Таблица металлы полупроводники вакуум газ жидкость

Обновлено: 04.10.2024

При изучении темы "Электрический ток в средах" целесообразно использовать составление таблицы, дающей возможность сопоставить механизм прохождения тока в различных средах, выявить различия и общие черты данного явления, применение его на практике (см. табл.1).

Составление таблицы возможно на любом этапе изучения темы в зависимости от образовательного уровня учащихся, подготовки учителя и цели, которую ставит перед собой учитель.

Рассмотрим работу с таблицей на разных этапах изучения темы.

1. Составление таблицы можно начать на первом уроке. Опираясь на знания, полученные учащимися при изучении темы "Электрический ток" в курсе физики 8 класса, целесообразно напомнить им, что все вещества делятся на проводники и диэлектрики условно по количеству свободных носителей зарядов, напомнить условия протекания тока. Далее с помощью демонстраций учащимся показывается, что электрический ток можно получить в любой среде, подчеркнув, что во всех случаях для прохождения тока через среду в ней нужно создать электрическое поле, но в одних средах ток начинается сразу, т.к. в них есть свободные носители заряда, а в других носители заряда надо создать тем или иным способом.

1) Свечение лампы - ток в металлах.
2) Несамостоятельный разряд в газах - ток в газах.
3) Прохождение тока через раствор соли - ток в жидкостях.
4) Проводимость полупроводников при нагревании и освещении.
5) Работа вакуумного диода - ток в вакууме.

Затем, перед учащимися ставится задача изучить механизм появления, свойства и поведение носителей зарядов в различных средах, и практическое применение тока в этих средах в быту и технике. При этом сразу выстраивается план изучения темы в виде заполнения первой горизонтальной и первой вертикальной строк таблицы.

В дальнейшем возможно в хорошо подготовленных классах заполнение таблицы проводить горизонтальными строками. При этом четко просматриваются сходства и различия в проводимости различных сред. Такой подход позволяет развивать мыслительную способность учащихся, способность сравнивать, анализировать, обобщать.

2. В менее подготовленных классах заполнение таблицы можно проводить вертикальными столбцами по мере изучения механизма проводимости различных сред. При этом целесообразно после изучения темы "электрический ток в металлах" вместе с учащимися выделить основные компоненты (пункты) рассказа о данном явлении, поместив их в первую вертикальную колонку таблицы.

3. Возможно заполнение таблицы вместе с учащимися на уроке обобщения темы с использованием доски. При этом отдельные учащиеся заполняют и объясняют каждый свою колонку. ( В слабом классе это может делать сам учитель с помощью учеников).

4. И, наконец, заполнение таблицы можно предоставить учащимся в конце изучения темы как самостоятельную, контрольную или домашнюю работ .

В классе, где у учащихся развито образное мышление, можно во второй, третьей и четвертой горизонтальных строчках таблицы заменить текст соответствующими рисунками (см. табл.2).

Таблица электрического тока в различных средах

Одним из основных свойств электрического тока, является его способность к проводимости в разных условиях. Степень проводимости для каждого случая отличается между собой. Поэтому, когда изучается электрический ток в различных средах, таблица помогает наглядно представить, какими качествами он обладает в том или ином случае. Все вещества, в соответствии с их электрической проводимостью, разделяются на несколько основных категорий.

Металлы, как проводники электрического тока

При прохождении электрического тока в металлах, существенных изменений не наблюдается, за исключением обязательного нагрева. Металлы отличаются высокой концентрацией электронов, влияющих на уровень проводимости. Происходит их постоянное движение с высокой скоростью.


В узлах кристаллических решеток металлов располагаются положительные ионы, производящие тепловые колебания. В промежутках между ними происходит движение свободных электронов, которым придается ускорение с помощью электрического поля.

Движение электрического тока в полупроводниках

Таблица электрического тока в различных средах

Полупроводники обладают собственными свойствами, влияющими на проводимость. Основой их проводимости является р-п переход. Повышение температуры вызывает увеличение удельного сопротивления вещества. При этом, возрастает количество свободных электронов, на месте которых остаются виртуальные заряды, называемые дырками.

Поэтому, основной особенностью электрического тока в полупроводниках, является движение не только свободных электронов, но и дырок. При росте температуры, проводимость увеличивается из-за резкого снижения сопротивления.

Жидкость и газ – эффективные проводники

Всем известно, что дистиллированная вода не является проводником. Однако, если опустить в нее хотя-бы один кристалл обычной соли, произойдет замыкание цепи. Это вызвано появлением в воде свободных носителей зарядов. Происходит явление электролитической диссоциации, когда молекулы распадаются на ионы под воздействием растворителя. Такие жидкие проводники, где содержатся подвижные носители зарядов, называются электролитами.

Газы в обычном состоянии, как и дистиллированная вода, также являются диэлектриками, поскольку содержат нейтральные молекулы и атомы. Все эти частицы не имеют зарядов и придают газам высокие изолирующие свойства. Для того, чтобы газ стал проводником, в нем необходимо присутствие заряженных частиц в виде свободных носителей зарядов.


Как правило, проводниками являются ионизированные газы с положительными и отрицательными ионами. Проводимость в газах может быть создана самостоятельно, или путем искусственного внесения в них заряженных частиц.

III. Основы электродинамики

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.


Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества - табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления - табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273 0 C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость - микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.


Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма - наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В "рекламной" неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой "живую плазму".

Между электродами сварочного аппарата возникает дуговой разряд.

Дуговой разряд горит в ртутных лампах - очень ярких источниках света.

Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!

Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд - основной источник потерь энергии высоковольтных линий электропередачи.


Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны - анод.

Тесты к зачету по теме: "Электрический ток в различных средах"

3. Как называются проводники, создающие электрическое поле в электролите?

4. Что называется катодом?

5. Что такое катионы?

6. Что такое анионы?

7. Производит ли электрический ток в электролитах химическое действие?

8. Какой ток необходим для электролиза?

9. От каких условий зависит степень диссоциации?

10. Как изменяется электропроводность электролита при повышении температуры?

11. Что называется диссоциацией?

Закон Фарадея (К. № 2)

1. В чем состоит закон Фарадея для электролиза?

2. Что такое электрохимический эквивалент?

3.В каких единицах измеряется электрохимический эквивалент в СИ?

4. Как вычисляется заряд электрона или одновалентного иона?

5. Чему равно численное значение заряда электрона?

6. Укажите формулу закона Фарадея.

7. Какой знак несут ионы меди в водном растворе медного купороса?

8. На каком электроде выделяется медь при прохождении постоянного тока через водный раствор медного купороса?

9. Чему равно число Авогадро?

10. Чему равно число Фарадея?

11. Физический смысл постоянной Фарадея?

Токи в газах (К. № 3)

1. Почему газ при нормальных условиях является хорошим изолятором?

2. При каком условии газ становится электропроводным?

3. Что такое ионизаторы?

4. Какие внешние воздействия могут ионизировать газы?

5. Что такое рекомбинация ионов?

6. При каком условии возникает самостоятельная ионизация газа?

7. Почему при электрическом разряде газ начинает светиться?

8. Как зависит сила тока от напряжения при несамостоятельном разряде?

9. Какой ток называется током насыщения?

10. Как объяснить, что при увеличении напряжения после тока насыщения наблюдается резкое возрастание силы тока?

11. Какой электрический заряд называется самостоятельным?

12. Какой заряд называется несамостоятельным?

Электрические разряды в газах (К. №4)

1. Что представляет собой коронный разряд?

2. Что представляет собой искровой разряд?

3. Что представляет собой дуговой разряд?

4. Что представляет собой тлеющий разряд?

5. Что представляет собой кистевой разряд?

6. В чем состоит явление электрической эрозии?

7. Каким образом с катода, играющего роль "резца", удаляется нарост оседающего металла?

8. При каком условии возникает дуговой разряд?

9. Какова температура катода электрической дуги?

10. Какова температура анода электрической дуги?

11. Почему дуговой разряд продолжается при наличии некоторого расстояния между электродами?

12. Почему проводимость газа при разряжении улучшается?

13. Чем объяснить, что электропроводность сильно разряженного газа близка к нулю?

Электрический ток в полупроводниках (К. № 5)

1. Что называется собственной проводимостью полупроводников?

2. При каких условиях чистые полупроводники становятся электропроводными?

3. Как зависит проводимость полупроводников от температуры?

4. Какую проводимость полупроводников называют электронной?

5. Как в чистом полупроводнике возникают "дырки"?

6. Какова природа тока в полупроводнике?

7. Как влияет на проводимость полупроводников наличие в них примесей?

8. При каком условии в примесном полупроводнике возникает электронная проводимость?

9. При каком условии в примесном полупроводнике возникает дырочная проводимость?

10. Как называются полупроводники, у которых основными носителями заряда являются электроны?

11. Как называются полупроводники, у которых основными носителями заряда являются дырки?

Полупроводниковые приборы (К. № 6)

1. Как называется контакт полупроводников разного типа?

2. Что такое запирающий слой?

3. Почему в переходном слое возникает контактная разность потенциалов?

4. Устройство полупроводникового диода?

5. Устройство полупроводникового триода (транзистора)?

6. Будет ли проходить через диод ток, если к нему приложено напряжение, как показано на рисунке 1?

7. Будет ли проходить через диод ток, если к нему приложено напряжение, как показано на рисунке 2?

8. Что такое термистор?

9. Что такое болометр?

Электрический ток в вакууме. Диод (К. №8)

1. Что называется термоэлектронной эмиссией?

2. Что называют вакуумом?

3. Основное свойство вакуумного диода.

4. Какой вид имеет вольтамперная характеристика?

5. Почему при достаточно высоком напряжении ток достигает насыщения, т.е. не увеличивается?

Электрический ток в жидкостях, в полупроводниках, в вакууме, в газах

Напоминаем, что в каждой среде есть свои носители электрических зарядов. В металлах ими служат свободные электроны, в электролитах — положительные и отрицательные ионы, в газах — ионы и электроны, полупроводниках — электроны и дырки, в вакууме — электроны. Электрический ток может течь с переносом и без переноса вещества. Перенос вещества осуществляется только ионами.

Электрический ток в электролитах

Электролиты — жидкости, проводящие электрический ток. К ним относят растворы солей, щелочей и кислот.


Положительные ионы (катионы) движутся к катоду, а отрицательные (анионы) — к аноду.

Пример №1. Электрическая цепь, изображенная на рисунке, включает в себя сосуд со слабым раствором поваренной соли (NaCl) и опущенными в него двумя электродами. В каком направлении (вправо, влево, вверх, вниз) будут двигаться ионы натрия при замыкании ключа:


При замыкании ключа в растворе соли начнут образовываться ионы: положительные в виде Na + и отрицательные в виде Cl – . Положительные ионы будут двигаться к отрицательному электроду (катоду), т.е. вправо.

Электрический ток в полупроводниках


К полупроводникам относят элементы четвертой группы таблицы химических элементов Д.И. Менделеева, которые имеют 4 валентных электрона. Собственная проводимость полупроводников — электронно-дырочная.

При низкой температуре все электроны участвуют в создании ковалентных связей, свободных электронов нет, и полупроводник ведет себя как диэлектрик. При повышении температуры или облучении полупроводников часть ковалентных связей разрушается, и появляются свободные электроны. На месте разрушенной связи возникает электронная вакансия — дырка. Она также перемещается по кристаллу и ведет себя подобно положительной частице.

Зависимость удельного сопротивления полупроводников от температуры и внешнего излучения показана на графике.


В полупроводниках также может осуществляться примесная проводимость.

Донорные примеси — это элементы пятой группы таблицы химических элементов Д.И. Менделеева. Только 4 из 5 валентных электрона участвуют в создании ковалентных связей. Остальные сразу становятся свободными. Полупроводник, основными носителями в котором являются отрицательные электроны, относятся к полупроводникам n-типа.

Акцепторные примеси — элементы третьей группы таблицы химических элементов Д.И. Менделеева. Три валентных электрона устанавливают ковалентные связи, а не месте четвертой появляется дырка. Полупроводник с положительными носителями относится к полупроводникам p-типа.

Применение полупроводниковых приборов

Термисторы — приборы, сопротивление которых изменяется при нагревании. Они позволяют определять малые изменения температуры.

Фоторезисторы — приборы, аналогичные термисторам, но сопротивление в них изменяется не при изменении температуры, а при изменении освещенности.

Полупроводниковый диод — соединение полупроводников двух типов. Обладает односторонней проводимостью.

Получение основных носителей происходит за счет термоэлектронной эмиссией.

Термоэлектронная эмиссия — процесс испускания электронов при нагревании катода до высокой температуры.

Свойства электронных пучков:

  • вызывают нагревание тел;
  • при торможении возникает рентгеновское излучение;
  • при попадании на некоторые вещества (люминофоры) вызывают их свечение;
  • направление электронов может изменять под действием электрического и магнитного полей.

Электрический ток в газах называют разрядом. Обычно газы состоят из нейтральных молекул, поэтому они являются диэлектриками. Чтобы появились носители электрического заряда, необходима затрата энергии.

Несамостоятельный разряд. При нагреве газа или при облучении его атомов могут отделиться электроны, и атомы превращаются в положительные ионы.

Самостоятельный разряд. В газах при столкновении молекул может освободиться хотя бы один электрон. Если он попадет в электрическое поле, то начнет двигаться с ускорением. Сталкиваясь с нейтральным атомом газа, ускоренный электрон может «выбить» из него другой электрон, превратив сам атом в положительный ион. Электроны будут и дальше ускоряться, разрушая атомы. Ионы создают ток в противоположном направлении. Таким образом, электрический ток в газах создается электронами и ионами.

На рис. 1 изображена зависимость силы тока через светодиод D от приложенного к нему напряжения, а на рис. 2 – схема его включения. Напряжение на светодиоде практически не зависит от силы тока через него в интервале значений 0,05 А

Читайте также: