Структура металлов при нагреве

Обновлено: 27.04.2024

Обработка давлением основана на способности не­которых металлов и сплавов пластически деформироваться, т. е. под действием нагрузок изменять внешнюю форму и сохранять измененную форму после того, как нагрузки перестают действо­вать.

Хрупкие металлы и сплавы обрабатывать давлением нельзя, так как они не обладают достаточной пластичностью.

Обработка давлением основана на способности некоторых металлов и сплавов пластически деформироваться, т. е. под действием нагрузок изменять внешнюю форму и сохранять измененную форму после того, как нагрузки перестают действовать.

Хрупкие металлы и сплавы обрабатывать давлением нельзя, так как они не обладают достаточной пластичностью. Например, чугун как в холодном, так и в нагретом состоянии под давлением разрушается, не изменяя внешней формы, и потому для обработки давлением непригоден.

Некоторые металлы и сплавы, недостаточно пластичные при обычной температуре, при высоком нагреве обладают пластической деформацией и могут быть обработаны давлением. К числу таких сплавов относится сталь.

При пластической деформации изменяется не только внешняя форма металлов, но и внутреннее их строение, а следовательно, и свойства.

Из рис. 1 видно, как изменяются механические свойства отожженной стали в зависимости от температуры при нагревании.

Кривая σв показывает, что прочность стали при нагревании до 300° С повышается, а при дальнейшем нагревании резко снижается. Показатели пластичности δ и ψ, наоборот, при нагревании стали до 300° С понижаются, а при дальнейшем повышении температуры сильно возрастают, что и требуется для обработки давлением.

Из сказанного следует, какое значение при горячей обработке давлением имеет правильное определение температуры нагрева металлов. Однако для успешных результатов обработки требуется соблюдать и другие условия нагрева.

В технике часто используют холодную обработку давлением без нагрева металлов и сплавов: прокатку, штамповку, волочение в холодном состоянии или с нагревом до температуры ниже температуры рекристаллизации.

На рис. 2 показаны кривые изменения механических свойств низкоуглеродистой стали (0,02—0,03 % С) при холодной прокатке. В результате этого процесса увеличиваются прочность и твердость стали, пластичность, наоборот, уменьшается.

Физико-механические свойства стали при холодной обработке давлением изменяются: уменьшаются электропроводность и сопротивление коррозии.

Изменение свойств металлов, вызванное деформацией в холодном состоянии, называется наклепом , или нагартовкой .

Состояние наклепа объясняется изменением нормальной кристаллической решетки, т. е. сдвигами ее частиц под влиянием внешних воздействий.

Холодной обработке давлением подвергают листовые и полосовые заготовки из низкоуглеродистой стали, из цветных металлов и сплавов. Часто наклеп сообщают проволоке, применяемой для пружин.

Если изменение свойств металла под влиянием холодной обработки нежелательно, наклеп может быть устранен путем нагревания изделий.

Уже при невысокой температуре (для стали 200—300° С) измененная холодной обработкой кристаллическая решетка частично восстанавливается, и в наклепанном слое понижается прочность и твердость, возрастает пластичность. Эти явления называются возвратом.

При более высоком нагреве происходит рекристаллизация, т. е. образование новых зерен взамен деформированных, частичное восстановление структуры металла и возвращение первоначальных свойств.

Установлено, что наименьшая температура для рекристаллизации железа 450° С, меди 270° С, алюминия и магния 100° С, вольфрама 1200° С.

Легкоплавкие металлы — олово, цинк, кадмий и другие — имеют низкую температуру рекристаллизации. Например, температура начала рекристаллизации у цинка 0° С, свинца 30° С и т. п. Поэтому у таких металлов при обычной температуре явлений наклепа при холодной обработке давлением не возникает.

Температура рекристаллизации не является постоянной для каждого металла и зависит: от степени деформации (чем больше деформация, тем нагревание должно быть выше); от времени выдержки (чем выдержка при температуре рекристаллизации продолжительнее, тем легче протекает процесс рекристаллизации);

от величины зерна (для крупнозернистого металла температура должна быть выше, чем для мелкозернистого).

Сталь обрабатывают давлением преимущественно в нагретом состоянии. Температура, при которой производят горячую обработку стали, значительно превышает температуру ее рекристаллизации, поэтому наклеп, образующийся при обработке, уничтожается вследствие рекристаллизации, и горячекатаная сталь наклепа не получает.

При выборе температуры нагрева для горячей обработки стали давлением следует опасаться ее пережога. В то же время нужно иметь в виду, что если сталь обрабатывать давлением при сравнительно низкой температуре, в ней сохранятся следы наклепа.

Следовательно, для правильного ведения горячей обработки давлением нужно знать, до какой температуры следует нагревать металл и при какой температуре прекращать эту обработку. Правильное определение температуры начала и конца горячей обработки (она установлена Д. К. Черновым) имеет исключительно важное значение для качества изделий.

Из рис. 1 следует: чем меньше углерода содержит сталь, тем выше должна быть температура ее нагревания для успешной обработки давлением.

Вместе с тем при горячей обработке давлением механические свойства металлов могут оказаться неодинаковыми в различных направлениях (ярко выраженная анизотропность), вследствие образования волокнистой структуры.

а — структура до вытяжки, б — структура после первой вытяжки, в — структура после многократной вытяжки

Волокнистое строение является результатом удлинения зерен при вытяжке металла и легко обнаруживается при рассмотрении излома в направлении вытяжки . Эта особенность структуры металла вызывает неодинаковые механические свойства вдоль и поперек направления вытяжки. Расположение волокон очень важно учитывать при обработке давлением. Необходимо добиваться, чтобы усилия, прилагаемые к изделию, были направлены не вдоль, а поперек волокон. Несоблюдение этих условий приводит к понижению ударной вязкости кованых изделий.

Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация

Деформированный металл находится в неравновесном состоянии. Переход к равновесному состоянию связан с уменьшением искажений в кристаллической решетке, снятием напряжений, что определяется возможностью перемещения атомов.

При низких температурах подвижность атомов мала, поэтому состояние наклепа может сохраняться неограниченно долго.

При повышении температуры металла в процессе нагрева после пластической деформации диффузия атомов увеличивается и начинают действовать процессы разупрочнения, приводящие металл в более равновесное состояние – возврат и рекристаллизация.

Т.е. процессы, происходящие при нагреве, подразделяют на возврат и рекристаллизацию. В свою очередь, при возврате различают отдых и полигонизацию.

Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решетки.

Процесс частичного разупрочнения и восстановления свойств называется отдыхом (первая стадия возврата). Имеет место при температуре

..

Возврат уменьшает искажение кристаллической решетки, но не влияет на размеры и форму зерен и не препятствует образованию текстуры деформации.

Полигонизация – процесс деления зерен на части: фрагменты, полигоны в результате скольжения и переползания дислокаций.

При температурах возврата возможна группировка дислокаций одинаковых знаков в стенки, деление зерна малоугловыми границами (рис. 8.3).

Рис. 8.3. Схема полигонизации: а – хаотическое расположение краевых дислокаций в деформированном металле; б – дислокационные стенки после полигонизации.

В полигонизированном состоянии кристалл обладает меньшей энергией, поэтому образование полигонов — процесс энергетически выгодный.

Процесс протекает при небольших степенях пластической деформации. В результате понижается прочность на (10…15) % и повышается пластичность (рис.8.4). Границы полигонов мигрируют в сторону большей объемной плотности дислокаций, присоединяя новые дислокации, благодаря чему углы разориентировки зерен увеличиваются (зерна аналогичны зернам, образующимся при рекристаллизации). Изменений в микроструктуре не наблюдается (рис.8.5 а). Температура начала полигонизации не является постоянной. Скорость процесса зависит от природы металла, содержания примесей, степени предшествующей деформации.

Рис. 8.4. Влияние нагрева деформированного металла на механические свойства


Рис. 8.5. Изменение структуры деформированного металла при нагреве

При нагреве до достаточно высоких температур подвижность атомов возрастает и происходит рекристаллизация.

Рекристаллизация– процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.

Нагрев металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств. Нагрев приводит к резкому снижению прочности при одновременном возрастании пластичности. Также снижается электросопротивление и повышается теплопроводность.

1 стадия – первичная рекристаллизация (обработки) заключается в образовании центров кристаллизации и росте новых равновесных зерен с неискаженной кристаллической решеткой. Новые зерна возникают у границ старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен.

Движущей силой первичной рекристаллизации является энергия, аккумулированная в наклепанном металле. Система стремится перейти в устойчивое состояние с неискаженной кристаллической решеткой.

2 стадия – собирательная рекристаллизация заключается в росте образовавшихся новых зерен.

Движущей силой является поверхностная энергия зерен. При мелких зернах поверхность раздела большая, поэтому имеется большой запас поверхностной энергии. При укрупнении зерен общая протяженность границ уменьшается, и система переходит в более равновесное состояние.

Температура начала рекристаллизации связана с температурой плавления

для металлов для твердых растворов для металлов высокой чистоты

На свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. В результате образования крупных зерен при нагреве до температуры t1 начинает понижаться прочность и, особенно значительно, пластичность металла.

Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации (рис. 8.6).

Рис. 8.6. Влияние предварительной степени деформации металла на величину зерна после рекристаллизации

С повышением температуры происходит укрупнение зерен, с увеличением времени выдержки зерна также укрупняются. Наиболее крупные зерна образуются после незначительной предварительной деформации 3…10 %. Такую деформацию называют критической.

1. Что называется деформацией?

2. Какие виды деформации вы знаете? Приведите примеры.

3. Как осуществляется пластическая деформация в кристалле? Назовите две разновидности пластической деформации.

4. Дайте понятия «монокристалл» и «поликристалл».

5. Что такое «нагартовка» - «наклёп»?

6. Как вы понимаете понятие «текстура»?

7. Каким образом получают нагартованную текстуру?

8. Какие отрицательные свойства появляются у металла после нагартовки?

9. Что такое «возврат»? Виды возврата нагартованного металла.

10. Что такое «рекристаллизация»? Какие вам известны стадии рекристаллизации?

11. Медь имеет решётку ГЦК, а цинк - ГПУ. Какой из этих металлов пластичней?

12. Стальная проволока для тросов производится методом холодной вытяжки. Чем объясняется высокая прочность тросов?

Зарисуйте таблицу «Явления возврата и рекристаллизации наклёпанного металла» и заполните её.

Лекция 9. Тема № 5. «Разупрочнение деформированного металла при нагреве»

Процессы, происходящие при разупрочнении металлов при нагреве – отдых, полигонизация, рекристаллизация. Изменение структуры при отдыхе – условия прохождение отдыха. Изменение структуры при полигонизации – виды полигонизации. Температура рекристаллизации. Виды рекристаллизации – первичная, собирательная, вторичная. Процессы, происходящие при этих видах рекристаллизации, их влияние на свойства металлов и сплавов.

Структура холоднодеформированного металла, характеризующаяся повышенной плотностью дислокаций, вакансий и других дефектов, обладает повышенным запасом свободной энергии и является термодинамически неустойчивой. При нагреве такая структура будет самопроизвольно переходить в более устойчивое состояние с меньшим запасом энергии.

При повышении температуры различают следующие основные виды структурных изменений при нагреве наклепанного металла:

1. Отдых, включающий в себя возврат и полигонизацию;

2. Рекристаллизация, включающая в себя первичную, собирательную и вторичную рекристаллизации.

Под возвратом следует понимать процесс повышения структурного совершенства наклепанного металла путем перераспределения и уменьшения концентрации точечных дефектов, а также некоторого перераспределения дислокаций без образования новых границ. Этот процесс происходит при невысоких температурах (до 0,1-0,2 Тпл.).

При возврате происходит частичное восстановление (возврат) свойств металла без металлографически обнаруживаемых изменений структуры. Наиболее существенно на стадии возврата изменяется удельное электросопротивление, которое, в сравнении с наклепанным состоянием уменьшается на 20-30 %. Основной причиной восстановления свойств при возврате является уменьшение концентраций точечных дефектов. Избыточные вакансии и межузельные атомы погашаются при встрече или поглощаются дислокациями и границами зерен. На этой стадии частично устраняются и дислокации. Дислокации противоположных знаков притягиваются ианнигилируют.

При рассмотрения явления полигонизации различают две ее разновидности: стабилизирующую и предрекрестaллизационную. Первая наблюдается в слабoдеформированных металлах, вторая - в сильнодеформированных.

Стабилизирующая полигонизация, протекающая при нагреве слабодеформированных металлов, характеризуется перераспределением и частичной аннигиляцией дислокаций, формированием субзеренных границ и ростом субзерен. Дислокационный механизм стабилизирующей полигонизации наиболее наглядно объясняется на примере монокристаллов, деформированных изгибом и содержащих избыточное число краевых дислокаций одного знака (рис, 1а).

При нагреве дислокации под воздействием дальнодействующих упругих полей перегруппировываются. Дислокации разных знаков аннигилируют, а избыточные дислокации одного знака выстраиваются в энергетически более выгодные дислокационные стенки, перпендикулярные плоскостям скольжения (рис. 1б).

Полигонизация в металлах протекает при температурах 0,25 - 0,3 Тпл, когда скорость диффузионных процессов заметно увеличивается. Поэтому формирование вертикальных дислокационных стенок происходит как за счет перегруппировавшихся дислокаций, так и в связи с их переползанием. Образовавшиеся вертикальные стенки дислокаций представляют собой малоугловые границы, которые делят кристалл как бы на отдельные кристаллические блоки или полигоны (откуда и полигонизация), свободные от дислокаций. Такие дислокационные стенки хорошо выявляются металлографически в виде ямок травлений в местах выхода каждой дислокации.

Рассмотренное представление о полигонизации, основанное на анализе этого процесса в слабо деформированном кристалле, без достаточных оснований было перенесено и на сильно деформированный металл. В настоящее время понятие полигонизации значительно расширено.

Рисунок 1 - Схема распределения дислокаций в кристалле после деформации (а) и стабилизирующей полигонизации (б)


Рисунок 2 - Схема превращения ячеистой структуры сильно деформированного металла (а) в субзеренную(6) в результате предрекристаллизационной полигонизации.

В случае нагрева сильнодеформированного металла, в котором при деформации сформировалась дислокационная ячеистая структура (случай наиболее частый), полигонизация заключается в сплющивании дислокационных объемных сплетений (стенок ячеек) и превращения этих сплетений в плоские субграницы. При этом ячейки превращаются в субзерна (рис. 2).

Этот более сложный случай полигонизации включает в себя не только скольжение и переползание, но и поперечное скольжение винтовых дислокаций.

В отличие от слабодеформированного кристалла, в котором границы (полигонов) формируются только в процессе полигонизации, в более сильно деформированном кристалле ячеистая дислокационная структура определяет форму иразмер образующихся при полигонизации субзерен. Таким образом, при полигонизации ячеистой структуры образующиеся субзерна как бы наследуют расположение, форму и размер ячеек деформации.

Малоугловые границы, образовавшиеся при полигонизации слабодеформированного кристалла, являются малоподвижными исубзерна после такой полигонизации не растут. Отсюда иназвание: стабилизирующая полигонизация.

Субзерна, образовавшиеся на месте деформационных ячеек, отличаются большей кривизной и подвижностью, чем дислокационные стенки, образовавшиеся при полигонизации после слабой деформации. Такие субзерна нестабильны и склонны к укрупнению. Укрупнение субзеренможет совершаться двумя путями:

I) миграцией субграниц под влиянием стремления к уменьшению зернограничного натяжения или к уменьшению объемной энергии соседних субзерен;

2) путем коалесценции соседних субзерен с рассыпанием разделяющей их дислокационной границы.

В результате полигонизации частично уменьшаются внутренние напряжения, внесенные деформацией. Обычно комплекс механических свойств в процессе полигонизации чаще изменяется мало.

В результате полигонизации образуются иукрупняются субзерна внутри деформированных зерен, но форма зерен, вытянутых деформацией, не меняется. Только при дальнейшем повышении температуры в связи с увеличением диффузионной подвижности атомов развивается.

Рекристаллизация -это процесс полной или частичной замены одних зерен данной фазы другими зернами той же фазы, обладающими меньшей энергией.

В чистых металлах рекристаллизация протекает при температурах выше 0,4 Тпл, а в сплавах - выше 0,6 Тпл.

При первичной рекристаллизации, которая развивается первой, происходят зарождение ирост новых неискаженных равновесных зерен взамен вытянутых деформацией (рис. 3). Зародыши новых зерен образуется всегда в местах максимальной искаженности кристаллической решетка, созданных деформацией: на тройных стыках зерен, на границах зерен и двойников, на границах полос скольжения, около частиц других фаз. Механизм зарождения центров рекристаллизации тесно связан с процессами, протекающими при рекристаллизационной полигонизации. Образовавшиеся при полигонизации субзерна отличаются между собой по размерам и величине разориентировки. Большие по величине и более сильно разориентированные субзерна растут интенсивнее. Их малоугловые границы поглощают при своем движении дислокации ив результате превращаются в большеугловые высокоподвижные границы, что и характеризует окончание формирования центра (зародыша) рекристаллизации. Затем зародыши растут в результате перехода к ним атомов от деформированных участков. Рекристаллизованные зерна содержат значительно меньше дислокаций (10 6 - 10 8 см -2 ), чем деформированные (10 10 – 10 12 см -2 ).

Таким образом, при нагреве наклепанного метала старое зерно не восстанавливается, впоявляется совершено новое, размеры которого могут существенно отличаться от исходного.

Измельчение исходного (до деформации) зерна приводит к понижению температуры начала рекристаллизации, так как в более мелкозернистом металле больше суммарная площадь высокоугловых границ, где зарождаются центры рекристаллизации, и больше накопленная при деформации энергия.

Процесс первичной рекристаллизации термодинамически выгоден, так как сопровождается уменьшением объемной свободной энергия за счет уменьшения плотности дислокаций.

В результате первичной рекристаллизация после больших степеней холодной пластической деформации образуется мелкозернистая структура (рис. 4).

Наименьшая температура, при которой начинается рекристаллизация, называется температурным порогом рекристаллизации. Для данного металла (сплава) она зависит в первую очередь от чистоты металла по примесям и от целого ряда других факторов, которые будут рассмотрены ниже.


Рисунок 3 - Начальная стадия первичной рекристаллизации в технически чистом железе (а) и латуни (б)


Рисунок 4 - Мелкозернистая структура латуни, образовавшаяся в результате первичной рекристаллизации.

Зависимость температуры начала рекристаллизации от состава в двойных системах немонотонная и различная у разных сплавов. Только в однофазной области в интервале малых концентраций наблюдается непрерывный рост температуры порога рекристаллизации, причем с увеличением их концентрации температура начала рекристаллизации сначала растет очень сильно, а затем - замедляется.

Атомы примесей упруго притягиваются к дислокациям, образуя атмосферы Коттрелла. Эти примесные атмосферы мешают перераспределению дислокаций, необходимому для формирования центров рекристаллизации. Примеси тормозят не только зарождение, но и рост центров рекристаллизации, так как они притягиваются к границе зародыша. При нагреве металла до более высоких температур примесные атмосферы размываются тепловых движением, в результате чего становится возможным деформирование центров рекристаллизации и облегчается их рост.

Таким образом, чем чище металл, тем ниже порог рекристаллизации.

По сравнению с действием малых добавок на чистейший металл, когда сотые и десятые доли процента добавки могут повысить температуру начала рекристаллизации на сто градусов и более, увеличение содержания легирующих элементов в области больших концентраций на проценты я десятки процентов сравнительно слабо изменяют темпе­ратуру порога рекристаллизации. Соотношение температур начала рек­ристаллизация я плавления у твердых растворов выше, чем у чистых металлов, причем у однофазных сплавах-растворах величина Тр/Тпл. составляет максимум 0,6 (по сравнению с 0,25 - 0,40 у металлов).

В двухфазных сплавах увеличение объемной доли второй фазы приводят к возрастанию порога рекристаллизации.

Следует уяснить, что после окончания первичной рекристаллизация структура металла еще не становится стабильной. При увеличении времени выдержки или повышении температуры вслед за первичной, происходят собирательная рекристаллиация.

Под собирательной рекристаллиацией понимают процесс роста зерен одной фазы за счет других зерен этой же фазы, идущий в направлении приближения тройных стыков к равновесия» (120°), в направлений спрямления границ и уменьшения их кривизны. Процесс роста происходят передвижением высокоугловых границ таким образом, что зерна с вогнутыми границами "поедает" зерна с выпуклыми границами. Основной движущей силой собирательной рекристаллизация является стремление системы к уменьшению зернограничной (поверхностной) энергия благодаря уменьшении протяженности границ при росте зерна. Следует подчеркнуть, что зерен предпочтительного роста при собирательной рекристаллизации нет.

Примеси в металлах оказывают заметное влияние на собирательную рекристаллизации. Атомы растворенных примесей упруго притягива­ется к границе и движение ее (миграция) связана с протаскиванием за собой примесных атомов. Мигрирующая граница встречает на своем пути примесные атомы, распределенные в теле "поедаемого" зерна, примесь на границе накапливается, усиливая ее торможение.

Если мигрирующая граница встречает включения второй фазы, то она должна огибать эти включения и затем отрываться от них, что за­трудняет собирательную) рекристаллизацию. После отрыва границы от включений второй фазы их цепочка остается внутри растущего зерна.

Процессы первичной и собирательной рекристаллизация могут ид­ти одновременно, то есть они накладываются друг на друга.

В результате собирательной рекристаллизации вырастают крупные равновесные (полиэдрические) зерна (рис. 5), содержащие значительно меньше дислокаций (10 6 - 10 8 см -2 ),чем деформированные (10 10 - 10 12 см -2 ).

В итоге рассмотренных процессов рекристаллизации наклеп прак­тически полностью снимается и свойства приближается к их исходным значениям (рис. б).

Как видно из графика, при рекристаллизации предел прочности и, особенно, предел текучести, резко снижается, а характеристики пластичности возрастает. Достигаемое разупрочнение объясняется сня­тием искажений решетки и резким уменьшением плотности дислокация.

Если в результате собирательной рекристаллизация вырастает слишком крупное зерно, это мотет быть причиной снижения пластичности металла (явление перегрева).

Рис. 5. Структуры технически чистого железа (а) и латуни (б)

после собирательной рекристаллизации.

Важнейшее практическое значение рекристаллизации состоят в том, что она только позволяет восстановить структуру недеформированного металла, но дает возможность управлять величиной зерна, ко­торая оказывает большое влияниена механические и другие свойства металлов, (как вам уже известно, с уменьшением размера зерна их вязкость а прочностные характеристики возрастают).

Для того, чтобы управлять величиной зерна я, следовательно, пожучить необходимее свойства, необходимо знать, какие факторы оказывают влияние на эту характеристику структуры.


Рис. 6. Влияние нагрева на структуру и механические свойства метана, упрочненного деформацией.

К таким факторам относятся прежде всего температура рекристаллизационного отжига я его длительность, а также степень деформации, предшествовавшей нагреву. Понятно, что влияние этих факто­ров должно зависеть от природы основного металла, наличия я количества легирующих элементов и нерастворенных примесей. Ясно также, что размер рекристаллизированного зерна зависят от размеров зерна исходного.

Вторичная рекристаллизация, называе­мая иногда аномальной, заключается в преимущественном росте отдель­ных зерен, попавших в наиболее благоприятные условия роста. В ре­зультате вторичной рекристаллизации образуется множество мелких зерен и небольшое количество очень крупных зерен. Вторичная рекристаллизация может быть вызвана благоприятной для роста кристалло­графической ориентировкой отдельных зерен, меньшей, чем у других зерен, концентрацией дефектов, меньшим содержанием на границах примесей. Соответственно, в зависимости от условия, этот вид рекристаллизации может стимулироваться объемной или зернограничной энергией. Структура с разнозернистостью характеризуется пониженной пластичностью.

Влияние температуры рекристаллизации на размер зерна рассмот­рено выше и характеризуется графиком, приведенным на рис. 7а, из которого следует интенсивный рост зерна при увеличении этой температуры. При данной степени деформации Е и определенной темпера­туре размер зерна возрастает с увеличением продолжительности рекристаллизационного отжига, как это изображено на рис. 7 б.


Рис. 7. Влияние температуры, продолжительности отжига и

степени деформации на величину рекристаллизированного зерна (t123; On и On ’ - продолжительности инкубационного периода; f и f ’ - критические степени деформации).

Зависимость величины рекристаллизационного зерна, приведенная на рис. 7 в, объясняется следующим образом. Установлено, что зародыши рекристаллизации образуется в местах максимальных искажений кристаллической решетки. Количество таких мест с увеличением степени деформация возрастает, а значит, будет увеличиваться и число центров рекристаллизации. Поскольку при увеличения числа центров рекристаллизации, особенно после больших степеней деформация, . скорость их роста поя постоянной температуре изменяется незначительно, размер рекристаллизационных зерен с увеличением степени деформации должен уменьшаться.

Как видно из приведенной опытной зависимости, выдвинутая гипотеза подтверждается только при относительно больших степенях деформации - выше 5 - 15 %. При меньших степенях деформации величина зерна вообще не изменяется. И было понятно, почему после рекристаллизации металла, деформированного на 5 - 15 %, образуется столь крупное зерно, иногда во много раз превосходящее по размерам исходное.

Установлено, что после малых степеней холодной деформация (до 5 %) плотность дислокаций в деформированном металле повышается незначительно. Нагрев после такой деформации приводят, как правлю, к стабилизирующей полигонизации, затрудняющей последующие структурные изменения. В результате, нагрев, после таких степеней деформации, не вызывает роста зерна. Процесс ограничивается протекавшей в них полигонизацией.

Степень деформации (5 - 15 %), нагрев после, которой вызывает скачкообразный рост зерна, называется критической. При нагреве после критической: деформации также не происходит первичной рекристаллизации, характерной особенностью которой является зарождение и рост новых зерен. Нагрев после критической деформации вызывает рост одних исходных перекристаллизованных зерен за счет поглощения соседних. Такой механизм кристаллизация, сходной со вторичной рекристаллизацией, объясняется неоднородностью деформации разных зерен при небольших степенях деформации.

В связи с этим при нагреве становится возможным рост менее де­формированных зерен, имеющих более низкое значение свободной энергии, за счет более деформированных, имеющих большую свободную энергия. При более высока степенях деформация протекает процесс первичной рекристаллизации.

В практике обработки металлов давлением следует избегать критической степени деформация, т.к. крупнозернистая структура, получаемая в результате последующего рекристаллизационного отжига, проводимого для снятия наклепа, обладает пониженной ударной вязкостью, Это требование должно регламентироваться технологическими инструкциями.

Пластическая деформация металлов

Деформацией называется изменение размеров и формы тела под действием приложенных сил. Деформация делится на упругую и пластическую.

Упругая деформация. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства те­ла полностью устраняется после прекращения действия внешних сил. Упругая деформация не вызывает заметных остаточных из­менений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное относи­тельное и полностью обратимое смещение атомов.

Пластическая деформация. При возрастании касательных напряжений выше определенной величины (предел или порог упругости) деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации. Часть же деформации, которую называют пластической, остается.

Пластическая деформация в кристаллах может осущест­вляться скольжением и двойникованием. Скольжение (смеще­ние) отдельных частей кристалла относительно друг друга про­исходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины (τк).

Схема упругой и пластической деформаций металла с куби­ческой структурой, подвергнутого действию касательных напряжений, показана на рис. 18. Эта схема дает наглядное представление о смещении атомов в соседних плоскостях при сдви­ге на одно межатомное расстояние.

Скольжение в кристаллической решетке протекает по плос­костям, и направлениям с наиболее плотной упаковкой атомов где величина сопротивлению сдвигу (τк) наименьшая, а сама величина τ значительна. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая.

Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической дефор­мации. Металлы, имеющие кубическую кристаллическую ре­шетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексаго­нальной плотноупакованной структурой менее пластичны и поэтому труднее, чем металлы с кубической структурой, подда­ются прокатке, штамповке и другим способам деформации.

Процесс скольжения не следует, однако, представлять как одновременное передвижение одной части кристалла относи­тельно другой. Такой жесткий или синхронный сдвиг потребовал бы напряжений, в сотни или даже тысячи раз превышающих те, при которых в действительности протека­ет процесс деформации.


Рис. 18. Схема упругой и пластической деформации металла под действием напряжения сдвига:

а – первоначальный кристалл; б – упругая деформация; в – увеличение упругой и пластической деформации, вызванных скольжением, при нагружении, большем предела упругости; г – напряжения, обусловившие появление сдвига (после сдвига сохранилась остаточная деформация); д – образование двойника.


Рис. 19. Движение краевой дислокации, приводящее к образованию ступеньки единичного сдвига на поверхности кристалла:

а – схема движения дислокации; б – краевая дислокация в кристаллической структуре; в – дислокация переместилась на дно; г – на два межатомных расстояния в решетке под влиянием приложенного напряжения; д – выход дислокации на поверхность и появление сдвига.

Скольжение осуществляется в результате перемещения в кристалле дислокаций, что показано на рис. 19. Чтобы дислокация из исход­ного положения 1 переместилась в соседнее положение 14, не нужно сдвигать всю верхнюю половину кристалла на одно меж­атомное расстояние.

Достаточно, чтобы произошли следующие перемещения атомов: атом 1 в положение атома 2, атом 3 — в 4, атом 5 — в 6, атом 7 — в 8, атом 9 — в 10, атом 11 — в 12, атом 13 — в 14, атом 15 — в 16 и атом 17 — в 18. Также смещаются атомы не только в плоскости чертежа, но и во всех атомных слоях, параллельных этой плоскости.

Незначительные перемещения атомов в области дислокации приводят к перемещению дислокаций на одно межатомное расстояние.

Следует иметь в виду, что перемещение дислокаций, образовавшихся в процессе кристаллизации, ограничено. Большие деформации возможны только вследствие того, что движение этих дислокаций вызыва­ет появление или размножение большого количества новых дислокаций в процессе пластической деформации.

Двойникование. Пластическая деформация некоторых метал­лов, имеющих плотноупакованные решетки К12 и Г12, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.

При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно имело округлую форму, после дефор­мации в результате смещений по плоскостям скольжения зерна вытягиваются в направлении действующих сил τ, образуя во­локнистую или слоистую структуру. Одновременно с изменением формы зерна внутри него происходит дробление блоков и увеличение угла разориентировки между ними.

Текстура деформации. При большой степени деформации возникает преимущественная кристаллографическая ориенти­ровка зерен. Закономерная ориентировка кристаллитов относи­тельно внешних деформирующих сил получила название тек­стуры (текстура деформации).

Наклеп. С увеличением степени де­формации свойства, характеризующие сопротивление деформации (σв, σт, НВ и др.), повышаются, а способность к пластической деформации — пластич­ность (δ и φ) уменьшается. Это явление роста упрочнения получило название наклепа. Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа де­фектов кристаллического строения (дислокаций, вакансий, межузельных атомов).

Все дефекты кристалличе­ского строения затрудняют движение дислокаций, а следовательно, повышают сопротивление дефор­мации и уменьшают пластичность. Наибольшее значение имеет, увеличение плотности дислокаций, так как возникающее при этом взаимодействие между ними тормозит дальнейшее их перемещение. В результате деформации уменьшается плотность, сопротивление коррозии и повышается электросопротивление. Холодная деформация ферромагнитных металлов, например железа, повышает коэрцитивную силу и уменьшает магнитную про­ницаемость.

Свойства пластически деформированных металлов.

В результате холодного пластического деформирования металл упрочняется и изменяются его физические свойства — электросопро­тивление, магнитные свойства, плотность. Наклепанный металл за­пасает 5-10% энергии, затраченной на деформирование. Запасенная энергия тратится на образование дефектов решетки (например, плот­ность дислокаций возрастает до 10 9- 10 12 см -2 ) и на упругие искажения решетки. Свойства наклепанного металла меняются тем сильнее, чем больше степень деформации (рис. 20).

При деформировании увеличиваются проч­ностные характеристики (твердость;σв; σ0,2; σупр) и понижаются пластичность и вязкость (δ; φ; ан). Металлы интенсивно наклепываются в начальной стадии деформи­рования, после 40%-ной дефор­мации механические свойства меняются незначи­тельно. С увеличением степени деформации пре­дел текучести растет быстрее предела прочности (временного сопротивления).

Обе характери­стики у сильно наклепанных металлов сравниваются, а удлинение становится равным нулю. Такое со­стояние наклепанного металла яв­ляется предельным, при попытке про­должить деформирование металл разрушается.

Путем наклепа твердость и временное сопротивле­ние (предел прочности) удается повысить в 1,5-3 раза, а предел текучести — в 3-7 раз при максимально возможных де­формациях. Металлы с ГЦК-решеткой упрочняются силь­нее металлов с ОЦК-решеткой. Среди сплавов с ГЦК-решеткой сильнее упрочняются те, у которых энергия дефектов упаковки минимальна (например, интенсивно наклепываются аустенитная сталь; алюминиевая бронза с 7% А1; никель; а алюминий упрочняется незначительно).

Упрочнение при наклепе широко используют для повышения ме­ха­нических свойств деталей, изготовленных методами холодной обра­ботки давлением. В частности, наклеп поверхностного слоя деталей повышает сопротивление усталости. Понижение пластичности при наклепе исполь­зуют для улучшения обрабатываемости резанием вяз­ких и пластичных материалов (сплавов алюминия, латуней и др.).

Влияние нагрева на структуру и свойства холоднодеформированных металлов.

Неравновесная структура, созданная холодной деформацией у боль­шинства металлов устойчива при комнатной температуре. Переход металла в более стабильное состояние происходит при нагреве. Процессы, происходящие при нагреве подразделяют на две основ­ные стадии: возврат и рекристаллизацию; обе стадии сопровождаются выделением теплоты и уменьшением свободной энергии. Возврат про­исходит при относительно низких температурах, рекристаллизация — при более высоких.

Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т. е. размер и форма кристаллов при возврате не изменяются.

Рекристаллизацией называют зарождение и рост новых кристал­лов с меньшим количеством дефектов строения; в результате рекри­сталлизации образуются совершенно новые, чаще всего, равноосные кристаллы.

Возврат. Стадию возврата, в свою очередь, разделяют на две возможные стадии: отдых и полигонизацию. Отдых при нагреве деформи­рованных металлов происходит всегда, а полигонизация развивается лишь при определенных условиях.

Отдыхом холоднодеформированного металла называют стадию воз­врата, при которой вследствие перемещения атомов уменьшается коли­чество точечных дефектов, в основном вакансий; в ряде металлов, таких как алюминий и железо, отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается также уменьшением остаточных напряжений.

Отдых вызывает значительное уменьшение удельного электросопротивления и повышение плотности металла. Если при отдыхе уменьшается плотность дислокаций, то наблюдается уменьшение твердости и прочности металла (алюминий, железо); если плотность дислокаций при отдыхе не меняется, то отдых не сопровож­дается изменением механических свойств (медь, латунь, никель).

Полигонизация — это процесс разделения деформиро­ванных зерен металла на полигоны — области с малой плотностью дислокаций. Эти области называются бло­ками. Процесс полигонизации протекает в интервале температур отдых — рекристаллизация и заканчивается созданием блочной структуры.

Полигонизация приводит к дальнейшему снятию упру­гих искажений кристаллической решетки и более полно­му восстановлению физических свойств металла. Меха­нические свойства его при этом изменяются незначитель­но. Текстура сохраняется, хотя и становится блочной.

Вслед за возвратом протекает рекристаллизация, за­ключающаяся в зарождении и росте новых неискажен­ных равноосных зерен (рис. 21).

При первичной рекристаллизациив деформированной среде зарождаются и растут равноосные зерна до тех пор, пока полностью не исчезнет текстура, созданная деформацией. Зародышами зерен являются отдельные энергетически выгодные блоки (центры рекристаллиза­ции). После исчезновения текстуры металл приобретает равновесную мелкозернистую структуру.

Суммарная протяженность границ мелких зерен ве­лика. Граничные зоны зерен представляют собой тонкие (в несколько атомных слоев) сильно искаженные облас­ти, так как здесь сопрягаются кристаллические решетки различно ориентированных стыкующихся зерен, сюда стекаются точечные дефекты и дислокации. Поэтому граничные зоны зерен и характеризуются высокими зна­чениями энергии (поверхностной энергии), которая уменьшается за счет округления зерен и дальнейшего их роста путем фронтального перемещения граничных зон растущих зерен и поглощения мелких.

Атомы из мелких зерен диффундируют через границу в растущие зерна, отчего первые постепенно исчезают, а вторые разраста­ются. В результате число зерен структуры металла умень­шается, а их размеры увеличиваются. Рост одних равно­осных зерен за счет исчезновения других представляет собой собирательную рекристаллизацию.

Температура начала рекристаллизации зависит от многих факторов и прежде всего от степени деформации материала и содержания примесей в нем. Определено, что

где Трекр— абсолютная минимальная температура рекри­сталлизации; α — коэффициент, учитывающий вышепере­численные факторы; Тпл — абсолютная температура плав­ления данного вещества.

Минимальная температура рекристаллизации железа и других металлов технической чистоты определяется по формуле А. А. Бочвара:

Термическая операция, заключающаяся в нагреве де­формированного (текстурованного) материала до темпе­ратуры выше Трекр, выдержке и последующем медленном охлаждении (в печи), называется рекристаллизационным отжигом.


Рис. 21. Влияние нагрева на механические свойства и структуру металла, упрочненного деформацией.

Практически температура рекристаллизационного от­жига выбирается выше расчетной (обычно на 200. 300°С), так как чем выше температура нагрева, тем быстрее про­текает рекристаллизация, характеризующаяся, в частно­сти, уменьшением твердости металла. Для же­леза и низкоуглеродистой стали температура рекристал­лизационного отжига принимается равной 650. 700°С.

Для того чтобы в металле при нагреве протекала ре­кристаллизация, необходима его хотя бы минимальная предварительная холодная обработка (критическая сте­пень деформации εкр для железа равна 5. 6 %, для мало­углеродистой стали — 7. 15, для меди — около 5, для алюминия — 2. 3 %).

При рекристаллизации после де­формирования материала с εкр зерно растет в нем особен­но сильно и может увеличиться по сравнению с исходным во много раз. Выбирая степень деформации и температу­ру рекристаллизационного отжига, можно получить в металле зерно нужного размера. Рекристаллизационный отжиг широко используют для управления формой и раз­мерами зерен, текстурой и свойствами металлов и сплавов.

Создание текстуры и наклеп возможны только в слу­чае холодного деформирования металла. Обработка дав­лением называется холодной, если она совершается при температурах ниже температуры рекристаллизации, горячей — при температу­рах выше температуры рекристаллизации.

При горячей обра­ботке давлением одно­временно с пластиче­ской деформацией ме­талла протекает рекри­сталлизация, которая продолжается и после деформации до тех пор, пока температура ме­талла не станет ниже Трекр. При этом в металлах не возникает текстура и они не наклепываются. Такая обработка широко используется при производстве горячекатаного стального полуфабриката различного профиля.

Читайте также: