистая медь, а благодаря добавлению цинка и легирующих элементов, они обладает большей устойчивостью к коррозии, прочностью и вязкостью, а также характеризуются высокими литейными свойствами. Латуни используют для изготовления деталей методами прокатки, вытяжки, штамповки и др.</p>
<p>При маркировке простой латуни используется буква Л и число, обозначающее содержание меди. Например, марка Л96 содержит 96% меди. Для многокомпонентных латуней используется сложная формула: буква Л, затем первые буквы основных металлов, цифра, обозначающая содержание меди, а затем состав других элементов по порядку. Например, латунь ЛАМш77-2–0,05 содержит 77% меди, 2% алюминия, 0,05% мышьяка, остальное — цинк.</p>
<h2>Магний и его сплавы</h2>
<p><br /> <img loading=

Магний — цветной металл, который имеет серебристый оттенок и обозначается символом Mg в периодической системе.

Важные свойства магния:

  • Температура плавления — 650°С.
  • Плотность — 1,74 г/см3.
  • Твердость — 30-40 НВ.
  • Относительное удлинение — 6-17%.
  • Временное сопротивление — 100-190 МПа.

Металл обладает высокой химической активностью, в атмосферных условиях неустойчив к образованию коррозии. Он хорошо режется, воспринимает ударные нагрузки и гасит вибрации. Так как магний имеет низкие механические свойства, он практически не применяется в конструкционных целях, зато используется в пиротехнике, химической промышленности и металлургии. Он часто выступает в качестве восстановителя, легирующего элемента и раскислителя при изготовлении сплавов.

При маркировке используются буквы Мг с цифрами, которые обозначают процентное содержание магния. Например, в марке Мг96 содержится 99,96% магния, а в Мг90 — 99,9 %.

Сплавы на основе магния характеризуются высокой удельной прочность (предел прочности — до 400 МПа). Они хорошо режутся, шлифуются, полируются, куются, прессуются, прокатываются. Из недостатков магниевых сплавов — низкая устойчивость к коррозии, плохие литейные свойства, склонность воспламеняться при изготовлении.

Деформируемые сплавы магния

Наиболее распространены три группы сплавов на основе магния.

Сплавы магния, легированные марганцем

Содержат до 2,5% марганца, не упрочняются термической обработкой. У них хорошая коррозионная стойкость. Так как эти сплавы легко свариваются, они применяются для сварных деталей несложной конфигурации, а также для деталей арматуры, масляных и бензиновых систем, которые не испытывают больших нагрузок. Среди данной группы — сплавы МА1 и МА8.

Сплавы системы Mg-Al-Zn-Mn

В состав этих сплавов, помимо магния и марганца, входят алюминий и цинк. Они заметно повышают прочность и пластичность, благодаря чему сплавы подходят для изготовления штампованных и кованых деталей сложных форм. К этой группе относятся марки МА2-1 и МА5.

Сплавы системы Mg-Zn

Сплавы на основе магния и цинка дополнительно легируются кадмием, цирконием и редкоземельными металлами. Это высокопрочные магниевые сплавы, которые применяются для деталей, испытывающих высокие нагрузки (в самолетах, автомобилях, станках и др.). К данной группе относятся сплавы марок МА14, МА15, МА19.

Литейные сплавы магния

Самая распространенная группа литейных магниевых сплавов относится к системе Mg-Al-Zn. Эти сплавы практически не поглощают тепловые нейтроны, поэтому широко применяются в атомной технике. Из них также делают детали самолетов, ракет, автомобилей (двери кабин, корпуса приборов, топливные баки и др.). Сплавы магния, цинка и алюминия используют в приборостроении и в изготовлении кожухов для электронной аппаратуры. К данной группе относятся марки МЛ5 и МЛ6.

Высокопрочные литейные магниевые сплавы отличаются лучшими механическими и технологическими свойствами. Они применяются в авиации для изготовления нагруженных деталей. К данной группе относятся сплавы МЛ12 (магний, цинк и цирконий), МЛ8 (магний, цинк, цирконий и кадмий), МЛ9 (магний, цирконий, неодим), МЛ10 (магний, цинк, цирконий, неодим).

Цинк и его сплавы


Цинк и его сплавы

Цинк — цветной металл серо-голубоватого оттенка. В системе Д. И. Менделеева обозначается символом Zn. Он обладает высокой вязкостью, пластичностью и коррозионной стойкостью. Важные свойства металла:

  • Небольшая температура плавления — 419 °С.
  • Высокая плотность — 7,1 г/см3.
  • Низкая прочность — 150 МПа.

В чистом виде цинк используется для оцинкования стали с целью защиты от коррозии. Применяется в полиграфии, типографии и гальванике. Его часто добавляют в сплавы, преимущественно в медные.

Существуют следующие марки цинка: ЦВ00, ЦВ0, ЦВ, Ц0А, Ц0, Ц1, Ц2 и Ц3. ЦВ00 — самая чистая марка с содержанием цинка в 99,997%. Самый низкий процент чистого вещества в марке Ц3 — 97,5%.

Деформируемые цинковые сплавы

Деформируемые сплавы цинка используются для производства деталей методами вытяжки, прессования и прокатки. Они обрабатываются в горячем состоянии при температуре от 200 до 300 ?С. В качестве легирующих элементов выступают медь (до 5%), алюминий (до 15%) и магний (до 0,05%).

Деформируемые цинковые сплавы характеризуются высокими механическими свойствами, благодаря которым часто используются в качестве заменителей латуней. Они обладают высокой прочностью при хорошей пластичности. Сплавы цинка, алюминия и меди наиболее распространены, так как они имеют самые высокие механические свойства.

Литейные цинковые сплавы

В литейных цинковых сплавах легирующими элементами также выступают медь, алюминий и магний. Сплавы делятся на 4 группы:

  • Для литья под давлением.
  • Антифрикционные.
  • Для центробежного литья.
  • Для литья в кокиль.

Слитки легко полируются и принимают гальванические покрытия. Литейные цинковые сплавы имеют высокую текучесть в жидком состоянии и образуют плотные отливки в застывшем виде.

Литейные сплавы получили широкое применение в автомобильной промышленности: из них делают корпуса насосов, карбюраторов, спидометров, радиаторных решеток. Сплавы также используются для производства некоторых видов бытовой техники, арматуры, деталей приборов.

В России цветная металлургия — одна из самых конкурентоспособных отраслей промышленности. Многие отечественные компании являются мировыми лидерами в никелевой, титановой, алюминиевой подотраслях. Эти достижения стали возможными благодаря крупным инвестициям в цветную металлургию и применению инновационных технологий.

Цинковый сплав: особые свойства и основные разновидности

Благодаря археологическим раскопкам было обнаружено, что изделия из цинка стали применять примерно с 7 века нашей эры. Этот металл был очень распространен за счет ряда полезных свойств. Цинковый сплав может изготавливаться из различных веществ, от чего зависят его характеристики. Такой материал применяется в различных отраслях, в том числе и в бижутерии.

Свойства и характеристики цинка и цинковых сплавов

Характеристики цинковых сплавов во многом обусловлены свойствами цинка. Это металл голубоватого цвета, не встречается в чистом виде, обычно содержит примеси, из-за которых меняются его свойства. Чистый металл получается в результате нескольких реакций.

Цинк обладает следующими химическими свойствами:

  • При нагревании реагирует с сероводородом и водой с выделением водорода.
  • Не реагирует с азотом и углеродом.
  • Со щелочами реагирует с образованием солей цинковой кислоты – цинкатов.

Цинк – это очень прочный материал. Его пластичность увеличивается при нагревании. Если его нагреть больше чем на 210 градусов, от этого может поменяться его форма. При низких температурах вещество плавится.

Цинковый сплав

Как выглядит цинковый сплав

Количество примесей зависит от методов добычи металла, особенностей его обработки и пороты цинка. Чаще всего можно встретить примеси в виде никеля, хлора, фтора и свинца. Обычно при создании цинковых сплавов используют чистый цинк, так как наличие примесей ухудшает качество материала:

  • олово делает сплав слишком хрупким и ломким;
  • при присутствии кадмия снижается пластичность материала;
  • свинец повышает межкристальную коррозию материала, способствует его растворению в кислотах;
  • наличие железа повышает твердость сплавов, но снижают их пластичность;
  • из-за мышьяка сплав становится хрупким и непластичным.

Поэтому для улучшения характеристик цинковых сплавов цинк сначала очищают от примесей. А в дальнейшем используют чистый металл, который сплавляют с разными компонентами.

Плюсы и минусы

Большинство цинковых сплавов имеют следующие преимущества:

  • они очень прочные, не повреждаются при механических воздействиях;
  • устойчивы к коррозии;
  • имеют хорошие литейные качества, могут использоваться для создания даже мелких элементов;
  • со временем практически не подвергаются старению.

Однако примеси даже в незначительном количестве ухудшают характеристики сплава. Приводят к снижению жидкоплавкости, к набуханию, способствуют появлению трещин. Поэтому цинковые сплавы должны создаваться с соблюдением всех технологий, а количество примесей в них не должно превышать 0,005%.

Многие спрашивают, темнеют или нет цинковые сплавы? В этом еще один недостаток материала. Цинковые сплавы могут темнеть с течением времени. Притом потемнения обычно распространяются на всю поверхность материала. Это обуславливается образованием оксидной пленки на поверхности материала. Она формируется при комнатной температуре после контакта с воздухом или водой. Поэтому во избежание этого требуется нанесение гальванических покрытий.

Разновидности цинковых сплавов

Цинк могут сплавлять с различными веществами, отчего будут зависеть свойства полученного материала. Сплавление чистого цинка с медью, алюминием и оловом может улучшить его характеристики. Полученный состав будет более качественным, нежели чистое вещество.

Медь и цинк

Медно-цинковый сплав называется латунью. Такой сплав известен уже очень давно. Сначала его изготавливали посредством сплавления цинковой руды и меди. И только в 18 веке впервые был создан сплав из меди и металлического цинка.

Притом оба компонента могут брать в разных пропорциях. В результате этого отличают несколько разновидностей латуни:

  • Зеленая. Содержит 60% меди и 40% цинка.
  • Золотистая. В ее состав входит 75% меди и 25% цинка.
  • Желтая. Содержит 67% меди и 33% цинка.

Латунь отлично поддается обработке давлением. Характеризуется высокими механическими свойствами, неплохой коррозионной устойчивостью. Но на воздухе, в соленой воде и углекислых растворах латунь неустойчива, быстро покрывается темной кислородной пленкой.

Внешне латунь выглядит красивее меди, характеризуется лучшей коррозионной стойкостью. Но с ростом температуры интенсивность коррозии также увеличивается. Ее могут спровоцировать повышенная влажность воздуха, наличие в нем аммиака или сернистого газа. Поэтому для предотвращения коррозии материал подвергают низкотемпературному обжигу.

Латуни не теряют своих свойств при понижении температуры. Это позволяет использовать их, как конструкционный материал. Но при высоких температурах (более 200 градусов) могут наблюдаться явления хрупкости латуни.

Олово и цинк

Сплав цинка с оловом характеризуется высокими защитными свойствами. Ржавеет или нет цинковый сплав с оловом? Такой материал получается очень устойчивым к коррозии. Самыми лучшими антикоррозионными свойствами обладает сплав с 20-25% цинка и 75-80% олова. Поэтому его можно применять в условиях высокой влажности, со временем его внешний вид не ухудшится. Чем выше содержание цинка в сплаве, тем ниже его коррозионная устойчивость. Если сплав содержит 50% и более цинка, его корозионная стойкость приближена к стойкости чистого цинка.

Сплав олова с цинком обладает следующими преимуществами:

  • Он очень пластичен, хорошо подается пайке.
  • Полировка осадка сохраняется на протяжении долгого времени.
  • Имеет высокую коррозионную стойкость.

За счет наличия вышеперечисленных свойств сплав олова и цинка обычно применяют в электро- и радиопромышленности. Изделия из него получаются очень прочными и устойчивыми к внешним воздействиям.

Алюминий и цинк

Чаще всего создается сплав из цинка, алюминия и меди, который называют ЦАМ. Также в его состав входит небольшое количество магния.

Такой сплав имеет небольшую температуру плавления, хорошо подается литью. Изделия из него получаются очень прочными и устойчивыми к окружающей среде.

Есть несколько качественных сплавов цинка с алюминием, которые обозначаются через ЦАМ 4-1, ЦАМ 4-3, ЦАМ 10-5 и другие. Они содержат примерно одинаковое количество алюминия, но разное – магния, никеля и меди. Стоимость сплава алюминия с цинком ниже, чем олова с цинком. Поэтому изделия из него стоят в разы дешевле.

Сфера применения

Цинковые сплавы получили широкое применение. Их используют в таких отраслях:

  • В автомобилестроении. Из цинковых сплавов изготавливают дверные ручки, зеркала, создают детали для декора салона автомобиля.
  • При создании ювелирных украшений. Цинк сплавляют с золотом, за счет чего повышается его пластичность и ковкость. Это позволяет легко соединить мелкие детали друг с другом.
  • В медицине. Цинковые сплавы используются для изготовления медицинской мебели и приборов. А окись цинка является хорошим антисептическим средством, поэтому его добавляют в различные мази и лекарства.

Таким образом, цинк и его соединения используются во многих областях. Но наибольшее применение вещество получило в автомобилестроении.

Виды цинковых сплавов по назначению

По назначению сплавы цинка могут быть нескольких видов:

  • Деформируемые.15% – алюминий, 5%- медь, более 1% – магний. Изготавливается в виде листов или прутьев. По свойствам схожи с латунью.
  • Литейные. Их изготавливают путем добавления в цинк 3-4% меди и алюминия, а также 0,05% магния. Имеют хорошую текучесть. Поэтому их изготавливают посредством литья под давлением или литья в формы.
  • Антифрикционные. В их состав входит 10% алюминия, 5% меди и 0,1% магния. Изготавливаются посредством литья под давлением. Имеют низкий коэффициент трения и используются в автомобилестроении.
  • Припои. Их используют для пайки алюминиевых деталей. Обычно включают в себя примеси – металлы. От этого повышается их прочность.
  • Типографические. В их состав входит 7,5% алюминия, 2% магния и примерно 4% меди. Такие сплавы очень прочные, отлично льются в формы.
  • Протекторные. В их состав входит не более 1% алюминия и мизерное количество кремния и магния. Устойчивы к коррозии даже во влажной среде. Поэтому такие сплавы применяются в качестве защитных материалов.

Цинковые сплавы хорошо себя зарекомендовали и получили широкое распространение. Но при их создании должны точно учитываться пропорции, иначе будет получен материал плохого качества.

Цинковый сплав в бижутерии

Внешне цинковые сплавы напоминают благородные металлы. Поэтому их используют в бижутерии для создания недорогих украшений. Бижутерия из цинкового сплава выглядит дорого, но легко создается.

Вреден ли цинковый сплав? На самом деле, он никак не влияет на организм человека. Но, тем не менее, лучше приобретать бижутерию хорошего качества. Обычно для создания украшений используется особый сплав, который так и называется – бижутерный. Чаще всего применяется латунь или сплав с алюминием. Внешне такие изделия напоминают золотые и серебряные.

Вреден ли цинковый сплав в бижутерии? Нет, поэтому изделия из него можно смело покупать. Ведь если бы он негативно воздействовал, изготовление украшений из него было бы запрещенным.

Таким образом, цинк и цинковые сплавы широко распространены. Их используют в медицине, автомобилестроении и даже в бижутерии. Это качественные и устойчивые материалы, которые практически не меняются под воздействием условий окружающей среды.

Цинковый сплав

Судя по археологическим находкам, сделанным на территории Индии, Китая и Греции, человечество применяет цинк для производства различных изделий примерно с 7 века. Инструменты, украшения и даже оружие изготавливались с использованием цинковых сплавов, но отделять цинк от примесей люди научились только 300 лет назад. В металлической руде содержание цинка менее 5%.

цинковый сплав в чушках

Опасные примеси цинка

Отделять цинк от примесей необходимо не только из-за их влияния на рабочие качества металла, но и потому что многие из них вредны для человека.

Чаще всего цинксодержащие руды содержат примеси следующих металлов:

  • олово,
  • кадмий,
  • свинец,
  • железо,
  • медь,
  • мышьяк,
  • сурьма.

Наличие большинства этих примесей делает цинковые отливки более прочными, но отрицательно сказывается на их пластичности, устойчивости к воздействию коррозии и делает их более хрупкими и ломкими.

  • Присутствие олова делает сплав слишком ломким;
  • Наличие кадмия уменьшает пластичность;
  • Свинец способствует растворению в кислотах;
  • Вкрапления железа делают сплав тверже, но делают сплав менее прочными и затрудняют процесс плавления;
  • Присутствие меди также делает сплав тверже, но наоборот улучшает качество литья, правда снижает пластичность и устойчивость к коррозионным воздействиям;
  • Наличие мышьяка делает сплав более хрупким и менее пластичным;
  • При нагревании цинкового сплава с примесью сурьмы происходит растрескивание кромок отливки, а также уменьшается пластичность.

Виды цинковых сплавов и их свойства

Сплавы с различными металлами: медью, магнием, алюминием, никелем легко паяются и свариваются, имеют более низкую температуру плавления и лучше льются в формы. Каждый из этих металлов по-своему влияет на свойства сплава и применяется в разных отраслях промышленности.

сплав с цинком

По своему назначению цинковые сплавы делятся на следующие виды:

  1. Деформируемые. Примерно на 15% состоят из алюминия, на 5% из меди и менее 1% магния, по своим свойствам напоминают латунь, изготавливаются при помощи наполнительного или полунепрерывного литья с последующим получением листового или пруткового материала;
  2. Литейные. Получаются добавлением в метал не более 3,5-4% меди и алюминия и малого количества (примерно 0,05%) магния, отличаются хорошей текучестью и не взаимодействуют с материалом литейной формы, изготавливают при помощи литья под давлением или литья в формы;
  3. Антифрикционные. Содержат более 10% алюминия, около 5% меди и менее 0,1% магния, нашли широкое применение в изготовлении подшипников, благодаря низкому коэффициенту трения, изготавливают при помощи литья под давлением;
  4. Припои. Применяются для пайки алюминиевых. В зависимости от марки могут включать в себя алюминий, медь, кадмий, серебро свинец и другие металлы, отличаются высокой прочностью и пластичностью, но подвержены воздействию коррозии;
  5. Типографские. Содержат до 7,5 % алюминия, чуть менее 2 % магния и до 4,5 % меди, отличаются прочностью и хорошо льются в формы, применяются для отливки типографских шрифтов;
  6. Протекторные. Содержат менее 1% алюминия и незначительные количества магния или кремния, хорошо сопротивляются коррозии во влажной среде, применяются в качестве защитных металлов во многих отраслях промышленности.

Среди распространенных и известных сплавов цинка:

  1. Латунь. Сплав цинка с медью. Медь - основной компонент. В зависимости от содержания меди различают зеленую, желтую и золотистую латунь. При температуре более 300°C латунь может деформироваться. Так же существуют многокомпонентные латуни, они получаются добавлением в сплав ряда других металлов.
  2. ЦАМ. Сплав цинка, алюминия и меди с небольшим количеством магния. Они обладают низкой температурой плавления, хорошо отливается и из них получаются более прочные изделия. Применяемая в промышленности группа медно-цинковых сплавов с добавлением магния и алюминия обозначается аббревиатурой ЦАМ. Плавятся они при относительно невысокой температуре, а следовательно хорошо льются в формы. Изделия, произведенные из сплавов группы ЦАМ, получаются намного прочнее.
  3. Вирениум - сплав меди и цинка с небольшим добавлением никеля.

Влияние различных металлов на свойства сплава

Медно цинковые сплавы находят все большее применение в изготовлении различных промышленных изделий, а присутствие таких металлов как магний, алюминий, никель улучшают их рабочие качества.

Они легче поддаются обработке при помощи пайки и сварки, имеют более низкую температуру плавления и лучше льются в формы. Каждый из этих металлов по-своему влияет на свойства и применяется в разных отраслях промышленности.

Цинковый сплав в бижутерии вреден ли

Своим внешним видом такие ювелирные изделия напоминают благородные металлы, поэтому широкое применение они нашли в ювелирной промышленности. Их часто применяют для изготовления бижутерии. Украшения, сделанные из цинковых сплавов, смотрятся достаточно дорого, при этом, благодаря легкости обработки, просты в изготовлении.

бижутерия

Существует особый цинковый сплав, применяемый только для изготовления украшений, его так и называют «бижутерным», в паспорте на украшения даже ставится отметка «цинковый сплав для бижутерии».

Наиболее часто в производстве бижутерии используется латунь или томпак (золотистая латунь), он меньше подвержен воздействию коррозии, поэтому используется в процессе изготовления более дорогих украшений. Украшения из сплава меди и цинка с добавлением алюминия внешне очень похожи на серебряные.

Для изготовления украшений применяется цинк очищенный от никеля, свинца и других, опасных для человека металлов. В паспорте на такие ювелирные изделия обязательно ставится отметка об отсутствии вредных примесей в сплаве, из которого они изготовлены. Поэтому можно говорить об абсолютной безопасности таких украшений для носящих их людей.

Цинковый сплав ржавеет или нет

Для предотвращения возникновения ржавчины бижутерию с содержанием цинка обрабатывают специальным защитным составом, и такие украшения могут прослужить достаточно долго.

Темнеет или нет

Правда цинк, взаимодействуя с атмосферным кислородом и различными бытовыми жидкостями, включая воду, подвержен окислению даже при нормальных температурах, что способствует потемнению изделий из цинкового сплава. Такие украшения могут оставлять следы на одежде и коже, поэтому за ними нужен дополнительный уход.

Так же для предотвращения окисления на изделия из цинка некоторые производители гальваническим методом наносят напыление золота или серебра, но такая обработка значительно увеличивает стоимость украшений.

Месторождения цинка достаточно распространены на земле, и несмотря на его малое содержание в руде и сложность его очищения от примесей, получаемый из нее цинк и его сплавы с другими металлами находят все большее применение в различных отраслях промышленности.

Читайте также: