Удельная прочность металлов таблица

Обновлено: 16.05.2024

Прочность. Прочностью называют свойство твердых тел сопротивляется разрушению, а также необратимыми изменениями формы. Основным показателем прочности является временное сопротивление, определяемое при разрыве цилиндрического образца, предварительно подвергнутого отжигу. По прочности металлы можно разделить на следующие группы:

непрочные (временное сопротивление не превышает 50 МПа) - олово, свинец, висмут, а также мягкие щелочные металлы;

прочные (от 50 до 500 МПа) - магний, алюминий, медь, железо, титан и другие металлы, составляющие основу важнейших конструкционных сплавов;

высокопрочные (более 500 МПа) - молибден, вольфрам, ниобий и др.

К ртути понятие прочности неприменимо, поскольку это жидкость.

Временное сопротивление металлов указано в таблице 10.

Таблица 10. Прочность металлов

Металл Временное сопротивление, МПа Металл Временное сопротивление, МПа
Титан 580 Цинк 120-140
Железо 200-300 Алюминий 80-120
Медь 200-250 Золото 120
Магний 120-200 Олово 27
Серебро 150 Свинец 18

Пластичность. Пластичность - это свойство твердых тел сохранять часть деформации при снятии нагрузок, которые их вызвали. В качестве показателя пластичности выборочно относительное удлинение, определяемое при тех же испытаниях, что и временное сопротивление.

По степени пластичности металлы принято подразделять следующим образом:

высокопластичные - (относительное удлинение превосходит 40 %) - металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и "легкие" металлы (натрий, калий, рубидий идр.);

пластичные - (относительное удлинение лежит в диапазоне между 3% и 40%) - магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа);

хрупкие - (относительное удлинение меньше 3%) - хром, марганец, кольбат, сурьма.

Высокая очистка хрупких металлов несколько повышает пластичность. Сплавы, полученные на их основе, почти не поддаются обработке давлением. Промышленные изделия из них часто получают путем литья. Относительное удлинение металлов характеризует таблица 11.

Таблица 11. Пластичность металлов.

Металл Относительное удлинение, % Металл Относительное удлинение, %
Золото 65 Титан 50
Серебро 65 Олово 40
Свинец 65 Алюминий 30-40
Медь 50-60 Цинк 30
Железо 40-50 Магний 10-22

Твердость. Твердость - это характеристика материала, отражающая его прочность и пластичность, определяемая путем вдавливания шарика (метод Бринелля) или призмы (метод Виккерса). Количественный оценкой твердости является число твердости НВ, равное отношению нагружения (Н) к площади поверхности отпечатка (мм 2 ). Значения твердости металлов по Бринеллю приведена в таблице 12.

Таблица 12. Твердость металлов.

Металл НВ Металл НВ
Титан 160 Алюминий 16-25
Железо 70-80 Серебро 25
Магний 30-40 Золото 18
Медь 40 Олово 5
Цинк 33 Свинец 4

Модуль продольной упругости. Модуль продольной упругости, или модуль Юнга, Е определяет жидкость металла , т.е. интенсивность увеличения напряжения по мере увеличения упругости деформации (таблица 13).

Механические свойства металлов.

Прочность. Прочностью называют свойство твердых тел сопротивляется разрушению, а также необратимыми изменениями формы. Основным показателем прочности является временное сопротивление, определяемое при разрыве цилиндрического образца, предварительно подвергнутого отжигу. По прочности металлы можно разделить на следующие группы:

непрочные (временное сопротивление не превышает 50 МПа) - олово, свинец, висмут, а также мягкие щелочные металлы;

прочные (от 50 до 500 МПа) - магний, алюминий, медь, железо, титан и другие металлы, составляющие основу важнейших конструкционных сплавов;

высокопрочные (более 500 МПа) - молибден, вольфрам, ниобий и др.

К ртути понятие прочности неприменимо, поскольку это жидкость.

Временное сопротивление металлов указано в таблице 10.

Таблица 10. Прочность металлов

Металл Временное сопротивление, МПа Металл Временное сопротивление, МПа
Титан 580 Цинк 120-140
Железо 200-300 Алюминий 80-120
Медь 200-250 Золото 120
Магний 120-200 Олово 27
Серебро 150 Свинец 18

Пластичность. Пластичность - это свойство твердых тел сохранять часть деформации при снятии нагрузок, которые их вызвали. В качестве показателя пластичности выборочно относительное удлинение, определяемое при тех же испытаниях, что и временное сопротивление.

По степени пластичности металлы принято подразделять следующим образом:

высокопластичные - (относительное удлинение превосходит 40 %) - металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и "легкие" металлы (натрий, калий, рубидий идр.);

пластичные - (относительное удлинение лежит в диапазоне между 3% и 40%) - магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа);

хрупкие - (относительное удлинение меньше 3%) - хром, марганец, кольбат, сурьма.

Высокая очистка хрупких металлов несколько повышает пластичность. Сплавы, полученные на их основе, почти не поддаются обработке давлением. Промышленные изделия из них часто получают путем литья. Относительное удлинение металлов характеризует таблица 11.

Таблица 11. Пластичность металлов.

Металл Относительное удлинение, % Металл Относительное удлинение, %
Золото 65 Титан 50
Серебро 65 Олово 40
Свинец 65 Алюминий 30-40
Медь 50-60 Цинк 30
Железо 40-50 Магний 10-22

Твердость. Твердость - это характеристика материала, отражающая его прочность и пластичность, определяемая путем вдавливания шарика (метод Бринелля) или призмы (метод Виккерса). Количественный оценкой твердости является число твердости НВ, равное отношению нагружения (Н) к площади поверхности отпечатка (мм 2 ). Значения твердости металлов по Бринеллю приведена в таблице 12.

Таблица 12. Твердость металлов.

Металл НВ Металл НВ
Титан 160 Алюминий 16-25
Железо 70-80 Серебро 25
Магний 30-40 Золото 18
Медь 40 Олово 5
Цинк 33 Свинец 4

Модуль продольной упругости. Модуль продольной упругости, или модуль Юнга, Е определяет жидкость металла , т.е. интенсивность увеличения напряжения по мере увеличения упругости деформации (таблица 13).

Удельные показатели прочности

Удельные показатели прочности

Выгодность материалов по массе можно оценить с помощью удельных показателей, характерных для каждого типа нагружения.

Растяжение-сжатие. Масса деталей, испытывающих растяжение или сжатие, при прочих равных условиях (одинаковая длина деталей; одинаковая нагрузка)

Udeln pokazateli prothn 1

где F — площадь сечения детали; γ - плотность материала.

Площадь сечения обратно пропорциональна действующему напряжению:

Для равнопрочных деталей запас прочности

Udeln pokazateli prothn 4

Подставляя это выражение в формулу (39), получаем m = γ/σв. Фактор σв/γ, называемый удельной прочностью , характеризует выгодность по массе материала при растяжении-сжатии.

Современная практика конструирования отходит от оценки прочности по разрушающему напряжению σв, так как задолго до разрушения деталь выходит из строя в результате значительных пластических деформаций.

Оказался некорректным и другой расчетный критерий — предел упругости (напряжение, при котором не возникают остаточные деформации не более заданного наперед значения и деталь после снятия нагрузки практически принимает первоначальную форму). Точные испытания показывают, что остаточные деформации, хотя и очень незначительные, появляются на первых же стадиях нагружения. По мере увеличения точности испытаний измеренные пределы упругости непрерывно уменьшаются, стремясь к нулю. Кроме того, предел упругости зависит от условий испытания, в частности, от продолжительности выдержки под нагрузкой, резко снижаясь с ее увеличением. При длительной выдержке остаточные деформации обнаруживаются при самых малых напряжениях.

Следовательно, закон Гука только приблизительно описывает поведение металла под нагрузкой и то лишь при статическом и кратковременном нагружении. Тем не менее им продолжают пользоваться в качестве привычной, удобной и для практических целей достаточно точной аппроксимации.

В этих обстоятельствах наиболее разумным представляется избрать критерием статической прочности напряжение, при котором возникают остаточные деформации достаточно малые, чтобы не нарушать работоспособность детали в средних условиях применения, и достаточно большие, чтобы допускать уверенный их замер при испытаниях рядовой точности. В качестве такого показателя чаще всего применяют условный предел текучести σ0,2, представляющий собой напряжение, вызывающее в испытуемом образце при разовом и кратковременном нагружении остаточную деформацию 0,2%. Если необходима повышенная точность, то применяют показатели σ0,02 и σ0,002 (предел текучести при остаточных деформациях соответственно 0,02 и 0,002%).

Предел текучести не пропорционален σв. Величины σ0,2 для различных материалов составляют (0,5—0,95)σв. Поэтому правильнее характеризовать удельную прочность не фактором σв/γ, а фактором σ0,2/γ ( удельный предел текучести ).

Факторы удельной прочности поддаются наглядной интерпретации. Представим себе свободно висящий брус произвольного, но постоянного сечения заделанный одним концом (рис. 90) и нагруженный только собственной массой.

Опасным является сечение а—а, в котором действует полная сила тяжести (вес)

Udeln pokazateli prothn 6

где F — площадь сечения: L — длина бруса; γ — плотность материала, бруса; g — ускорение силы тяжести.

Напряжение растяжения в этом сечении σ = G/F или с учетом формулы (41)

Udeln pokazateli prothn 7

Напряжение достигает предела прочности на разрыв (σ = σв) при определенной длине Lp бруса (разрывной длине), равной по формуле (42),

Эта величина совпадает с удельной прочностью материала. Если принять σв в Н/м 2 , g в м/с 2 , а γ в кг/м 3 , то длина Lp выражается в метрах. Аналогично выражается и Lт, которая представляет собой длину свободно подвешенного бруса при которой напряжения в опасном сечении достигают предела текучести.

Перемещение свободного конца бруса (полная вытяжка)

Перемещение свободного конца бруса (полная вытяжка)

Так как G = FLγg, L = σ/γg, то при L = Lт, и σ = σ0,2

Udeln pokazateli prothn 10

где σ0,2 — в Па, а γ — в кг/м 3 .

Величина fт характеризует податливость и сопротивляемость материала ударным нагрузкам.

Изгиб и кручение. Для случая изгиба и кручения критерием рациональности по массе материала является отношение σ 2/3 /γ, где σ — разрушающее напряжение для данного вида нагрузки (σв для изгиба и τв для кручения).

Ввиду того что оценка выгодности по массе является приближенной, обычно для сравнения всех видов нагружения пользуются наиболее простыми по структуре факторами, соответствующими случаю растяжения-сжатия.

Ударные нагрузки. Способность сопротивляться действию ударной нагрузки характеризуется работой U упругой деформации. При растяжении бруса постоянного сечения F и длиной L

Величина U при напряжении σ, равном пределу упругости σр, характеризует способность поглощать энергию удара в пределах деформаций

Разделив эту величину на G = FLγg, получаем удельный показатель

Этот фактор, называемый удельной динамической прочностью , характеризует выгодность по массе материала в условиях ударных нагрузок.

Для ориентировочного сравнения предел упругости можно заменить пределом текучести σ0,2. Тогда

Udeln pokazateli prothn 14

Это выражение совпадает с выражением (44) полной вытяжки fт свободно подвешенного бруса длиной Lт, при которой напряжения в опасном сечении достигают предела текучести.

Сравнительная оценка по массе конструкционных материалов. В табл. 17 приведены значения γ, σв, σ0,2, Е основных конструкционных материалов и удельные характеристики, подсчитанные по верхним значениям σв и σ0,2.

Прочность и жесткость материалов

На рис. 91, а дана обобщенная диаграмма σв/γ и σ0,2/γ в функции σв (черные точки — максимальные значения σв/γ, светлые — σ0,2/γ).

Удельные показатели прочности

Для сравнения даны значения σв/γ для сверхпрочной композиции из графитных усов в алюминиевой матрице с σв = 5000 МПа (вдоль волокон), γ = 3,6·10 3 кг/м 3 и Lp = 190 км (выходит за пределы диаграммы). Показатели динамической прочности в функции σ0,2 приведены на рис. 91, б.

Следует подчеркнуть, что выбор материала зависит не только от прочностно-массовых характеристик, но и назначения и условий работы детали. При выборе материала учитывают присущие ему жесткость, твердость, вязкость, пластичность, технологические характеристики (обрабатываемость, штампуемость, свариваемость), износостойкость, коррозиестойкость, жаростойкость и жаропрочность (для деталей, работающих при повышенных температурах). Важную роль играет стоимость материала, отсутствие в нем дорогих и дефицитных компонентов.

Наибольшей универсальностью при высоких прочностно-массовых показателях обладают стали, свойства которых можно менять в широких пределах легированием, термической, химико-термической и термомеханической обработкой. Это делает стали наиболее распространенным материалом для изготовления нагруженных деталей.

Теми же свойствами гибкости и высокими прочностно-массовыми показателями обладают титановые сплавы, хотя по технологическим характеристикам (обрабатываемость) они уступают сталям.

Удельная прочность металлов: таблица. Механические свойства металлов

Использовать металлы в повседневной жизни начали еще вначале развития человечества. Медь – это первый их представитель. Она доступна в природе и прекрасно обрабатывается. При археологических раскопках часто находят изготовленные из нее предметы домашнего обихода и разные изделия.

удельная прочность металлов

В процессе развития человек обучался объединять разные металлы, производя сплавы большей прочности. Из них делали орудия труда, а позже использовали для изготовления оружия. Опыты продолжаются и в наше время, создаются сплавы с удельной прочностью металлов, пригодные для возведения современных конструкций.

Виды нагрузок

К механическим свойствам металлов и сплавов относятся такие, которые способны оказывать сопротивление действию на них внешних сил или нагрузок. Они могут быть самыми разнообразными и по своему воздействию различают:

  • статические, которые неспешно возрастают от нулевого значения до максимума, а затем остаются постоянными или незначительно меняются;
  • динамические – возникают вследствие удара и действуют короткий промежуток.

Виды деформации

Деформация – это видоизменение конфигурации твердого тела под воздействием прилагаемых к нему нагрузок (внешних сил). Деформации, после которых материал возвращается в прежнюю форму и сохраняет первоначальные размеры, считают упругими, в противном случае (форма изменилась, материал удлинился) – пластическими или остаточными. Существует несколько видов деформации:

  • Сжатие. Уменьшается объем тела в результате действия на него сдавливающих сил. Такую деформацию испытывают фундаменты котлов и машин.
  • Растяжение. Увеличивается длина тела, когда к его концам прилагаются силы, направление которых совпадает с его осью. Растяжению подвергаются тросы, приводные ремни.
  • Сдвиг или срез. В этом случае силы направлены навстречу друг другу и при определенных условиях наступает срез. Примером служат заклепки и болты стяжки.
  • Кручение. Пара сил, противоположно направленных, действует на закрепленное одним концом тело (валы двигателей и станков).
  • Изгиб. Изменение кривизны тела при воздействии внешних сил. Такое действие характерно для балок, стрел подъемных кранов, железнодорожных рельсов.

Определение прочности металла

Одно из основных требований, которое предъявляют к металлу, применяемому для производства металлических конструкций и деталей, является прочность. Для ее определения берется образец металла и растягивается на испытательной машине. Эталон становится тоньше, площадь поперечного сечения уменьшается с одновременным увеличением его длины. В определенный момент образец начинает растягиваться лишь в одном месте, образуя «шейку». А через некоторое время происходит разрыв в области самого тонкого места. Так ведут себя исключительно вязкие металлы, хрупкие: твердая сталь и чугун растягиваются незначительно и у них не образуется шейка.

расчетное сопротивление металла

Нагрузка на образец определяется специальным прибором, который носит название силоизмеритель, он вмонтирован в испытательную машину. Для вычисления основной характеристики металла, называемой пределом прочности материала, надо максимальную нагрузку, выдержанную образцом до разрыва, разделить на величину площади поперечного сечения до растяжения. Эта величина необходима конструктору для того, чтобы определиться с размерами изготовляемой детали, и технологу назначить режимы обработки.

Самые прочные металлы в мире

К высокопрочным металлам можно отнести следующие:

Титан. Он обладает такими свойствами:

  • высокой удельной прочностью;
  • стойкостью к повышенным температурам;
  • низкой плотностью;
  • стойкостью к коррозии;
  • механической и химической выносливостью.

Титан находит применение в медицине, военной промышленности, кораблестроении, авиации.

  • Уран. Самый известный и прочный металл в мире, является слабым радиоактивным материалом. Встречается в природе в чистом виде и в соединениях. Он относится к тяжелым металлам, гибкий, ковкий и относительно пластичный. Широко используется в производственных сферах.
  • Вольфрам. Расчет прочности металла показывает, что это самый прочный и тугоплавкий металл, не поддающийся химическому воздействию. Хорошо куется, его можно вытянуть в тонкую нить. Используется для нити накаливания.
  • Рений. Тугоплавкий, имеет высокую плотность и твердость. Очень прочный, не подвержен перепадам температуры. Находит применение в электронике и технике.
  • Осмий. Твердый металл, тугоплавкий, стойкий к механическим повреждениям и агрессивным средам. Применяют в медицине, используют для ракетной техники, электронной аппаратуры.
  • Иридий. В природе в свободном виде встречается редко, чаще – в соединениях с осмием. Механической обработке поддается плохо, имеет высокую стойкость к химическим веществам и прочность. Сплавы с металлом: титаном, хромом, вольфрамом, используют для изготовления ювелирных изделий.
  • Бериллий. Высокотоксичный металл с относительной плотностью, имеющий светло-серый цвет. Находит применение в черной металлургии, атомной энергетике, лазерной и аэрокосмической технике. Имеет высокую твердость и используется для легирования сплавов.
  • Хром. Очень твердый металл с высокой прочностью, бело-голубого цвета, обладает стойкостью к щелочам и кислотам. Прочность металла и сплавов позволяют их использовать для изготовления медицинского и химического оборудования, а также для металлорежущих инструментов.

определение прочности металла

  • Тантал. Металл серебристого цвета, имеет высокую твердость, прочность, обладает тугоплавкостью и стойкостью к коррозии, пластичен, легко обрабатывается. Находит применение при создании ядерных реакторов, в металлургии и химической промышленности.
  • Рутений. Принадлежит к металлам платиновой группы. Обладает высокой прочностью, твердостью, тугоплавкостью, химической стойкостью. Из него изготовляют контакты, электроды, острые наконечники.

Как определяют свойства металлов?

Для испытания металлов на прочность применяют химические, физические и технологические методы. Твердость определяет, как сопротивляются материалы деформациям. Стойкий металл имеет большую прочность и детали, изготовленные из него, меньше снашиваются. Для определения твердости вдавливают шарик, алмазный конус или пирамидку в металл. Значение твердости устанавливают по диаметру отпечатка или по глубине вдавливания предмета. Более крепкий металл меньше деформируется, и глубина отпечатка будет меньше.

А вот образцы на растяжение испытываются на разрывных машинах с плавно нарастающей при растягивании нагрузкой. Эталон может иметь в сечении круг или квадрат. Для проверки металла противостоять нагрузкам ударного характера проводят испытания на удар. В середине специально изготовленного образца делают надрез и устанавливают его напротив ударного устройства. Разрушение должно происходить там, где слабое место. При испытании металлов на прочность структуру материала исследуют рентгеновскими лучами, ультразвуком и при помощи мощных микроскопов, а также используют травление химическими веществами.

прочность металлов и сплавов

К технологическим относятся самые простые виды испытаний на разрушение, пластичность, ковку, сварку. Испытание на выдавливание дает возможность определить, способен ли листовой материал подвергаться холодной штамповке. С помощью шарика в металле выдавливают лунку, пока не появится первая трещина. Глубина ямки до появления разрушения и будет характеризовать пластичность материала. Испытание на изгиб дает возможность определить способность листового материала принимать нужную форму. Это испытание используют для оценки качества швов при сварке. Для оценки качества проволоки используется проба на перегиб. Трубы испытывают на расплющивание и изгиб.

Механические свойства металлов и сплавов

  1. Прочность. Она заключается в способности материала оказывать сопротивление разрушению под воздействием сил извне. Вид прочности зависит от того, как действуют внешние силы. Ее разделяют на: сжатие, растяжение, кручение, изгиб, ползучесть, усталость.
  2. Пластичность. Это способность металлов и их сплавов под воздействием нагрузки менять форму, не подвергаясь разрушению, и сохранять ее после окончания воздействия. Пластичность материала из металла определяют при его растяжении. Чем больше происходит удлинение, при одновременном уменьшении сечения, тем пластичнее металл. Материалы, обладающие хорошей пластичностью, прекрасно обрабатываются давлением: ковке, прессованию. Пластичность характеризуют двумя величинами: относительное сужение и удлинение.
  3. Твердость. Такое качество металла заключается в способности оказывать сопротивление проникновению в него инородного тела, имеющего более значительную твердость, и не получить при этом остаточных деформаций. Износоустойчивость и прочность – это основные характеристики металлов и сплавов, которые тесно связаны с твердостью. Материалы с такими свойствами находят применение для изготовления инструментов, применяемых для обработки металлов: резцы, напильники, сверла, метчики. Нередко по твердости материала определяют его износоустойчивость. Так твердые стали при эксплуатации изнашиваются меньше, чем более мягкие сорта.
  4. Ударная вязкость. Особенность сплавов и металлов сопротивляться влиянию нагрузок, сопровождающихся ударом. Это одна из важных характеристик материала, из которого изготовлены детали, испытывающие ударную нагрузку, во время работы машины: оси колес, коленчатые валы.
  5. Усталость. Это состояние металла, который находится под постоянным воздействием нагрузок. Усталость металлического материала происходит постепенно и может закончиться разрушением изделия. Способность металлов оказывать сопротивление разрушению от усталости называют выносливостью. Это свойство находится в зависимости от природы сплава или металла, состояния поверхности, характера обработки, условий работы.

Классы прочности и их обозначения

Нормативными документами по механическим свойствам крепежных изделий введено понятие класс прочности металла и установлена система обозначения. Каждый класс прочности обозначается двумя цифрами, между которыми ставится точка. Первое число означает предел прочности, уменьшенный в 100 раз. Например, класс прочности 5.6 означат, что предел прочности будет 500. Второе число увеличено в 10 раз – это отношение предела текучести к временному сопротивлению, выраженному в процентах (500х0,6=300), т. е. 30 % составляет минимальный предел текучести от предела прочности на растяжение. Все изделия, используемые для крепежа, классифицируются по назначению применения, форме, используемому материалу, классу прочности и покрытию. По назначению использования они бывают:

  • Лемешные. Их используются для сельскохозяйственных машин.
  • Мебельные. Применяются в строительстве и мебельном производстве.
  • Дорожные. Ими крепят металлоконструкции.
  • Машиностроительные. Применяют в машиностроительной промышленности и приборостроении.

Механические свойства крепежных изделий зависят от стали, из которой они изготовлены и качества обработки.

Удельная прочность

Удельная прочность материала (формула ниже) характеризуется отношением предела прочности к плотности металла. Эта величина показывает прочность конструкции при данной его массе. Наибольшую важность она представляет для таких отраслей, как авиастроение, ракетостроение и производство космических аппаратов.

удельная прочность материала формула

По величине удельной прочности сплавы из титана самые прочные из всех применяемых технических материалов. Титановые сплавы вдвое превышают удельную прочность металлов, относящихся к легированным сталям. Они не поддаются коррозии на воздухе, в кислотной и щелочной среде, не боятся морской воды и обладают хорошей теплоустойчивостью. При высоких температурах их прочность выше, чем у сплавов с магнием и алюминием. Благодаря этим свойствам их применение, как конструкционного материала, все время увеличивается и находит широкое использование в машиностроении. Недостаток титановых сплавов заключается в их низкой обрабатываемости резанием. Это связано с физическими и химическими свойствами материала и особой структурой сплавов.

испытание металлов на прочность

Использование пластичности и прочности металлов

Очень важными свойствами металла являются пластичность и прочность. Эти свойства находятся в прямой зависимости друг от друга. Они не позволяют металлу изменять форму и препятствуют макроскопическому разрушению при воздействии на него внешних и внутренних сил.

Металлы, обладающие высокой пластичностью, под воздействием нагрузки разрушаются постепенно. Вначале у них появляется изгиб и только затем он начинает постепенно разрушаться. Пластичные металлы легко меняют форму, поэтому их широко используют для изготовления кузовов автомобилей. Прочность и пластичность металлов зависит от того, как направлены приложенные к нему силы и в каком направлении проводилась прокатка при изготовлении материала. Установлено, что при прокатке кристаллы металла удлиняются в ее направлении больше, чем в поперечной направленности. У листовой стали прочность и пластичность значительно больше в направлении прокатки. В поперечном же направлении прочность уменьшается на 30 %, а пластичность на 50 %, по толщине листа эти показатели еще ниже. Например, появление излома на стальном листе при сваривании можно объяснить параллельностью оси шва и направления прокатки. По пластичности и прочности материала устанавливают возможность его использования для изготовления различных деталей машин, сооружений, инструментов, приборов.

Нормативное и расчетное сопротивление металла

Одним из основных параметров, которые характеризуют сопротивление металлов воздействиям силы, является нормативное сопротивление. Оно устанавливается по нормам проектирования. Расчетное сопротивление получается в результате деления нормативного на соответствующий коэффициент надежности по данному материалу. В некоторых случаях учитывают еще и коэффициент условий работы конструкций. В вычислениях, имеющих практическое значение, в основном используют расчетное сопротивление металла.

Пути повышения прочности металла

Существует несколько способов повышения прочности металлов и сплавов:

  • Создание сплавов и металлов, имеющих бездефектную структуру. Имеются разработки по изготовлению нитевидных кристаллов (усов) в несколько десятков раз превышающих прочность обыкновенных металлов.
  • Получение объемного и поверхностного наклепа искусственным путем. При обработке металла давлением (ковка, волочение, прокатка, прессование) образуется объемный наклеп, а накатка и дробеструйная обработка дает поверхностный наклеп.
  • Создание легированного металла, используя элементы из таблицы Менделеева.
  • Очищение металла, от имеющихся в нем примесей. В результате этого улучшаются его механические свойства, распространение трещин значительно уменьшается.
  • Устранение с поверхности деталей шероховатости.

Интересные факты

  • Сплавы из титана, удельный вес которых превышает алюминиевые примерно на 70 %, прочнее их в 4 раза, поэтому, по удельной прочности сплавы, содержащие титан, выгоднее использовать для самолетостроения.
  • Многие алюминиевые сплавы превышают удельную прочность сталей, содержащих углерод. Сплавы из алюминия имеют высокую пластичность, коррозийную стойкость, прекрасно обрабатываются давлением и резанием.
  • У пластмасс удельная прочность выше, чем у металлов. Но из-за недостаточной жесткости, механической прочности, старения, повышенной хрупкости и малой термостойкости ограничены в применении слоистые пластики, текстолиты и гетинаксы, особенно в крупногабаритных конструкциях.
  • Установлено, что по выносливости к коррозии и удельной прочности, металлы черные, цветные и многие их сплавы уступают стеклопластикам.

расчет прочности металла

Механические свойства металлов являются важнейшим фактором использования их в практических нуждах. Проектируя какую-то конструкцию, деталь или машину и подбирая материал, обязательно рассматривают все механические свойства, которыми он обладает.

Соответствие твердости и прочности Таблица / Hardness equivalent table

Данным термином в материаловедении называют механическое свойство, которое определяет устойчивость к разрушению под воздействием других, более плотных веществ. Иначе можно сказать так: это сопротивляемость деформациям от давления. При этом учитываются и пластичные, и упругие изменения.

От характеристики зависит множество процессов и условий:

  • Износостойкость – это есть то, насколько долго может быть использован элемент. В том числе срок износа, поскольку для каждой детали, например автомобильной, наступает время, когда по естественным причинам ее нужно менять. Но чем тверже элемент, тем дольше он будет служить в определенных условиях.
  • Возможность различных видов металлообработки – одни технологии применяются только к мягким сплавам, а другие могут быть использованы и для прочных.
  • Сопротивление давлению и другим усилиям характерно для вала или подшипника, на которые действуют силы центробежная и трения.
  • Способность использовать материал в качестве инструмента для более податливой поверхности. Инструментальная сталь является настолько крепкой, что применяется для изготовления фрез для фрезерных станков, сверл и прочих изделий.

Это далеко не полный перечень того, на что влияет твердость металла после того, как мы дали ему определение. Не каждое используемое вещество берется с одинаковыми характеристиками. Что делается прежде всего для увеличения данного параметра? Сперва берем сырье, очищаем от примесей, а затем подвергаем химической и температурной обработке. А именно: в состав добавляем различные легирующие компоненты, повышающие это качество, например:

  • Хром. Увеличивается прочность и устойчивость к коррозии, незначительно уменьшается пластичность и подверженность магнитным силам. Если более 13% хрома, то сплав называют нержавеющим.
  • Вольфрам. Очень сильно повышается содержание твердых соединений – карбидов. Дополнительное свойство – снижение хрупкости после отпуска.
  • Ванадий. Тоже возрастает сопротивление деформациям.
  • Марганец. Чтобы увидеть эффект, вещества должно быть не менее 1%. Резко взлетает стойкость к ударным нагрузкам.

От чего зависит твердость металлов по этому классу:

  • От наличия легирующих добавок, перечисленных выше.
  • От естественных свойств сырья.
  • От термообработки. С этой целью помогает закалка – материал нагревают сверх определенной критической точки, кристаллическая решетка меняется, и после охлаждения закаленная сталь становится очень надежной.
  • От цементации – способом диффузии образец насыщается углеродом. Такому методу подвергаются только низкоуглеродистые или легированные части.
  • От старения – оно может быть естественным или искусственным. В первом случае со временем протекают процессы, которые не затрагивают микроструктуру, но важны на общем уровне. Во втором применяется термообработка с целью химического и термального увеличения срока эксплуатации – состаривание.
  • От наклепывания на поверхность. Это пластическое изменение структуры вещества, приводящее к повышению прочности.
  • От обработки лазером. Лазерная установка наплавляет прочный слой.

Кроме того, некоторые этапы металлообработки (прокатка, ковка и закалка) с изменением формы заготовки также приводят к улучшению качества.



Виды деформации

Деформация – это видоизменение конфигурации твердого тела под воздействием прилагаемых к нему нагрузок (внешних сил). Деформации, после которых материал возвращается в прежнюю форму и сохраняет первоначальные размеры, считают упругими, в противном случае (форма изменилась, материал удлинился) – пластическими или остаточными. Существует несколько видов деформации:

  • Сжатие. Уменьшается объем тела в результате действия на него сдавливающих сил. Такую деформацию испытывают фундаменты котлов и машин.
  • Растяжение. Увеличивается длина тела, когда к его концам прилагаются силы, направление которых совпадает с его осью. Растяжению подвергаются тросы, приводные ремни.
  • Сдвиг или срез. В этом случае силы направлены навстречу друг другу и при определенных условиях наступает срез. Примером служат заклепки и болты стяжки.
  • Кручение. Пара сил, противоположно направленных, действует на закрепленное одним концом тело (валы двигателей и станков).
  • Изгиб. Изменение кривизны тела при воздействии внешних сил. Такое действие характерно для балок, стрел подъемных кранов, железнодорожных рельсов.


В каких единицах измеряется твердость металла

Особенность данной характеристики в том, что в зависимости от метода, которым проводили замер, меняется и классическое обозначение. Так как параметр нельзя причислить к основным физическим шкалам, таким как расстояние, скорость, масса, сила, то и единого стандарта нет в так называемой системе СИ.

Если исследователь применяет один из наиболее стандартных способов, предложенный Бриннелем, о котором мы подробнее расскажем ниже, то результат будет записан в кгс/мм2, то есть в килограмм-силах, деленных на квадратный миллиметр. По шкале измерения твердости металлов можно сказать о классических примерах и их показателях в соотношении друг с другом:

  • железные сплавы – в среднем 30 кгс/мм2;
  • медные и никелевые составы – 10 кгс/мм2;
  • алюминий, магний и их производные – 5 кгс/мм2.

Так делаем вывод, что железо в 6 раз тверже, чем мягкое алюминиевое соединение.

Второй популярный метод изобрел Роквелл. Согласно ему, одно условное значение (у.е.) равно перемещению конуса на 2 мкм. Если маркируется по данному варианту, то сперва проставляется индексация, затем одна из трех букв – А, В, С и цифровое значение. Если вы видите на заготовке твердость материала НВ, то это единицы измерения по Роквеллу. Также индексом могут быть отмечены детали под маркировкой HR, а после 1 из трех букв:

  • A – свидетельствует о том, что испытания проводились с помощью конуса из алмаза с углом вершины в 120 градусов под прилагаемой нагрузкой в 50 – 60 кг.
  • В – говорит о шарике в одну шестнадцатую дюйма, который направляют к поверхности под весом в 90 – 100 кг.
  • С – используется аналогичный конус, как при маркировке А, но увеличенное воздействие в 140 – 150 кг.

Дальше идет цифра, которая уже указывает на то, какая вмятина образовалась.

И еще один вариант того, в чем измеряется твердость стали, – цифры плюс буквы HV. Такое измерение предлагает Виккерс. В то время как по методике Шора можно увидеть такие записи – 90 HSD.

Маркировка нержавеющей стали AISI

Маркировку AISI ставят не только на продукции, поступающей из США. Сегодня такую отметку проставляют уже и на российской, китайской или европейской. AISI – это система классификации, которую впервые приняли в Соединенных Штатах, что и отражено в ее названии: A – American (американский), I – Iron (чугун), S – Steel (сталь), I – Institute (институт). Такой классификатор полюбился производителям, покупателям продукции и трейдерам.

Легированная и углеродистая сталь промаркирована четырехзначным кодом. В нем первая цифра – это главный легирующий элемент, вторая – вторичный легирующий компонент, третья и четвертая – указывают на наличие углерода в сплаве.

  • 1ZZZ – углерод (C);
  • 2ZZZ – никель (Ni);
  • 3ZZZ – сплав хрома с никелем (Cr+Ni);
  • 4ZZZ – молибден (Mo);
  • 5ZZZ – хром (Cr);
  • 6ZZZ – сплав хрома с ванадием (Cr+V);
  • 7ZZZ – вольфрам (W);
  • 8ZZZ – сплав никеля, хрома, молибдена (Ni+Cr+Mo);
  • 9ZZZ – силицид марганца (Si+Mn)

Пониженное количество углерода в сплаве обозначается литерой «L», расположенной в конце. Если же «L» появляется в середине маркировки, то она обозначает легирование свинцом, что делается в целях улучшения механических свойств нержавейки, подвергаемой обработке. Расположенная в конце «N» указывает на азотную обработку. Это делается для того, чтобы повысить при других равных условиях предел прочности. «B» в середине обозначает легирование сплава бором.

Насколько твердыми бывают основные металлы

Большинство материалов уже обладают определенными характеристиками, их давно измерили и записали в таблицы, при этом в сводках обозначены как исходные значения необработанного железа, так и после различных типов термо- и холодной металлообработки. Но при добавлении нестандартных и новых добавок, проведенных процедур необходимо заново измерять данный показатель. Но если вы сталкиваетесь со стандартными сплавами, то следует посмотреть в подготовленные списки.

Цветмет

Они более мягкие, чем черные, потому что в них нет твердых включений, а также их не подвергают закалке и прочим методам термообработки.

Титан составляет исключение. Приведем технологию, используемую Бриннелем:

МатериалОсобенностиВ нв
МедьИмеет высокую пластичность и низкую прочность. если добавляются специальные примеси, получаются новые марки, тогда показатель может увеличиваться.35
ЛатуньЭто двойной или многокомпонентный состав, который включает медь. но она более надежная, дополнительно включены цинк или олово.42 – 60
АлюминийМожет быть мягким или твердым, с увеличенной или уменьшенной пластичностью.15 – 20
ДюралюминийСовременный, легкий, активно применяется в авиастроении. есть добавки – медь, магний, марганец.70
ТитанОчень крепкий цветмет.160

Черные металлы

Это железо и стали, ферросплавы и чугуны. Иногда к этой категории относят ванадий, марганец. Общая характеристика:

  • Способ получения – обработка железной руды.
  • Увеличенная прочность.
  • Невосприимчивость к механическим воздействиям.
  • Высокая износостойкость.
  • Хорошая свариваемость.
  • Невысокая стоимость.

Поэтому железо активно применяют. Нецелесообразно приводить полный список всех марок, поэтому только основные:

  • Чугун – 220 НВ.
  • Инструментальные стальные сплавы – до 700 НВ, из нее делаются режущие инструменты.
  • Нержавейка – до 250 НВ.

Удельная прочность

Удельная прочность материала (формула ниже) характеризуется отношением предела прочности к плотности металла. Эта величина показывает прочность конструкции при данной его массе. Наибольшую важность она представляет для таких отраслей, как авиастроение, ракетостроение и производство космических аппаратов.

удельная прочность материала формула


По величине удельной прочности сплавы из титана самые прочные из всех применяемых технических материалов. Титановые сплавы вдвое превышают удельную прочность металлов, относящихся к легированным сталям. Они не поддаются коррозии на воздухе, в кислотной и щелочной среде, не боятся морской воды и обладают хорошей теплоустойчивостью. При высоких температурах их прочность выше, чем у сплавов с магнием и алюминием. Благодаря этим свойствам их применение, как конструкционного материала, все время увеличивается и находит широкое использование в машиностроении. Недостаток титановых сплавов заключается в их низкой обрабатываемости резанием. Это связано с физическими и химическими свойствами материала и особой структурой сплавов.

Выше приведена таблица удельной прочности металлов.

Как определить твердость металла по методике Бринелля: особенности

В качестве индентора, то есть самого элемента, который вдавливается в заготовку, используется идеальный шарик диаметром от 1 до 10 миллиметров. Он изготавливается из легированных соединений или из сплава карбида и вольфрама. Регламентируется производство таких шаров ГОСТом 3722 81.

Время, в которое происходит статическое, то есть неподвижное вдавливание, – от 10 до 180 секунд. Этот параметр зависит от материала. Самые минимальные временные промежутки – для чугуна и стали, а более продолжительные – для цветных металлов.

Максимальная нагрузка, которая может быть измерена таким способом, – 450 или 650 НВ, в зависимости от того, из чего сделан шарик.

На образец для правильной деформации подбирается воздействие, посмотрим по формулам в таблице, как можно их вычислить, учитывая, что D – это диаметр шара:

Проверяемый объектМатематически вычисленное изменение
Свинец или олово1d^2
Стальные соединения, титан, никель30d^2
Легкие сплавыот 2,5d^2 до 15d^2
Чугун10d^2 или 30d^2
Медь и составы с ее добавлением5d^2, 10d^2, 30d^2

Алгоритм применения метода Бринелля

  • Проверяется сам аппарат и тело для внедрения – шар.
  • Определяется максимальное усилие.
  • Твердомер запускается.
  • Измеряется глубина вдавливания.
  • Производятся математические вычисления.

Применяемая формула НВ=P/F, где:

Следует отметить, что это самый распространенный способ.

Классы прочности и их обозначения

Нормативными документами по механическим свойствам крепежных изделий введено понятие класс прочности металла и установлена система обозначения. Каждый класс прочности обозначается двумя цифрами, между которыми ставится точка. Первое число означает предел прочности, уменьшенный в 100 раз. Например, класс прочности 5.6 означат, что предел прочности будет 500. Второе число увеличено в 10 раз – это отношение предела текучести к временному сопротивлению, выраженному в процентах (500х0,6=300), т. е. 30 % составляет минимальный предел текучести от предела прочности на растяжение. Все изделия, используемые для крепежа, классифицируются по назначению применения, форме, используемому материалу, классу прочности и покрытию. По назначению использования они бывают:

  • Лемешные. Их используются для сельскохозяйственных машин.
  • Мебельные. Применяются в строительстве и мебельном производстве.
  • Дорожные. Ими крепят металлоконструкции.
  • Машиностроительные. Применяют в машиностроительной промышленности и приборостроении.

Механические свойства крепежных изделий зависят от стали, из которой они изготовлены и качества обработки.

Как измерить твердость металла по методике Роквелла: особенности

Если предыдущая технология называется классической, то данную можно именовать современной, поскольку она более автоматизированная. Точность намного выше и сфер применения тоже, поскольку можно работать даже с очень прочными материалами.

  • Изначальное давление в 10 кгс.
  • Напряжение выдерживают от 10 секунд до 1 минуты.
  • Результат не рассчитывается математически, он высвечивается на цифровом табло.
  • Используются разные наконечники, в зависимости от этого ставится маркировка, которая начинается с букв А, В, С. Мы уже подробнее указывали расшифровку индексов, просто напомним, что в качестве индентора может выступать стальной шарик или алмазный конус.

Есть также менее известные и используемые шкалы Е, Н, К с шаром меньшего диаметра. На процедуру накладываются ограничения:

  • Делать пробы на одной заготовке можно только на расстоянии по 3-4 у.е., равных размеру проверяющего объекта, друг от друга.
  • Толщина не может быть меньше, чем умноженная на 10 глубина проникновения наконечника в сталь.

План исследования по методу Роквелла

Алгоритм проведения аналогичный и даже более упрощенный:

  • Необходимо оценить деталь и проверить работоспособность станка.
  • Вычислить максимальную нагрузку.
  • Установить образец и применить первичное напряжение.
  • Выдержать определенный промежуток времени.
  • Зафиксировать результат, указанный на табло.

Посмотрим, как выглядит твердомер, а также как им пользоваться:

Характеристики методики Виккерса

Еще один очень простой способ, который отличается скоростью и точностью, но дороговизной оборудования. Перечислим особенности:

  • Используется алмазная пирамидка с более тупым углом – 136 градусов в вершине.
  • Не допускается деформация более 100 кгс.
  • Выдерживают время очень короткое – от 10 до 15 секунд.
  • Измерять можно параметры любого материала, в том числе особенно прочного, а также сталей, которые прошли термическую обработку.

Последовательность исследования

  • Проверьте поверхностный слой детали, а также все оборудование.
  • Рассчитайте допустимое усилие.
  • Установите образец, закрепите его.
  • Запустите аппарат и спустя 10-15 секунд проанализируйте итог.

Способы перехода между шкалами

Тот факт, что в лабораториях используются разные методы, а также то, что нет одного стандарта, то приходится конвертировать один показатель в другую систему счисления. Следует отметить, что во всех странах преимущественно выбирают одну технологию. Но из-за активного товарооборота изготовители встречаются с непривычными маркировками. Итак, дадим таблицу с аналогичными результатами по отличающимся данным:

Диаметр от вдавливания – в ммПо БринеллюПо Роквеллу, категория АВСПо Виккерсу
3,924162,899,824242
4,0821760,796,620,2217
4,220659,694,617,9206
514449,977,7144

Можно отметить, что списки не обладают особо высокой точностью, поскольку в зависимости от измерений могли быть использованы разнообразные сплавы. Сводки будут верны только в том случае, если при всех пяти способах был апробирован одинаковый материал.

Читайте также: