Температура плавления металла и стекла

Обновлено: 17.05.2024

Температура плавления металлов, сплавов, фосфора и кремния, в °C и °F

Металл Температура плавления
( o C) ( o F)
Алюминий (Al) / Aluminum 660 1220
Алюминиевые сплавы / Aluminum Alloy 463 - 671 865 - 1240
Баббит = Babbitt 249 480
Бериллий (Be) = Beryllium 1285 2345
Бронза алюминиевая = Aluminum Bronze 1027 - 1038 1881 - 1900
Бронза бериллиевая, бериллиевая бронза = Beryllium Copper 865 - 955 1587 - 1750
Бронза марганцовистая = Manganese bronze 865 - 890 1590 - 1630
Ванадий (V), Vanadium 1900 3450
Висмут (Bi) = Bismuth 271.4 520.5
Вольфрам (W), Tungsten 3400 6150
Железо ковкое (Fe) = Carbon Steel 1482 - 1593 2700 - 2900
Золото (Au) чистое 999 пробы 100% золото = Gold 24K Pure 1063 1945
Инконель, жаропрочный никелехромовый сплав = Inconel 1390 - 1425 2540 - 2600
Инколой, жаропрочный никелехромовый сплав = Incoloy 1390 - 1425 2540 - 2600
Иридий (Ir), Iridium 2450 4440
Кадмий (Cd) = Cadmium 321 610
Калий (K) = Potassium 63.3 146
Кобальт (Co) = Cobalt 1495 2723
Кремний (Si) = Silicon 1411 2572
Латунь желтая = Brass, Yellow 905-932 1660-1710
Латунь морская = Морская латунь (29-30% Zn, 70% Cu-1% Sn и 0,02-0,05% As) = Admiralty Brass 900 - 940 1650 - 1720
Латунь красная = Brass, Red 990 - 1025 1810 - 1880
Медь (Cu) = Copper 1084 1983
Мельхиор, купроникель = Cupronickel 1170 - 1240 2140 - 2260
Магний (Mg), Magnesium 650 1200
Магниевые сплавы = Magnesium Alloy 349 - 649 660 - 1200
Марганец (Mn), Manganese 1244 2271
Молибден (Mo), Molybdenum 2620 4750
Монель (до 67 % никеля и до 38 % меди) = Monel 1300 - 1350 2370 - 2460
Натрий (Na) = Sodium 97.83 208
Никель (Ni), Nickel 1453 2647
Ниобий (Nb), Niobium (Columbium) 2470 4473
Олово (Sn), Tin 232 449.4
Осмий (Os), Osmium 3025 5477
Палладий (Pd), Palladium 1555 2831
Платина (Pt),Platinum 1770 3220
Плутоний (Pu), Plutonium 640 1180
Рений (Re), Rhenium 3186 5767
Родий (Rh) = Rhodium 1965 3569
Ртуть (Hg) = Mercury -38.86 -37.95
Рутений (Ru) = Ruthenium 2482 4500
Селен (Se) = Selenium 217 423
Cеребро 900 пробы = Coin Silver 879 1615
Серебро (Ar) чистое = Pure Silver 961 1761
Cеребро 925 пробы = Sterling Silver 893 1640
Свинец (Pb), Lead 327.5 621
Сталь углеродистая = Carbon Steel 1425 - 1540 2600 - 2800
Сталь нержавеющая = Stainless Steel 1510 2750
Сурьма (Sb) = Antimony 630 1170
Тантал (Ta) = Tantalum 2980 5400
Титан (Ti), Titanium 1670 3040
Торий (Th), Thorium 1750 3180
Уран (U), Uranium 1132 2070
Фосфор (P), Phosphorus 44 111
Хастелой С, Hastelloy C (54,5-59,5% Ni; 15-19% Mo; 0,04-0,15% C; 4-7% Fe; 13-16% Cr; 3,5-5,5% W) 1320 - 1350 2410 - 2460
Хром (Cr) = Chromium 1860 3380
Цинк (Zn), Zinc 419.5 787
Цирконий (Zr), Zirconium 1854 3369
Чугун серый = Grey Cast Iron 1127 - 1204 2060 - 2200
Чугун Ковкий, Ductile Iron 1149 2100

Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Какова температура плавления металлов — таблицы

Металлы и сплавы — это незаменимая основа для литейного и ювелирного производства, ковки и многих других сфер. Что бы ни делал человек из металла (какой бы это ни был процесс), для правильной работы ему нужно знать, при какой температуре плавится тот или иной металл. Мы подробно рассмотрим процесс плавления, его отличие от кипения, а также сравним температуры в таблицах.

Таблица температур плавления

Что такое температура плавления

Каждый металл имеет неповторимые свойства, и в этот список входит температура плавления. При плавке металл уходит из одного состояния в другое, а именно из твёрдого превращается в жидкое. Чтобы сплавить металл, нужно приблизить к нему тепло и нагреть до необходимой температуры – этот процесс и называется температурой плавления. В момент, когда температура доходит до нужной отметки, он ещё может пребывать в твёрдом состоянии. Если продолжать воздействие – металл или сплав начнет плавиться.

Плавление и кипение – это не одно и то же. Точкой перехода вещества из твердого состояния в жидкое, зачастую называют температуру плавления металла. В расплавленном состоянии у молекул нет определенного расположения, но притяжение сдерживает их рядом, в жидком виде кристаллическое тело оставляет объем, но форма теряется.

При кипении объем теряется, молекулы между собой очень слабо взаимодействуют, движутся хаотично в разных направлениях, совершают отрыв от поверхности. Температура кипения – это процесс, при котором давление металлического пара приравнивается к давлению внешней среды.

Для того, чтобы упростить разницу между критическими точками нагрева мы подготовили для вас простую таблицу:

СвойствоТемпература плавкиТемпература кипения
Физическое состояниеСплав переходит в расплав, разрушается кристаллическая структура, проходит зернистостьПереходит в состояние газа, некоторые молекулы могут улетать за пределы расплава
Фазовый переходРавновесие между твердым состоянием и жидкимРавновесие давления между парами металла и воздухом
Влияние внешнего давленияНет измененийИзменения есть, температура уменьшается при разряжении

При какой температуре плавится

Металлические элементы, какими бы они ни были — плавятся почти один в один. Этот процесс происходит при нагреве. Оно может быть, как внешнее, так и внутреннее. Первое проходит в печи, а для второго используют резистивный нагрев, пропуская электричество либо индукционный нагрев. Воздействие выходит практически схожее. При нагреве, увеличивается амплитуда колебаний молекул. Образуются структурные дефекты решётки, которые сопровождаются обрывом межатомных связей. Под процессом разрушения решётки и скоплением подобных дефектов и подразумевается плавление.

У разных веществ разные температуры плавления. Теоретически, металлы делят на:

  1. Легкоплавкие – достаточно температуры до 600 градусов Цельсия, для получения жидкого вещества.
  2. Среднеплавкие – необходима температура от 600 до 1600 ⁰С.
  3. Тугоплавкие – это металлы, для плавления которых требуется температура выше 1600 ⁰С.

Плавление железа

Температура плавления железа достаточно высока. Для технически чистого элемента требуется температура +1539 °C. В этом веществе имеется примесь — сера, а извлечь ее допустимо лишь в жидком виде.

Без примесей чистый материал можно получить при электролизе солей металла.

Плавление чугуна

Чугун – это лучший металл для плавки. Высокий показатель жидкотекучести и низкий показатель усадки дают возможность эффективнее пользоваться им при литье. Далее рассмотрим показатели температуры кипения чугуна в градусах Цельсия:

  • Серый — температурный режим может достигать отметки 1260 градусов. При заливке в формы температура может подниматься до 1400.
  • Белый — температура достигает отметки 1350 градусов. В формы заливается при показателе 1450.

Важно! Показатели плавления такого металла, как чугун – на 400 градусов ниже, по сравнению со сталью. Это значительно снижает затраты энергии при обработке.

Плавление стали


Плавления стали при температуре 1400 °C

Сталь — это сплав железа с примесью углерода. Её главная польза — прочность, поскольку это вещество способно на протяжении длительного времени сохранять свой объем и форму. Связано это с тем, что частицы находятся в положении равновесия. Таким образом силы притяжения и отталкивания между частицами равны.

Справка! Сталь плавится при 1400 °C.

Плавление алюминия и меди

Температура плавления алюминия равна 660 градусам, это означает то, что расплавить его можно в домашних условиях.

Чистой меди – 1083 градусов, а для медных сплавов составляет от 930 до 1140 градусов.

От чего зависит температура плавления

Для разных веществ температура, при которой полностью перестраивается структура до жидкого состояния – разная. Если взять во внимание металлы и сплавы, то стоит подметить такие моменты:

  1. В чистом виде не часто можно встретить металлы. Температура напрямую зависит от его состава. В качестве примера укажем олово, к которому могут добавлять другие вещества (например, серебро). Примеси позволяют делать материал более либо менее устойчивым к нагреву.
  2. Бывают сплавы, которые благодаря своему химическому составу могут переходить в жидкое состояние при температуре свыше ста пятидесяти градусов. Также бывают сплавы, которые могут «держаться» при нагреве до трех тысяч градусов и выше. С учетом того, что при изменении кристаллической решетки меняются физические и механические качества, а условия эксплуатации могут определяться температурой нагрева. Стоит отметить, что точка плавления металла — важное свойство вещества. Пример этому – авиационное оборудование.

Термообработка, в большинстве случаев, почти не изменяет устойчивость к нагреву. Единственно верным способом увеличения устойчивости к нагреванию можно назвать внесение изменений в химический состав, для этого и проводят легирование стали.

У какого металла самая высокая температура плавления


Вольфрам – самый тугоплавкий металл, 3422 °C (6170 °F).

Твердый, тугоплавкий, достаточно тяжелый материал светло-серого цвета, который имеет металлический блеск. Механической обработке поддается с трудом. При комнатной температуре достаточно хрупок и ломается. Ломкость металла связана с загрязнением примесями углерода и кислорода.

Примечание! Технически, чистый металл при температуре выше 400 °C становится очень пластичным. Демонстрирует химическую инертность, неохотно вступает в реакции с другими элементами. В природе встречается в виде таких сложных минералов, как: гюбнерит, шеелит, ферберит и вольфрамит.

Вольфрам можно получить из руды, благодаря сложным химическим переработкам, в качестве порошка. Используя прессование и спекание, из него создают детали обычной формы и бруски.

Вольфрам — крайне стойкий элемент к любым температурным воздействиям. По этой причине размягчить вольфрам не могли более сотни лет. Не существовало такой печи, которая смогла бы нагреться до нескольких тысяч градусов по Цельсию. Ученым удалось доказать, что это самый тугоплавкий металл. Хотя бытует мнение, что сиборгий, по некоторым теоретическим данным, имеет большую тугоплавкость, но это лишь предположение, поскольку он является радиоактивным элементом и у него небольшой срок существования.

Молекулярная физика. Плавление и кристаллизация.

Переход вещества из твердого кристаллического состояния в жидкое называется плавлением. Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.

Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристаллизацией. Температура, при которой вещество кристаллизуется, называется температурой кристаллизации.

Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.

На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K). На нем по горизонтальной оси отложено время, а по вертикальной — температура.

Молекулярная физика Плавление и кристаллизация

Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени tнач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ). Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает го­реть и тепло, следовательно, подводится. Процессу плавления соответствует горизонтальный учас­ток графика ВС. Только после того как весь лед расплавится и превратится в воду, температура снова начинает подниматься (участок CD). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е. тепло отводят (для этого можно сосуд с водой по­местить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится. Это идет процесс кристаллизации воды — образования льда (гори­зонтальный участок EF). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK).

Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия моле­кул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD) означает увеличение кинетической энер­гии молекул воды вследствие подводимого горелкой тепла.

При охлаждении воды (участок DE) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвер­девании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, пре­вращаясь в жидкость (участок ВС). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.

Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром, молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С. Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.

Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Неда­ром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.

Плавление аморфных веществ .

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача­ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы­шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления .

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты, которое выделяется при кристалли­зации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер­гии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой λ (лямбда).

Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой 1 кг выделяются те же 332 Дж энергии, которые нужны для превращения такой же массы льда в воду.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m, следует пользоваться той же формулой, но со знаком «минус»:

Теплота сгорания .

Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч­ное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты Q, выделяющееся при сгорании m кг топлива, определяют по формуле:

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

При какой температуре плавится бутылочное стекло

Кроме того факта, что существует температура плавления стекла, и что из этого материала можно делать самые разнообразные изделия, он имеет много других свойств. Плотность стекла во многом зависит от его химического состава, этот показатель характеризует отношение объема к весу материала. Так, этот показатель самый низкий у кварцевого стекла.

температура плавления стекла


Хрустальное, наоборот, имеет самую высокую, которая может превышать 3 г/см3. От химического состава также зависит и прочность этого материала, то есть то, как стекло может сохранять свою целостность в изделиях под воздействием внешних нагрузок. При растяжении и при сжатии влияние химического состава практически одинаково. На твердость материала влияет наличие или отсутствие примесей и их количественный показатель в данном экземпляре. Самым твердым считается то, в состав которого входит большое количество кремнезема, а именно кварцевое, а также боросиликатное. В свою очередь, наличие в составе окислов свинца снижает прочностные характеристики. Как известно, высокая температура плавления стекла позволяет изменить его внешний вид и при необходимости получить совершенно иную форму. Но при низких температурах, которые считаются нормальными для человеческой жизнедеятельности, стекло под воздействием нагрузок разрушается, а не деформируется.

температура плавления оргстекла


Хрупкость стеклянных изделий зависит от толщины материала, а также формы. Проще всего разбить на осколки получается стекло плоской формы. Чтобы этот показатель повысить, на производстве материала в состав добавляют окислы магния, борный ангидрид. Чем более неоднородно стекло, тем больше вероятность, что при механических нагрузках оно разобьется.

Воздействие температуры

Отдельного внимания стоит температура плавления стекла. Несмотря на хрупкость материала, для того чтобы перевести в жидкое состояние, потребуется нагреть его до высоких температур. Что касается обычного стекла, то его температура плавления колеблется от 425 до 600 оС, у кварцевого этот показатель достигает 1000 оС. Из-за своей хрупкости и, соответственно, сложности произведения действительно больших деталей из стекла, появилась необходимость создания такого материала, который мог бы быть более прочным, сохраняя при этом остальные свойства. И в 1936 году в продажу поступает органическое стекло. Температура плавления оргстекла низкая, составляет всего 160 оС, а при 200 оС материал доходит до кипения. Применяется оргстекло буквально везде, поскольку прозрачность у него такая же, как и у других но вот по удароустойчивости оно стоит на порядок выше.

Как расплавить стекло в домашних условиях

Если вы хотите не сварить, а растопить стеклянное изделие, то без специального оборудования тоже не обойтись, ведь стекло не относится к легкоплавким материалам.

как расплавить стекло


Тигель должен быть таким, чтобы захват его металлическими щипцами и прутьями не составлял затруднений.

Существует два способа плавки: литье и моллирование. В первом случае жидким стекольным сплавом заполняются специальные формы, а во втором случае состав плавится до густого, тягучего состояния, и с ним работают стеклодувы, придавая массе разнообразные формы.

плавление стекла


Чтобы расплавлять бутылки и другие изделия дома, вам понадобится печь специальной конструкции.

Температура плавления стекла

Точная температура плавления зависит от наличия примесей в составе. Обыкновенное прозрачное стекло плавится при 700-750⁰С, посудное – при 1200-1400⁰С, а кварцевое – 1650⁰С. В промышленном производстве поддерживают в печах поддерживают температуру 1600⁰С.

плавление стекла в горне


Кварц и песок без примесей переходят в стеклообразное состояние при температуре 2300 градусов Цельсия.

Использование печи для плавки стекла

Если вас интересует, как расплавить стекло в домашних условиях, то пригодится профессиональное оборудование, а именно – муфельная печь, чья конструкция обеспечивает, нагрев до максимально высоких температур. Сегодня существуют муфельные печи, способные нагреваться до 2000⁰С. Применяя такие конструкции дома, вы легко сможете изготовить украшения или другие изделия из стекла, переплавляя бутылки или другую стеклянную тару в совершенно новые изделие.

муфельная печь дома


Муфельная печь поможет производить стекло в домашних условиях.

Используйте формы для литья, но на них необходимо нанести специальный состав, чтобы стекло легко отделилось. Установите форму таким образом, чтобы состав не смог стечь за ее границы. Расположите изделия в печи так, чтобы при плавке, они стекали прямо в формы. Нагревайте печь постепенно, чтобы форма выдержала. После окончания процесса литья, понизьте температуру до 500⁰С и оставьте в печи для отжига.

Важно! Не подпускайте к оборудованию ребенка, так как это грозит опасностью для жизни.

Теперь вы знаете, что изготовить и расплавить стекло можно даже в домашних условиях, если в распоряжении есть сырье и специальное оборудование. Главное – соблюдайте технику безопасности при работе с высокими температурами и внимательно читайте инструкцию к эксплуатации муфельной печи, так вы обезопасите здоровье во время экспериментов со стеклом в домашних условиях.

Кварцевое стекло

Этот вид стекла получают путем плавления сырья высокой чистоты. Поэтому ответ на вопрос о том, при какой температуре плавится стекло кварцевое, – 1000оС. Это демонстрирует тот факт, что данный тип материала ещё и самый термостойкий, поэтому, если опустить его в раскаленном виде в холодную воду, он не будет трескаться. Благодаря этому кварцевое стекло можно использовать при очень высоких температурах, ведь чтобы привести его жидкое состояние, температура должна достигать 1500оС.

температура плавления стекла


Существует две разновидности этого стекла — прозрачный и молочно-матовый кварц. По своим показателям они практически одинаковы, но отличаются оптическими свойствами. Поверхность кварцевого стекла имеет бльшую адсорбционную способность не только к влаге, но и к некоторым газам. Также стоит помнить о том, что кварц необходимо предохранять от всевозможных загрязнений, в том числе и от жирных следов от рук, подобные пятна можно удалить этанолом, как вариант используют ацетон.

Виды стекла

Кварцевое стекло

Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты. Кварцевое стекло состоит из диоксида кремния SiO2 и является самым термостойким
стеклом: коэффициент его линейного расширения в пределах 0 — 1000 °С составляет всего 6х10-7. Поэтому раскаленное кварцевое стекло, опущенное в холодную воду, не растрескивается.

Температура размягчения кварцевого стекла, при которой достигается динамическая вязкость 107 Пуаз (10 Пахс) равна 1250 °С

. При отсутствии значительных перепадов давления кварцевые изделия можно применять до этой температуры. Полное же плавление кварцевого стекла, когда из него можно изготавливать изделия, наступает при 1500-1600 °С.

Известно два сорта

кварцевого стекла:
прозрачный
кварц и
молочно-матовый
. Мутность последнего вызвана обилием мельчайших пузырьков воздуха, которые при плавке стекла не могут быть удалены из-за высокой вязкости расплава. Изделия из мутного кварцевого стекла обладают почти такими же свойствами, как и изделия из прозрачного кварца, за исключением оптических свойств и большей газовой проницаемости.

Поверхность кварцевого стекла обладает незначительной адсорбционной

способностью к различным газам и влаге, но имеет наибольшую газопроницаемость среди всех стекол при повышенной температуре. Например, через кварцевую трубку со стенками толщиной в 1 мм и поверхностью 100 см2 при 750 °С за один час проникает 0,1 см3 Н2, если перепад давлений составляет 1 атм (0,1 МПа).

Кварцевое стекло следует тщательно предохранять от всяких загрязнений, даже таких как жирные следы от рук. Перед нагреванием кварцевого стекла имеющиеся на нем непрозрачные пятна снимают при помощи разбавленной фтороводородной кислоты, а жировые — этанолом или ацетоном.

Кварцевое стекло устойчиво в среде всех кислот

, кроме HF и Н3РO4. На него не действуют до 1200 °С С12 и НСl, до 250 °С сухой F2. Нейтральные водные растворы NaF и SiF4 разрушают кварцевое стекло при нагревании. Оно совершенно непригодно для работ с водными растворами и расплавами гидроксидов щелочных металлов.

Кварцевое стекло при высокой температуре сохраняет свои электроизоляционные свойства. Его удельное электрическое сопротивление при 1000 °С равно 106 Омхсм.

Обычное стекло

К обычным стеклам относятся известково-натриевое, известково-калиевое, известково-натриево-калиевое.

Известково-натриевое (содовое

), или натрий-кальций-магний-силикатное, стекло применяют для выработки оконных стекол, стеклотары, столовой посуды.

Известково-калиевое (поташное

), или калий-кальций-магний-силикатное, стекло обладает более высокой термостойкостью, повышенным блеском и прозрачностью; используется для выработки высококачественной посуды.

Известково-натриево-калиевое (содово-поташное

), или натрий-калий-кальций-магний-силикатное, стекло имеет повышенную химическую стойкость, благодаря смешению окислов натрия и калия; наиболее распространено в производстве посуды.

Боросиликатное стекло

Стекла с высоким содержанием SiO2, низким – щелочного металла и значительным – оксида бора B2O3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления. В 1915 году фирма Corning Glass Works

начала производить первые боросиликатные стекла под торговым названием
Pyrex
. Стекло марки
Pyrex
является боросиликатным стеклом с содержанием не менее 80% SiO2, 12-13% В2O3, 3-4% Na2О и 1-2% Аl2О3. Оно известно под разными названиями:
Corning
(США),
Duran
50,
Йенское
стекло G20 (Германия),
Гизиль
,
Монекс
(Англия),
ТС
(Россия),
Совирель
(Франция),
Simax
(Чехия).

В зависимости от конкретного состава стойкость к термоудару таких стекол в 2–5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике.

Температура размягчения стекла «пирекс» до динамической вязкости в 1011 пуаз (1010 Пас) составляет 580-590 °С. Тем не менее стекло пригодно для работ при температурах до 800 °С, но без избыточного давления. При использовании вакуума температуру изделий из стекла «пирекс» не следует поднимать выше 650 °С. В отличие от кварцевого стекло «пирекс» до 600 °С практически непроницаемо для Н2, Не, O2 и N2. Фтороводородная и нагретая фосфорная кислоты, так же как и водные растворы (даже 5%-ные) КОН и NaOH, а тем более их расплавы, разрушают стекло «пирекс».

Хрустальное стекло

Хрустальные стекла (хрусталь) — высокосортные стекла, обладающие особым блеском и способностью сильно преломлять свет. Различают свинцовосодержащие и бессвинцовые хрустальные стекла.

Свинцовосодержащие хрустальные стекла

— свинцово-калиевые стекла, вырабатывают с добавлением окислов свинца, бора и цинка. Характеризуются повышенным весом, красивой игрой света, мелодичным звуком при ударе; применяют для производства высококачественной посуды и декоративных изделий. Наибольшее применение имеет хрусталь с содержанием от 18 до 24% окислов свинца и 14—16,5% окиси калия (легкий).

К бессвинцовым хрустальным стеклам относятся баритовое, лантановое и др.

стекло содержит повышенное количество окиси бария. Обладает лучшим блеском, более высокой светопреломляемостью и удельным весом по сравнению с обычными стеклами, применяют как
оптическое
и
специальное
стекло.

стекло содержит окись лантана La2О3 и лантаниды (соединения лантана с алюминием, медью и др.). La2О3 повышает светопреломление. Отличается высоким качеством; применяется как
оптическое
.

Боросиликатное стекло

Этот вид стекла имеет в своем составе большое количество оксида бора, чем и объясняется его название. Благодаря введению в состав этого вещества, оно может быть гораздо прочнее других видов. Стойкость к термоудару у боросиликатного стекла может превышать этот показатель у известкового в 5 раз. Другие показатели связаны с химической стойкостью стекла, позволяют активно использовать его в электротехнике. Чтобы размягчить этот вид описываемого материала, необходимо нагреть его до температуры 585оС.

Читайте также: