Сплавы металлов получают путем

Обновлено: 01.05.2024

Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.

Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).

Цветная металлургия — производство остальных металлов и их сплавов.

Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.

Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора.

Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.

Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.

Основные стадии металлургических процессов:

  1. Обогащение природной руды (очистка, удаление примесей)
  2. Получение металла или его сплава.
  3. Механическая обработка металла

1. Нахождение металлов в природе

Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.

2. Получение активных металлов

Активные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами.

Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях.

Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl = 2Na + Cl2

Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С:

KCl + Na = K↑ + NaCl

Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl = 2Cs + CaCl2

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C:

4BaO+ 2Al = 3Ba + Ba(AlO2)2

Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6:

3. Получение малоактивных и неактивных металлов

Металлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают.

3.1. Обжиг сульфидов

При обжиге сульфидов металлов образуются оксиды:

2ZnS + 3O2 → 2ZnO + 2SO2

Металлы получают дальнейшим восстановлением оксидов.

3.2. Восстановление металлов углем

Чистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо получают восстановлением из оксида углем:

2Fe2O3 + 6C → 2Fe + 6CO

ZnO + C → Zn + CO

Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов:

CaO + 3C → CaC2 + CO

3.3. Восстановление металлов угарным газом

Оксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо можно получить восстановлением из оксида с помощью угарного газа:

3.4. Восстановление металлов более активными металлами

Более активные металлы вытесняют из оксидов менее активные. Активность металлов можно примерно оценить по электрохимическому ряду металлов:

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

Активные металлы вытесняют менее активные из растворов их солей.

Например , при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4 + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

3.5. Восстановление металлов из оксидов водородом

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании.

CuO + H2 = Cu + H2O

4. Производство чугуна

Чугун получают из железной руды в доменных печах.

Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д.


1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор

Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар.

В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее.

Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю.

Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает.

Шихта — это железная руда, смешанная с флюсами.

Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает:

Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II):

CO2 + С = 2CO

Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III):

Последовательность восстановления оксида железа (III):

FeO + CO → Fe + CO2

Суммарное уравнение протекающих процессов:

При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе.

Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании:

и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси:

Лекция №2. Теория сплавов

Рассмотрим ряд основополагающих определений и понятий.

Сплав – вещество, полученное сплавлением двух и более элементов (компонентов). Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называются металлическим сплавом.

По количеству компонентов сплавы соответственно называются двойными, тройными и многокомпонентными.

Структурные составляющие – обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.

Система – совокупность тел (твердых, жидких) в определенном объеме при определенных внешних условиях, взятых для исследования.

Компонент – простейшая часть (вещество) из образующих систему. В металлических сплавах компонентами являются элементы (металлы и неметаллы) и химические соединения (не диссоциирующие при нагревании)

Фаза – однородная часть системы, имеющая физическую границу раздела (поверхность), при переходе через которую химические состав или структура изменяются скачком.

2.1. Строение сплавов

Чистые металлы находят довольно ограниченное применение. Основными конструкционными материалами являются металлические сплавы. В основном сплавы получают путём кристаллизации жидкого расплава нескольких металлов, но могут быть и другие пути – спеканием, диффузией, осаждением и другие.

Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях и образуют однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла.

При образовании сплавов в процессе их затвердевания возможно различное взаимодействие компонентов. По характеру взаимодействия компонентов все сплавы подразделяются на три основных типа: механические смеси, твердые растворы и химические соединения.

Механическая смесь двух компонентов образуется, если они не способны к взаимодействию или взаимному растворению.

Каждый компонент при этом кристаллизуется в свою кристаллическую решетку. Структура механических смесей неоднородная, состоящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения компонентов.

Если механическая смесь образуется при первичной кристаллизации, она называется эвтектической, если в результате вторичной – эвтектоидной.

Твердые растворы образуются, когда один компонент растворяется в другом. Тогда в твердом состоянии атомы одного компонента входят в кристаллическую решетку другого. Если атомы кристаллической решетки одного компонента А частичного замещаются атомами другого В, образуются твердые растворы замещения, рис. 2.1а. Твердые растворы замещения образуются элементами, атомные радиусы которых отличаются не более чем на 8 – 15%, но и в этом случае кристаллическая решетка растворителя искажается, не утрачивая своего строения.

Если атомы растворимого компонента В внедряются в пустоты решетки растворителя А, то образуются твердые растворы внедрения (рис. 2.1б). Следовательно, атомы растворимого элемента должны быть соизмеримы с пустотами кристаллической решетки растворителя. Концентрация твердых растворов внедрения не может быть высокой – не более 1…2%.

Решетки

Рис. 2.1. Схемы твердых растворов замещения (а) внедрения (б)

Твердый раствор имеет однородную структуру и одну кристаллическую решетку. Обозначают твердые растворы буквами греческого алфавита α, β, γ, δ и т.д.

Химическое соединение образуется, если компоненты сплава А и В вступают в химическое взаимодействие. Химическое соединение имеет свою кристаллическую решетку, которая отличается от кристаллических решеток компонентов. При этом сохраняется кратное соотношение компонентов, что позволяет выразить состав химического соединения формулой А n В m .

Свойства химического соединения резко отличаются от свойств образующих его компонентов при этом они, как правило, обладают большой твердостью и хрупкостью (карбиды, нитриды и др.). Химическое соединение имеет однородную структуру, состоящую из одинаковых по составу и свойствам зерен, и может играть роль компонента в сплавах.

2.2. Диаграммы состояния двойных сплавов

Диаграмма состояния – графическое изображение состояния сплава изучаемой системы в зависимости от концентрации в нем компонентов и температуры. Диаграмма состояния показывает равновесные, устойчивые состояния сплава, т.е. такие, которые при данных условиях обладают минимальной свободной энергией.

Построение диаграмм состояния осуществляют различными экспериментальными методами. Наиболее часто используется метод термического анализа. Он заключается в том, что составляют несколько сплавов с различной концентрацией компонентов, расплавляют их и медленно охлаждают, фиксируя время охлаждения и температуру.

По полученным данным строят серию кривых охлаждения в координатах: время (τ, сек) – температура (t,°С), на которых наблюдают точки перегибов и температурные остановки – критические точки фазовых переходов (рис. 2.2).

Рис. 2.2. Кривая охлаждения сплава

В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур, поэтому на кривых охлаждения сплавов есть две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начинается кристаллизация. В нижней критической точке - солидус (tс) кристаллизация завершается.

Диаграмму строят в координатах температура – концентрация. Линии диаграммы разграничивают области одинаковых фазовых состояний. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов различных концентраций. При построении диаграммы критические точки переносятся с кривых охлаждения на диаграмму (оси температура – концентрация) и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия начала кристаллизации сплавов на диаграмме называется линией ликвидус, а линия окончания кристаллизации – солидус.

Вид диаграммы зависит от того, как взаимодействуют между собой компоненты.

Диаграмма состояния сплавов,

образующих механические смеси чистых компонентов (1 тип)

Рассмотрим кривые охлаждения нескольких сплавов системы А – В, имеющих различный состав (рис. 2.3). Кристаллизация чистого компонента А (100%) начинается в т.1 и заканчивается в т.1*, протекая при постоянной температуре. Выше этой температуры компонент А находится в жидком состоянии, ниже – в твердом. Аналогично происходит кристаллизация чистого компонента В.

Кривая охлаждения сплава (60% А + 40%В) аналогична кривым охлаждения чистых компонентов. На ней имеется также только одна температурная остановка 2-2*, т.е. кристаллизация происходит при постоянной температуре. Особенность кристаллизации этого сплава заключается в том, что происходит одновременная кристаллизация обоих компонентов – появляются и растут кристаллы, образуя мелкокристаллическую механическую смесь обоих компонентов (А+В).

Механическая смесь двух или более разнородных кристаллов, одновременно кристаллизующихся из жидкости, называется эвтектикой (от эвтэо (греч.) – легкоплавкий). Сплав, отвечающий составу эвтектики, называют эвтектическим сплавом. Он имеет постоянную и минимальную температуру плавления (кристаллизации) для сплавов данной системы и постоянный химический состав.

Д1м

Рис. 2.3. Диаграмма состояния сплавов, образующих механические смеси

чистых компонентов, состав сплавов: 1 – 100%А, 2 – 80%А+20%В,

3 – 60%А+40%В, 4 – 20%А+80%В, 5 – 100%В

Кристаллизация сплава (80%А + 20%В) происходит иначе. На кривой имеются две кристаллические точки: точка перегиба 1 и температурная остановка 2-2*. Выше т.1 сплав находится в жидком состоянии, в т.1 появляются первые зародыши кристаллов компонента А – начало кристаллизации. Выделение и рост зерен А продолжается до т.2. При этой температуре жидкий сплав, вследствие удаления из расплава компонента А в виде твердых кристаллов, приобретет эвтектический состав (60%А + 40%В) и при постоянной температуре, равной эвтектической, произойдет одновременная кристаллизация обоих компонентов (А+В), т.е. произойдет эвтектическое превращение.

Сказанное в равной степени относится и к сплаву (20%А + 80%В), отличие состоит лишь в том, что на участке 1–2 происходит образование и рост зерен компонента В. Для этих сплавов характерной особенностью является то, что кристаллизация на участке 1–2 происходит в интервале температур.

Полученные критические точки перенесем на диаграмму, где координатами будут концентрация и температура. Если затем соединить линией все точки начала кристаллизации (линия АСВ) и точки окончания кристаллизации линия (ДСF), то получим диаграмму состояния системы А – В. Линия АСВ – геометрическое место точек ликвидус, называется линией ликвидус. Линия ДСF – линией солидус. Выше линии ликвидус находится жидкость (расплав), ниже линии солидус – сплавы находятся в твердом состоянии. Сплав, отвечающий составу эвтектики (точка С), как уже указывалось, называется эвтектическим. Сплавы, находящиеся левее точки С, называют доэвтектическими. Их структура – избыточные кристаллы А и эвтектика (А+В). Сплавы, расположенные правее точки С, – заэвтектические, их структура кристаллы – В и эвтектика (А+В). Из этого следует что А, В и эвтектика (А+В) являются структурными составляющими сплавов.

Диаграмма состояния сплавов с неограниченной растворимостью

компонентов в твердом состоянии (2 тип)

Для таких сплавов возможно образование двух фаз: жидкого сплава Ж и твердого раствора α. На диаграмме две линии, верхняя – ликвидус и нижняя – солидус (рис. 2.4).

Д22

Рис. 2.4. Диаграмма состояния сплавов с неограниченной растворимостью

Диаграмма состояния сплавов с ограниченной растворимостью

в твердом состоянии (3 тип)

В таких сплавах могут существовать три фазы: жидкий раствор (Ж), твердый раствор компонента В в компоненте А – (α) и твердый раствор компонента А в компоненте В – (β). Эта диаграмма содержит в себе элементы двух предыдущих (рис. 2.5).

Д03

Рис. 2.5. Диаграмма состояния сплавов с ограниченной растворимостью

компонентов в твердом состоянии

Линия АСВ – линия ликвидус, линия АЕСFВ – линия солидус. Линия ЕСF – линия эвтектики. Таким образом, здесь также образуется эвтектика, доэвтектические и заэвтектические сплавы. Линия РЕ – линия ограниченной растворимости компонента В в компоненте А, по этой линии происходит выделение вторичных кристаллов β II (вследствие уменьшения растворимости компонента В в компоненте А с понижением температуры). Процесс выделения вторичных кристаллов называется вторичной кристаллизацией.

Диаграмма состояния сплавов, образующих устойчивые химические соединения (4 тип)

Д4

Рис. 2.6. Диаграмма 4 типа

Такая диаграмма характеризуется наличием вертикальной линии, соответствующей соотношению компонентов в химическом соединении АnВ m (рис. 2.6). Эта линия делит диаграмму на две части, которые можно рассматривать как самостоятельные диаграммы сплавов, образуемых устойчивым химическим соединением и одним из компонентов. На рисунке представлена диаграмма для случая, когда каждый из компонентов образует с химическим соединением механическую смесь.

2.3. Пластическая деформация, наклеп и рекристаллизация

Пластическая деформация – это необратимая деформация, т.е. ее влияние на форму, структуру и свойства тела сохраняются после снятия нагрузки. При пластической деформации зерна деформируются, вытягиваются в направлении деформации, образуется волокнистая структура, увеличивается число дислокаций. При этом прочность и твердость металла повышается, а пластичность и вязкость снижаются. Явление упрочнения металла при пластической деформации называется наклепом, или нагартовкой.

Волокнистое строение и наклеп можно устранить при нагреве металла. Частичное снятие наклепа происходит уже при небольшом нагреве. Снимается искажение кристаллической решетки. Этот процесс называется возвратом (рис. 2.7). Но волокнистая структура при этом сохраняется.

При нагреве до более высоких температур в металле происходит образование новых равноосных зерен. Такой процесс называют рекристаллизацией. Наклеп при этом снимается полностью. Различают рекристаллизацию первичную и собирательную.

Рекристаллизация первичная (участок 1–2 на рис. 2.7) заключается в образовании зародышей и росте новых равновесных зерен с неискаженной кристаллической решеткой.

Собирательная рекристаллизация – вторая стадия процесса, заключающаяся в росте образовавшихся новых зерен. Рост зерен обусловлен стремлением системы к более равновесному состоянию за счет уменьшения внутренней поверхности зерен. Особенность собирательной рекристаллизации – вторичная рекристаллизация – рост отдельных зерен за счет других. Основными факторами, определяющими величину зерен, являются температура, продолжительность выдержки при нагреве и степень деформации.

Схема

Рис. 2.7. Схема изменения структуры и свойств наклепанного металла

при возврате (отдыхе) и рекристаллизации

Температура, при которой идет процесс рекристаллизации, называется температурой рекристаллизации. Абсолютная температура рекристаллизации

где а – коэффициент, зависящий от структуры и состава металла. Для особо чистых металлов а = 0,2, для металлов технической чистоты а = 0,3 – 0,4, для сплавов а = 0,5 – 0,6.

На практике наклеп устраняют рекристаллизационным отжигом.

Если деформирование происходит при температуре выше температуры рекристаллизации, то наклепа не происходит. Такая деформация называется горячей. Деформация, которая происходит при температуре ниже температуры рекристаллизации, называется холодной.

Способы получения металлов. Виды сплавов. Получение щелочных металлов

Современный человек в своей повседневной жизни окружен различными металлами. В большинстве предметов, которыми мы пользуемся, присутствуют эти химические вещества. Это все произошло потому, что люди нашли разнообразные способы получения металлов.

Что такое металлы

Этими ценными для людей веществами занимается неорганическая химия. Получение металлов позволяет человеку создавать все более совершенную технику, совершенствующую нашу жизнь. Что же они собой представляют? Прежде чем рассмотреть общие способы получения металлов, необходимо разобраться, какими они бывают. Металлы представляют собой группу химических элементов в виде простых веществ, обладающую характерными свойствами:

• тепло- и электропроводностью;

Человек легко может отличить их от других веществ. Характерной чертой всех металлов является наличие особого блеска. Он получается благодаря отражению падающих лучей света на не пропускающую их поверхность. Блеск – это общее свойство всех металлов, но ярче всего оно проявляется у серебра.

На сегодняшний день учеными открыто 96 таких химических элементов, хотя еще не все из них признаны официальной наукой. Их разбивают на группы в зависимости от присущих им характерных свойств. Так выделяют следующие металлы:

Способы получения металлов

Получение металлов

Для того чтобы изготовить сплав, необходимо в первую очередь получить металл из природной руды. Самородные элементы – это те вещества, которые находятся в природе в свободном состоянии. К ним относится платина, золото, олово, ртуть. Их отделяют от примесей механически или с помощью химических реагентов.

Остальные металлы добывают путем обработки их соединений. Они содержатся в различных ископаемых. Руда – это минералы и горные породы, в состав которых входят соединения металлов в виде оксидов, карбонатов или сульфидов. Для их получения используют химическую обработку.

Методы получения металлов:

• восстановление оксидов углем;

• получение олова из оловянного камня;

• обжигание сернистых соединений в специальных печах.

Для облегчения добывания металлов из рудных пород к ним добавляют различные вещества, называемые флюсами. Они помогают удалять нежелательные примеси, такие как глина, известняк, песок. В результате этого процесса получаются легкоплавкие соединения, называемые шлаками.

При наличии значительного количества примесей руду перед выплавкой металла обогащают путем удаления большой части ненужных компонентов. Наиболее широко применяемые способы данной обработки – флотация, магнитный и гравитационный способ.

Цветные сплавы

Щелочные металлы

Массовое получение щелочных металлов – более сложный процесс. Это обусловлено тем, что они встречаются в природе только в виде химических соединений. Поскольку они являются восстановителями, их получение сопровождается высокими энергетическими затратами. Существует несколько способов добывания щелочных металлов:

• Литий можно получить из его оксида в вакууме или путем электролиза расплава его хлорида, образующегося при переработке сподумена.

• Натрий добывают путем прокаливания соды с углем в плотно закрытых тиглях или электролизом расплава хлорида с добавлением кальция. Первый способ наиболее трудоемкий.

• Калий получают электролизом расплава его солей либо, пропуская пары натрия через его хлорид. Также он образуется при взаимодействии расплавленного гидроксида калия и жидкого натрия при температуре 440°С.

• Цезий и рубидий добывают при помощи восстановления их хлоридов кальцием при 700–800 °С или цирконием при 650 °С. Получение щелочных металлов таким способом является крайне энергоемким и дорогостоящим.

Различия между металлами и сплавами

Принципиально четкой границы между металлами и их сплавами практически не существует, поскольку даже самые чистые, простые вещества имеют какую-то долю примесей. Так в чем же различие между ними? Практически все металлы, используемые в промышленности и в других отраслях народного хозяйства, используются в виде сплавов, полученных целенаправленно путем добавления к основному химическому элементу других компонентов.

Сплавы

Техника нуждается в разнообразных металлических материалах. При этом чистые химические элементы практически не применяются, поскольку они не обладают необходимыми для людей свойствами. Для своих нужд мы изобрели разные способы получения сплавов. Под этим термином подразумевается макроскопически однородный материал, который состоит из 2 или нескольких химических элементов. При этом в сплаве преобладают металлические компоненты. Это вещество имеет свою структуру. В сплавах различают следующие составляющие:

• основа, состоящая из одного или нескольких металлов;

• малые добавки модифицирующих и легирующих элементов;

• неудаленные примеси (технологические, природные, случайные).

Именно сплавы металлов являются основным конструкционным материалом. В технике их насчитывают более 5000.

Способы получения сплавов

Виды сплавов

Несмотря на такое многообразие сплавов, наибольшее значение для людей играют те, основу которых составляет железо и алюминий. Именно они чаще всего встречаются в повседневной жизни. Виды сплавов бывают различными. Причем их разделяют по нескольким критериям. Так применяются различные способы изготовления сплавов. По данному критерию их делят на:

• Литые, которые получены путем кристаллизации расплава смешанных компонентов.

• Порошковые, созданные при помощи прессования смеси порошков и последующего спекания при высокой температуре. Причем зачастую компонентами таких сплавов являются не только простые химические элементы, но и их различные соединения, такие как карбиды титана или вольфрама в твердых сплавах. Их добавление в тех или иных количествах изменяет свойства металлических материалов.

Способы получения сплавов в виде готового изделия или заготовки разделяют на:

• литейные (силумин, чугун);

• порошковые (титан, вольфрам).

Методы получения металлов

Типы сплавов

Способы получения металлов бывают разными, при этом и изготовленные благодаря им материалы обладают различными свойствами. В твердом агрегатном состоянии сплавы бывают:

• Гомогенными (однородными), состоящими из кристаллов одного типа. Их часто называют однофазными.

• Гетерогенными (неоднородными), именуемые многофазными. При их получении в качестве основы сплава берется твердый раствор (матричная фаза). Состав гетерогенных веществ такого типа зависит от состава его химических элементов. В таких сплавах могут быть следующие компоненты: твердые растворы внедрения и замещения, химические соединения (карбиды, интерметаллиды, нитриды), кристаллиты простых веществ.

Свойства сплавов

Вне зависимости от того, какие способы получения металлов и сплавов используются, их свойства полностью определяются кристаллической структурой фаз и микроструктурой этих материалов. У каждого из них они разные. Макроскопические свойства сплавов зависят от их микроструктуры. Они в любых случаях отличаются от характеристик их фаз, зависящих исключительно от кристаллической структуры материала. Макроскопическая однородность гетерогенных (многофазных) сплавов получается в результате равномерного распределения фаз в матрице металла.

Важнейшим свойством сплавов считается свариваемость. В остальном они идентичны металлам. Так, сплавы обладают тепло- и электропроводностью, пластичностью и отражательной способностью (блеском).

Виды сплавов

Разновидности сплавов

Различные способы получения сплавов позволили человеку изобрести большое количество металлических материалов, обладающих различными свойствами и характеристиками. По своему назначению они делятся на такие группы:

• Конструкционные (сталь, дюралюминий, чугун). К данной группе относятся и сплавы со специальными свойствами. Так они отличаются искробезопасностью или антифрикционными свойствами. К ним относятся латуни и бронзы.

• Для заливки подшипников (баббит).

• Для электронагревательной и измерительной аппаратуры (нихром, манганин).

• Для производства режущих инструментов (победит).

В производстве люди используют и другие виды металлических материалов, таких как легкоплавкие, жаропрочные, коррозионностойкие и аморфные сплавы. Также широкое применение находят магниты и термоэлектрики (телуриды и селениды висмута, свинца, сурьмы и другие).

Железные сплавы

Практически все выплавляемое на Земле железо направляется на производство простых и легированных сталей. Также оно используется в производстве чугуна. Сплавы железа получили свою популярность благодаря тому, что обладают полезными для человека свойствами. Они были получены в результате добавления к простому химическому элементу различных компонентов. Так, несмотря на то, что различные сплавы железа изготавливаются на основе одного вещества, стали и чугуны обладают различными свойствами. Благодаря этому они находят разные сферы применения. Большинство сталей тверже чугуна. Различные методы получения этих металлов позволяют получать разные сорта (марки) этих сплавов железа.

Цветные сплавы

Улучшение свойств сплавов

Благодаря сплавлению некоторых металлов и других химических элементов можно получить материалы с улучшенными характеристиками. Так, например, предел текучести чистого алюминия составляет 35 МПа. При получении сплава этого металла с медью (1,6%), цинком (5,6%), магнием (2,5%) этот показатель превышает 500 МПа.

Благодаря соединению в разных соотношениях различных химических веществ можно получить металлические материалы с улучшенными магнитными, термическими или электрическими свойствами. Главную роль в этом процессе играет структура сплава, представляющая собой распределение его кристаллов и тип связей между атомами.

Стали и чугуны

Эти сплавы получаются путем соединения железа и углерода (2%). При производстве легированных материалов к ним добавляются никель, хром, ванадий. Все обычные стали подразделяют на виды:

• малоуглеродистая (0,25 % углерода) используется для изготовления различных конструкций;

• высокоуглеродистая (более 0,55%) предназначена для производства режущих инструментов.

Различные марки легированных сталей применяются в машиностроении и другой продукции.

Сплав железа с углеродом, процентное содержание которого составляет 2-4%, называется чугуном. В состав этого материала входит и кремний. Из чугуна отливают различные изделия, обладающие хорошими механическими свойствами.

Общие способы получения металлов

Цветные металлы

Помимо железа, для изготовления различных металлических материалов используются и другие химические элементы. В результате их соединения получают цветные сплавы. В жизни людей наибольшее применение нашли материалы на основе:

• Меди, называемые латунями. Они содержат 5-45% цинка. Если его содержание составляет 5-20%, то латунь называется красной, а если 20-36%– желтой. Существуют сплавы меди с кремнием, оловом, бериллием, алюминием. Они называются бронзами. Имеется несколько видов таких сплавов.

• Свинца, представляющие собой обычный припой (третник). В этом сплаве на 1 часть данного химического вещества припадает 2 части олова. При производстве подшипников применяется баббит, который являет собой сплав свинца, олова, мышьяка и сурьмы.

• Алюминия, титана, магния и бериллия, представляющие собой легкие цветные сплавы, обладающие высокой прочностью и отличными механическими свойствами.

Способы получения

Основные способы получения металлов и сплавов:

• Литейный, при котором происходит затвердевание однородной смеси разных расплавленных компонентов. Для получения сплавов используют пирометаллургический и электрометаллургический методы получения металлов. При первом варианте для разогрева сырья используют тепловую энергию, полученную в процессе сгорания топлива. Пирометаллургическим методом получают стали в мартеновских печах и чугуны в домнах. При электрометаллургическом способе сырье нагревают в индукционных или дуговых электрических печах. При этом сырье расславляется очень быстро.

• Порошковый, при котором для изготовления сплава используются порошки его компонентов. Благодаря прессованию им придают определенную форму, а затем спекают в специальных печах.

Металлы и сплавы: получение и применение

Металлы и сплавы: получение и применение

Сначала о металлах
МЕТАЛЛЫ (от греч. metallon-первоначально, шахта, копи), это вещества, обладающие высокой электропроводностью и теплопроводностью, ковкостью, пластичностью и металлическим блеском. Эти характерные свойства металла обусловлены наличием свободно перемещающихся электронов в его кристаллической решетке. Из известных в настоящее время 107 химических элементов 85 относятся к металлам.

Получение металловОгромное большинство металлов находится в природе в виде со.

Получение металлов
Огромное большинство металлов находится в природе в виде соединений с другими элементами. Только немногие металлы встречаются в свободном состоянии, и тогда они называются самородными. Золото и платина встречаются почти исключительно в самородном виде, серебро и медь - отчасти в самородном виде; иногда попадаются также самородные ртуть, олово и некоторые другие металлы.
Добывание золота и платины производится или посредством механического отделения их от той породы, в которой они заключены, например промывкой воды, или путем извлечения их из породы различными реагентами с последующим выделением металла из раствора. Все остальные металлы добываются химической переработкой их природных соединений

Получение металловМинералы и горные породы, содержащие соединения металлов и.

Получение металлов
Минералы и горные породы, содержащие соединения металлов и пригодные для получения этих металлов заводским путем, носят название руд. Главными рудами являются оксиды, сульфиды и карбонаты металлов. Важнейший способ получения металлов из руд основан на восстановлении оксидов углём. Если, например, смешать красную медную руду (куприт) Cu2O с углем и подвергнуть сильному накаливанию, то уголь, восстанавливая медь, превратится в оксид углерода(II), а медь выделится в расплавленном состоянии:Cu2O + C = 2Cu + CO

Флотационный способ получения металловВо многих рудах количество примесей (пу.

Флотационный способ получения металлов
Во многих рудах количество примесей (пустой породы) так велико, что непосредственная выплавка металлов из этих руд является экономически невыгодной. Такие руды предварительно «обогащают», то есть удаляют из них часть примесей. Особенно широким распространением пользуется флотационный способ обогащения руд (флотация), основанный на различной смачиваемости чистой руды и пустой породы. Техника флотационного способа очень проста и в основном сводится к следующему. Руду, состоящую, например, из сернистого металла и силикатной пустой породы, тонко измельчают и заливают в больших чанах водой. К воде прибавляют какое-нибудь малополярное органическое вещество, способствующее образованию устойчивой пены при взбалтывании воды, и небольшое количество специального реагента, так называемого «коллектора», который хорошо адсорбируется поверхностью флотируемого минерала и делает ее неспособной смачиваться водой. После этого через смесь снизу пропускают сильную струю воздуха, перемешивающую руду с водой и прибавленными веществами, причем пузырьки воздуха окружаются тонкими масляными пленками и образуют пену. В процессе перемешивания частицы флотируемого минерала покрываются слоем адсорбированных молекул коллектора, прилипают к пузырькам продуваемого воздуха, поднимаются вместе с ними кверху и остаются в пене; частицы же пустой породы, смачивающиеся водой, оседают на дно. Пену собирают и отжимают, получая руду с значительно большим содержанием металла.

Металлы в природе: феррохром и золотой самородок

Металлы в природе: феррохром и золотой самородок

Металлы в природе: серебро, платина и медь

Металлы в природе: серебро, платина и медь

Некоторые целебные свойства металлов: серебро и золотоЧто может золото в каче.

Некоторые целебные свойства металлов: серебро и золото
Что может золото в качестве проводника и трансформатора энергий? В его функции входит компенсация сердечно-сосудистой системы. С помощью золота экстрасенс может провести восстановление артериально-сосудистой системы и истощённой энергетики всего организма в целом. Здесь необходимо очень чистое золото или его сплав с цирконием (3-4% циркония), а ещё лучше сплав с иттрием (3% иттрия).
Что может серебро? Оно способно компенсировать энергетику желудка и двенадцатиперстной кишки. Серебро может снимать и перераспределять негативную энергию и поэтому может быть использовано для чистки энергетического поля пациента. Для этих целей необходимо очень чистое серебро. Обычно после чистки серебром необходимо обработать пациента и медью, чтобы гармонизировать его энергетику. Очищенный человек приходит в тонкое состояние и активно вибрирует.

Теперь о сплавахОкружающие нас металлические предметы редко состоят из чистых.

Теперь о сплавах
Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволка имеют чистоту около 99,9%. В большинстве же других случаев люди имеют дело со сплавами. Так, различные виды железа и стали, содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специальную маркировку, т.к. сплавы с одним названием (например, латунь) могут иметьразные массовые доли других металлов.

Свойства сплавов Сплавы обладают большой прочностью, а помимо этого, многие и.

Свойства сплавов
Сплавы обладают большой прочностью, а помимо этого, многие из них имеют большую коррозийную стойкость и твёрдость, лучшие литейные свойства, чем чистые металлы.
Помимо этих качеств, сплавам присущи свойства, которых нет у чистых металлов. Некоторые из этих сплавов обладают нержавеющей способностью, высокой жаропрочностью, высоким электрическим сопротивлением, магнитными свойствами, малым коэффициентом термического расширения.

Получение сплавовОсновной метод получения сплавов - смешение и расплавление с.

Получение сплавов
Основной метод получения сплавов - смешение и расплавление составляющих его компонентов с последующим затвердеванием в кристаллическом или аморфном состоянии. сплавы можно получать и без расплавления основного компонента - методами порошковой металлургии. Другие способы получения - осаждение из растворов и газовой фазы, диффузионное насыщение одного компонента другим, совместное электрохимическое осаждение из растворов и другие. Для получения сплавов в виде тонких пленок и покрытий используют осаждение из газовой фазы, напыление, конденсацию паров, электролиз.

Применение сплавовКонструкционные сплавы предназначены для изготовления детал.

Применение сплавов
Конструкционные сплавы предназначены для изготовления деталей машин, строительных конструкций и других сооружений. Такие сплавы обладают целым комплексом свойств, обеспечивающих надежную и долговечную работу в условиях высоких механических напряжений - высокой прочностью, ударной вязкостью, хорошим сопротивлением к усталости, динамическим и ударным нагрузкам. Основную (по объему) часть выпускаемых во всем мире конструкционных сплавы составляют различные марки сталей и чугунов. В авиации, судостроительной и космической технике, где кроме перечисленных выше свойств необходимо учитывать плотность материала, находят применение конструкционные сплавы на основе Аl и Ti, которые по удельной прочности во многих случаях не уступают, а иногда даже превосходят наиболее прочные стали.

Применение сплавовИз инструментальных сплавов изготовляют главным образом изм.

Применение сплавов
Из инструментальных сплавов изготовляют главным образом измерительные и металлообрабатывающие инструменты. Первые изготовляют в основном из углеродистых или легированных сталей, вторые - из быстрорежущих, штамповых сталей и твердых сплавов. Изделия из быстрорежущих и штамповых сталей получают традиционными методами литья с последующей механической и термической обработкой. Инструменты из твердых сплавов обладают более высокой твердостью, чем инструменты из стали, и способны работать при более высоких температурах и с более высокой производительностью.

Сплавы: стальСталь – это сплав железа (могут входить и другие сплавы), чугуна.

Сплавы: сталь
Сталь – это сплав железа (могут входить и другие сплавы), чугуна и углерода. Углерод в этом сплаве является незаменимым компонентом, его содержание около 2%. В зависимости от состава стали, она может быть прочным материалом или твердым. Прочный материал используется для изготовления морских судов, мостов. Что же касается твердой стали, она используется для изготовления различных металлорежущих инструментов. Существует также нержавеющая сталь, которая является очень прочным и антикоррозионным материалом. Нержавеющая сталь состоит из хрома и никеля. Сталь — это материал, которому можно придавать любую форму с помощью прокатки, прессования или литья. С помощью термообработки, возможно, получить сталь, которая будет обладать различными как химическими, так и физическими свойствами. Некоторые мягкие стали обрабатываются ручным инструментом. Твердой сталью можно даже резать стекло. Сталь легко подвергается методу полировки.

Получение и плавка сталиСпособы получения стали: Накаливают железных полос, к.

Получение и плавка стали
Способы получения стали:
Накаливают железных полос, которые затем пересыпают углем.
Железо соединяют с углеродом.
После этого железные полосы перековывают, вытягивают и цементуют.
Чугуноватая сталь – это сталь, в составе которой содержание углерода больше чем чугуна. Этот вид стали получается кричным способом.
Литая сталь – это сталь, которая получается методом отливки с помощью разливочного ковша. Литую сталь подразделяют на: тигельную, бессемеровскую и мартеновскую. Жидкую сталь можно сразу разлить в формы, после чего получится готовое изделие. Для того чтобы не образовались пузырьки, в сталь добавляют алюминий.
Плавка стали:
Печной свод отводят в сторону.
Загружается металлолом.
После возвращения свода в прежнее положение, опускаются электроды.
Зажигают дугу и постепенно увеличивают мощность.
После этого вводится в печь кислород ( для окисления кремния и углерода) и известь (образуется шлак).
Проанализировав пробу, выключают дугу, вынимают электроды, наклоняют печь и выливают сталь.

Термообработка сталиТермообработка стали С помощью термообработки, можно изме.

Термообработка стали
Термообработка стали
С помощью термообработки, можно изменить механические свойства стали. В отожженном состоянии сталь настолько пластична, что с помощью инструмента, ей можно придать необходимую форму. После этого сталь закаливают, чтобы она сохранила свой вид. К тому же, чем больший процент содержания углерода, тем большая твердость стали после процесса закалки. Закалка является одним из самых важных процессов при термообработке, так как возможно разложение твердого раствора углерода в железе.
Сталь – это металл, который пользуется широким применением. Ее используют как в строительстве, так и в машиностроении.

Урок 13. Сплавы металлов

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению сплавов чёрных и цветных металлов, роли легирующих добавок, зависимости свойств сплавов от состава.

Бронза – сплав на основе меди; оловянная бронза содержит до 8,5% олова. Может содержать также алюминий, кремний, свинец. Используется для изготовления деталей машин, инструментов, при ударе не образующих искр.

Баббиты – сплавы на основе олова и свинца. Применяются для изготовления подшипников, так как отличаются высокой устойчивостью к истиранию.

Дюралюминий – высокопрочные сплавы на основе алюминия с добавками меди, магния и марганца. Основной конструкционный материал в авиа- и ракетостроении.

Константан – сплав на основе меди, никеля и марганца, используется для изготовления электроизмерительных приборов.

Латунь – сплав меди и цинка, с небольшими добавками никеля, олова, свинца, марганца. Используется для изготовления деталей машин и запорной аппаратуры.

Легированная сталь – сталь, в состав которой включены легирующие добавки, повышающие прочность, коррозионную устойчивость, жаропрочность и другие свойства сплава.

Легирующие добавки – вещества, вводимые в сплав в определённых количествах, для придания сплаву необходимых свойств.

Мельхиор – медно-никелевый сплав с добавлением железа, используется для изготовления монет, инструментов, столовых приборов.

Нейзильбер – трёхкомпонентный сплав на основе меди, цинка и никеля.

Силумин – сплав алюминия с кремнием. Применяется для литья деталей в авто- моторостроении.

Сплав - материал с металлическими свойствами, состоящий из двух или более компонентов, один из которых обязательно металл.

Сплав Вуда – легкоплавкий сплав на основе висмута, свинца, олова и кадмия. Используется для изготовления металлических моделей, заливки образцов, пайки некоторых сплавов.

Сталь – сплав железа с углеродом, причем доля углерода не превышает 2,14%.

Цветные металлы – алюминий, медь, никель, цинк, олово, свинец и другие металлы, не относящиеся к чёрным.

Цементит – карбид железа Fe3C, образуется в виде отдельной фазы в чугуне с высоким содержанием углерода.

Чёрные металлы – железо, марганец, иногда к чёрным металлам относят хром.

Чугун – сплав железа с углеродом, содержание углерода в пределах от 2,14 до 4,3%.

Электрон – сплав на основе магния и алюминия с добавлением цинка, и марганца. Используется в авиа- и ракетостроении.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс: учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Сплавы металлов и их классификация

Одним из первых металлов, который человек стал применять для своих нужд, была медь. Но ещё в III тысячелетии люди обнаружили, что медь, сплавленная с оловом, позволяет делать более прочное оружие, долговечную посуду. Материал, полученный при сплавлении меди с оловом, получил название «бронза». Это был первый сплав, изготовленный человеком.

Сплавом называют искусственный материал с металлическими свойствами, состоящий из двух или более компонентов, из которых, по крайней мере, один является металлом.

В зависимости от количества компонентов различают двойные (бинарные), тройные и многокомпонентные сплавы. Сплавы могут иметь однородную структуру (гомогенные сплавы), а также состоять из нескольких фаз (гетерогенные сплавы). В зависимости от своих свойств сплавы подразделяются на легкоплавкие, тугоплавкие, жаропрочные, высокопрочные, твердые, коррозионно-устойчивые. По предполагаемой технологии обработки различают литейные (изделия производят путём литья) и деформируемые (обрабатывают путём ковки, проката, штамповки, прессования) сплавы.

Чёрные металлы и сплавы на их основе

В зависимости от природы металла, составляющего основу сплава, различают чёрные и цветные сплавы. В чёрных сплавах основным металлом является железо. Самыми распространенными из чёрных сплавов являются сталь и чугун. К чёрным металлам относятся железо, а также марганец и хром, которые входят в состав чёрных сплавов.

Чугун – сплав на основе железа, содержание углерода в котором превышает точку предельной растворимости углерода в расплаве железа (2,14%). При остывании сплава, углерод кристаллизуется в виде отдельных включений цементита и графита. Углерод придает чугуну твердость, но снижает пластичность сплава, поэтому чугун хрупкий. Чугун применяют для изготовления литых деталей (коленчатых валов, колёс, труб, радиаторов отопления, ванн, решеток ограждения), кухонной посуды (сковородок, чугунков, казанов).

В стали содержание углерода значительно меньше. В низкоуглеродистых сталях количество углерода не превышает 0,25%, в высокоуглеродистой стали содержание углерода может достигать 2%. Самые первые стальные изделия появились 4000 лет назад. В настоящее время выплавляют стальные сплавы с различными свойствами. Это конструкционные, нержавеющие, инструментальные, жаропрочные стали.

Легирующие добавки

Для придания стали особых свойств в процессе её изготовления, вводят легирующие добавки. Легирующими добавками называют вещества, которые добавляют в сплав в определенном количестве для изменения механических и физических свойств материала.

Легированные стали

В зависимости от количества легирующих добавок различают низколегированную, среднелегированную и высоколегированную сталь. Марка стали обозначается с помощью букв и цифр. Буква указывает на химическую природу легирующей добавки, а цифра, стоящая после буквы – на примерное содержание этой добавки в сплаве. Если содержание добавки меньше 1%, то цифру не ставят. Цифры впереди букв показывают содержание углерода в сотых долях процента. Например, в стали марки 18ХГТ содержится 0,18 % С, 1 % Сr, 1 % Мn, около 0,1 % Тi.

Стали применяют для изготовления армирующих железнодорожных рельсов, дробильных установок, конструкций, турбин электростанций и двигателей самолётов, инструментов (пилы, сверла, резцы, зубила, фрезы), химической аппаратуры, деталей автомобилей, тракторов, дорожных машин, труб и много другого.

Цветные металлы и сплавы на их основе

К цветным металлам относят алюминий, цинк, медь, никель, олово, свинец и др. Сплавы на основе цветных металлов называют цветными. Это бронза, латунь, силумин, дюралюминий, баббиты и многие другие. В авиации широкое применение нашли легкие и прочные сплавы на основе алюминия и титана. Изделия из медных сплавов: бронзы и латуни, применяются в химической промышленности, для изготовления запорной аппаратуры: кранов, вентилей. Сплавы на основе олова и свинца используют для изготовления подшипников. Из мельхиора и нейзильбера – сплавов меди и никеля, изготовляют столовые наборы, монеты.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Расчет массовой доли металла в сплаве

Условие задачи: Кусочек нейзильбера массой 2,00 г поместили в раствор гидроксида натрия. В ходе реакции выделилось 0,14 л водорода (н.у.). Вычислите массовую долю цинка в сплаве. Ответ запишите в процентах с точностью до десятых долей.

Шаг первый: запишем уравнение реакции цинка с раствором гидроксида натрия:

Один моль цинка вытесняет из щёлочи один моль водорода.

Шаг второй: найдём количество цинка, которое вытеснило 0,14 л водорода.

Для этого найдём в периодической таблице элементов Д.И. Менделеева молярную массу цинка: М(Zn) = 65 г/моль. При нормальных условиях 1 моль любого газа занимает объём, равный 22,4 л. Составим пропорцию:

65 г цинка вытесняет 22,4 л водорода;

х г цинка вытесняет 0,14 л водорода.

65 : х = 22,4 : 0,14, откуда х = (65·0,14) : 22,4 = 0,41 (г) – масса цинка в сплаве.

Шаг третий: найдём массовую долю цинка в сплаве:

ω = (0,41 : 2,00)*100 = 20,5 (%).

2. Расчёт массы легирующей добавки

Условие задачи: Для придания стали противокоррозионных свойств в сплав добавляют хром. Сталь марки С1 должна содержать 12% хрома, 1% кремния, 1,5% марганца и 0,2% углерода. Сколько хрома необходимо добавить к железному лому (посторонними примесями пренебрегаем) массой 500 кг, чтобы получить нержавеющую сталь требуемой марки? Ответ записать в килограммах с точностью до десятых долей.

Шаг первый: найдём массовую долю железа в стали марки С1:

Для этого от 100% отнимем массовые доли остальных элементов:

100 – 12 – 1 – 1,5 – 0,2 = 85,3 (%).

Шаг второй: найдём массу одного процента сплава.

Для этого массу железного лома разделим на массовую долю железа:

500 : 85,3 = 5,9 (кг).

Шаг третий: найдём необходимую массу хрома. Для этого массу одного процента сплава умножим на массовую долю хрома в сплаве:

Читайте также: