Усталость и выносливость металлов понятие предела выносливости

Обновлено: 05.10.2024

1. Основные понятия об усталости металлов Предел выносливости

Преобладающая часть
деталей машин и
различных
механизмов в
процессе
эксплуатации
работает в условиях
переменных
напряжений
При переменных
напряжениях
разрушение деталей
происходит при
напряжениях,
значительно меньших
предела прочности,
а в ряде случаев и
предела текучести
материала

2. Усталость - процесс постепенного накопления повреждений в материале под действием переменных напряжений и деформаций

Разрушение происходит
путем зарождения и
распространения
трещины, которая
после достижения
некоторого критического
размера становится
неустойчивой и быстро
увеличивается,
вызывая разрушение
Нагрузки и деформации,
при которых обычно
происходит
усталостное
разрушение,
намного ниже тех,
которые приводят к
разрушению в
статических
условиях.

Когда разрушение происходит
более чем через
10000 циклов, явление обычно
называется многоцикловая
усталость
Если разрушение происходит
менее чем через 10000
циклов - малоцикловая
усталость

Название объясняется тем, что долгое время
существовало мнение, будто под влиянием
переменных напряжений металл «устает» и
вместо пластичного становится хрупким

6. Цикл напряжений

Совокупность последовательных
значений напряжений за один
период их изменения при
регулярном нагружении

7. Параметры цикла

Коэффициент асимметрии цикла напряжений
Для симметричного цикла
коэффициент асимметрии
для отнулевого

10. Испытания на усталость

Проводятся с целью получения
механической характеристики,
количественно характеризующую
способность материала сопротивляться
усталостному разрушению.
Наиболее распространены испытания
на изгиб при симметричном цикле
изменения напряжений

11. Кривая усталости

• По результатам испытания строят кривую
зависимости числа циклов нагружений до
разрушения от максимального напряжения,
создаваемого в образце

Максимальное по абсолютному
значению напряжение цикла,
при котором еще не происходит
усталостного разрушения
до базы испытания,
называется пределом выносливости и
обозначается
R
Индекс R
соответствует
коэффициенту асимметрии цикла

При отсутствии опытных данных
о значениях предела выносливости
их вычисляют по известным значениям пределов
прочности по следующим приближенным
эмпирическим соотношениям:
для сталей
1 (0, 4. 0,5) пч
для цветных металлов
1 (0, 25. 0,5) пч
для серого чугуна
1 0, 45 пчр

15. Концентрация напряжений – явление повышения напряжений по сравнению с номинальными

Наблюдается в тех местах детали, где
имеются отверстия, выточки, переходы
от одних размеров и форм сечений к
другим,
какие-либо внутренние или внешние
пороки в материале, а также в зоне
контакта деталей

16. Теоретический коэффициент концентрации напряжений

17. Состав материала

Сплавы на основе железа и титан имеют достаточно
ярко выраженный предел усталости, который
выявляется по прошествии 10 7 циклов напряжения.
Сплавы цветных металлов
практически не имеют предела
усталости

18. Размер и направление зерен

Мелкозернистые материалы обладают
более высокими усталостными
характеристиками по сравнению с
крупнозернистыми материалами того
же самого химического состава

19. Влияние состояния поверхности

Значительная часть усталостных
повреждений зарождается на
поверхности элемента машины или
конструкции, в связи с чем
условия обработки поверхности
являются одним из важнейших
факторов, определяющих
усталостную прочность

20. Масштабный эффект

Опыт показывает:
чем больше
по размеру
образцы или
детали,
тем меньше их
усталостная
прочность
Возможным объяснением этого
может служить то, что
вероятность наличия
концентраторов напряжений
или зародышей усталостных
повреждений в больших
образцах по сравнению с
малыми больше, поскольку
больше их объем и площадь
поверхности

21. Коррозия

В коррозионных
средах
усталостная
прочность
материалов
снижается
Наличие слоя дистиллированной
воды у поверхности многих
материалов, включая обычные
конструкционные стали,
может так понизить величину
усталостной прочности, что
она будет составлять менее
двух третей от усталостной
прочности сухого материала

22. Фреттинг

Фреттинг - повреждение
поверхности в местах
соединения или контакта
деталей при циклическом
движении их относительно
друг друга с малой
амплитудой
Иногда при
фреттинге
величина
усталостной
прочности может
уменьшиться до
одной трети или
менее ее величины
при отсутствии
фреттинга

23. De Havilland Comet первый в мире коммерческий реактивный авиалайнер

24. Катастрофы Комет

10 января и 8 апреля 1954 случились две
катастрофы над Средиземным морем.
Причина:
технология крепления
квадратных иллюминаторов
методом клепки
Возникала микроскопическая трещина,
которая со временем (и числом полетов)
увеличивалась
и в конце концов приводила
к разрушению всего фюзеляжа

Основные понятия об усталости металлов. Предел выносливости

Циклические испытания металлов. Кривая усталости. Предел выносливости

Многие детали автомобиля (оси, коленчатые валы) работают в условиях действия повторно-переменных или знакопеременных нагрузок. Металл под действием циклических нагрузок может уставать и разрушаться.


Рис.2.5. Вид усталостного излома при циклических испытаниях.

Усталостный излом имеет две зоны: притертая зона с полукольцами от каждого цикла, которые приводят к очагу разрушения (трещине, хрупким включениям оксидов, нитридов, карбидов и т. п.), и зона долома - она всегда шероховатая. Сопротивление металла усталостному разрушению характеризуется пределом выносливости σ-1 - это максимальное напряжение, при действии которого не происходит усталостного разрушения образца после произвольно большого или заданного (базового) числа циклов нагружения. За базу принимают: для стали 5 млн. циклов, для цветных металлов 20 млн. циклов.


1) размера детали, чем она крупнее, тем предел выносливости ниже;

2) чистоты поверхности детали, поверхностные надрезы, глубокие царапины, коррозия - резко снижают предел выносливости.

Пути повышения предела выносливости:

Поверхностное упрочнение детали и образование при этом на поверхности сжимающих остаточных напряжений способствуют повышению предела выносливости. Этого можно добиться;

а) поверхностной закалкой ТВЧ;

б) химико-термической обработкой (цементацией, азотировани­ем);

в) дробеструйной обработкой (поверхностный наклёп).

2.2.3. Определение твёрдости

Твёрдостью называется сопротивление металла вдавливанию инородного тела, называемого индентором. Этот индентор вдавливается в металл под нагрузкой Р.

Для определения твердости используют методы Бринелля, Роквелла и Виккерса.

Метод Бринелля. Индентором служит стальной закаленный шарик диаметром D 2,5; 5,0 и 10 мм. При испытании стали и чугуна обычно D=10mm и P= 3000кг. Для цветных сплавов на основе алюминия, меди, никеля и др. P= (1000кг.), при испытании мягких металлов (олово, свинец и т.д.) P= (250кг.).

Но, как правило, твердость не рассчитывают, так как рассчитать площадь лунки F очень трудно. На практике замеряют только диаметр отпечатка (лунки) и по нему в прилагаемых к прибору таблицах смотрят твердость. Чем меньше диаметр отпечатка, тем выше твердость, и наоборот. Между пределом прочности и НВ существует зависимость: для стали и алюминиевых сплавов

Предел измерений твердости по Бринеллю - до 450 кг/мм , выше нельзя, так как шарик будет деформироваться. Тогда измеряют твердость по Роквеллу.

Метод Роквелла (рис. 2.3). Сущность метода заключается во вдавливании в металл индентора - наконечника с алмазным конусом, имеющим угол у вершины 120° (шкалы А и С), или со стальным закаленным шариком диаметром 1,58 мм (шкала В).

Алмазный конус - твердый материал, и поэтому предела измерений твердости не имеет. Общая нагрузка на индентор равна:

Определение твердости по этому методу заключается в измерении по шкале прибора глубины внедрения индентора после снятия нагрузки.

Твердость по Роквеллу - безразмерная величина. Условно за единицу твердости принимают погружение индентора на глубину 0,002 мм.

Метод Виккерса индентором служит четырехгранная алмазная пирамида с углом при вершине 136°, нагрузка – 10…1000 Н (Рис.8б). Твердость рассчитывают по среднему арифметическому диагоналей отпечатка d (мм) по формуле: НV= 0,189 Р/d2 (МПа) или определяют по таблицам. Метод применяют для деталей малых сечений и тонких поверхностных слоев, имеющих высокую твердость.

Усталость металла

Усталость металла

Что это такое? Усталость металла – это постепенное повреждение его структуры с последующим разрушением. Опасность заключается в том, что процесс этот не одномоментный, проходит время, прежде чем материал окончательно придет в негодность.

От чего зависит? Усталость металла связана с условиями, в которых он эксплуатируется. Поэтому, чтобы не допустить деформации, прибегают к различным мерам, способным защитить материал от порчи.

Что такое усталость металлов

Понятие «усталость металла» скрывает за собой неравновесно-напряженное состояние, из-за которого в материале накапливаются отрицательные остаточные явления. Кроме того, металл оказывается неспособен сопротивляться разрушающей силе ниже его предела прочности.

Появление статической усталости объясняется непрерывным продолжительным воздействием на предмет статичной нагрузки, которая меньше предела прочности металла.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Динамическая нагрузка, например, удары, вибрация, является знакопеременной, то есть при ней сжатие постоянно сменяется растяжением. При подобных процессах усталость металла наступает в короткие сроки и может классифицироваться как одноцикловая, малоцикловая и многоцикловая.

  • Одноцикловая усталость металла – простыми словами это его разрушение в результате перехода в неравновесно-нагруженное состояние. Нагрузка оказывается единожды и равна либо превышает предел прочности материала.
  • Малоцикловая усталость металла возникает из-за неравновесно-нагруженного состояния, вызывающего разрушение металла под действием нагрузки, соответствующей или немного превышающей предельный уровень его прочности. Количество нагружаемых циклов не превосходит 10 000.
  • Многоцикловая усталость металла также является неравновесно-нагруженным состоянием, результатом которого становится разрушение металла при соответствующей либо превышающей предел прочности нагрузке. Количество циклов превышает 10 000.

История термина

В процессе развития транспорта инженеры стремились увеличить скорость его движения, однако это привело к увеличению частоты крушений. Дело в том, что ломались вагонные и паровозные оси, коленчатые валы на пароходах.

Подобная картина складывалась и на предприятиях, ведь и там важно было добиться, чтобы оборудование функционировало быстрее. Станки ускоряли за счет увеличения количества оборотов двигателя, что вскоре вызывало поломку деталей.

История термина

Специалисты пытались обнаружить причины аварий, качество металла изучалось в лабораторных условиях, но ничего выяснить не удавалось. Проверки показывали, что размеры элементов рассчитаны верно, использовался качественный металл, а детали имели хороший запас прочности.

Со временем инженеры обратили внимание на тот факт, что обычно из строя выходят компоненты механизмов, испытывающие на себе повторную переменную нагрузку. Допустим, именно такому воздействию подвергается шток в паровой машине: он крепится к шатуну, а тот приводит в движение коленчатый вал. В паровозе принцип примерно тот же, только ведущее колесо вращается благодаря работе кривошипа.

Поршень перемещается в цилиндре, из-за чего шток меняет направление движения. Сначала он испытывает на себе осевое сжатие, а потом растяжение, сопровождающееся изменением нагрузки на данный элемент.

Никто не мог понять, по какой причине повторяющаяся переменная нагрузка разрушает деталь, ведь с постоянной нагрузкой аналогичной величины материал может долго справляться.

Чтобы описать данный процесс, решили использовать усталость металла на фоне переменной нагрузки. Проблема лишь в том, что такое объяснение не несет в себе никакой информации. Кроме того, оно далеко от сути явления, поскольку усталость мышцы, сопровождающаяся снижением ее способности к сокращению, имеет более сложную природу, далекую от поломки металлического элемента.

Понятие «усталость» сохранилось в технике до сих пор, хотя уже известно, почему металл быстро разрушается при переменной нагрузке. По аналогии было введено понятие «выносливость металлов»: чем дольше изделие не «устает», тем более «выносливым» считается металл.

Если материал подвержен усталости, важно сформировать новые пределы напряжений, отказаться от имеющихся справочных материалов, опыта, накопившегося за годы инженерной работы.

Необходимо было доказать связь между выносливостью и повторяющимися переменными нагрузками, причем проверить способность металла к физической усталости можно было только опытным путем.

Рекомендуем статьи

Всю вторую половину XIX века вопросы усталости и текучести металлов оставались одними из наиболее актуальных для технических обществ. Специалисты рассуждали о том, как колебания воздействуют на детали оборудования, корпусы морских судов.

Имена многих исследователей данной темы сейчас остаются неизвестным, поскольку мало у кого была возможность публиковать результаты своих опытов. До наших дней дошла информация только о ряде ученых, которые занимались определением сути усталости металлов.

Например, В. Альберт, горный инженер из Германии, стремился понять, почему обрывались подъемные цепи. В то время бадьи и клети опускались в шахту при помощи цепей, которые перебрасывали через шкив и накручивали на барабан специальной машины. На барабане звенья претерпевали изгибающую нагрузку, а при раскручивании цепи изгиб уступал место растяжению. Во время подъема груза процесс повторялся в обратном порядке.

Инженер понял, что причина обрыва кроется в частой перемене изгибания элементов цепи, пока она наматывается на барабан и огибает шкив. Чтобы доказать свое предположение, В. Альберт проводил опыты, до ста тысяч раз подвергая образцы изгибу. Далее он осматривал цепи, чтобы найти на звеньях трещины, сформировавшиеся из-за переменной нагрузки.

Опыты с железными брусками

Аналогичные опыты с железными брусками в 1950-х годах проводили английские капитаны Г. Джеймс и Д. Гальтон. Они создали машину, чтобы быстро нагружать брус и снимать с него нагрузку.

Эти эксперименты вдохновили английского инженера В. Ферберна на изучение выносливости массивных железных балок, используемых при строительстве мостов. В 1960-х годах он работал с балками по 6-7 метров, при помощи рычагов оказывая и убирая нагрузку. Данный процесс сопровождался прогибом и выпрямлением изделия, а несколько сотен тысяч перемен нагрузки вызывали образование трещины.

Названные опыты носили бессистемный характер и не были представлены в широких технических кругах. На тот момент было сложно сказать, правда ли существует явление усталости металла либо трещины появлялись по случайному стечению обстоятельств.

Систематические исследования проводил механик из Германии А. Велер, несмотря на то, что он был выпускником коммерческого училища и работал чертежником на паровозном заводе, потом машинистом.

Требовалось понять причины аварий, поэтому создали специальную постоянную комиссию, куда А. Велер вошел в качестве эксперта, долгое время работавшего с паровозами. Он проводил испытания металлов в лаборатории, сам изобретал машины, позволявшие подвергать образцы переменным растяжению, изгибу, скручиванию. Интересно, что современные ученые испытывают материалы на изгиб на оборудовании, разработанном А. Велером.

Его машины для испытаний на усталость металла отличались небольшими скоростями, из-за чего исследования длились годами. Так, станок для имитации переменного изгиба совершал за минуту всего 72 оборота, а один из образцов выдержал более 132 миллионов перемен нагрузки.

Тем не менее А. Велер смог доказать, что образцы из стали и железа разрушаются при повторной переменной нагрузке, которая в иных ситуациях оказывается допустимой. Деталь сможет справляться с ней в течение неограниченного отрезка времени, если подобная нагрузка остается в определенных границах, то есть не выходит за предел выносливости. Данную величину необходимо учитывать при создании проектов быстроходных паровозов и скоростных машин.

Опыты А. Велера в корне изменили представления об уровне нагрузки, которой можно подвергать вагонные оси, шатуны, штоки цилиндров, пр. Благодаря ему расчеты компонентов скоростных машин начали выполнять в соответствии с пределом выносливости, который устанавливали опытным путем.

Основные виды усталости металла

  1. Пороговая усталость представляет собой состояние, при котором заметны первые признаки неравномерного напряжения, являющегося необратимым.
  2. Накопление усталости является необратимым относительным процессом накопления неравновесно-напряженного состояния, в результате которого металл разрушается.

Основные виды усталости металла

Снова добиться прежней износостойкости, надежности конструкции, увеличить ее срок службы можно, если повысить уровень твердости. С этой целью прибегают к поверхностной или объемной закалке. Температуру металла повышают до +850 °C и выдерживают в течение 15–20 минут, затем резко охлаждают в воде или масле. В итоге обеспечивается высокая твердость детали.

Старение и усталость металлов и сплавов вызывают значительное снижение уровня прочности, сокращают срок службы изделия, провоцируя его разрушение из-за появления усталостных трещин. Все это негативно отражается на надежности, продолжительности работы и безотказности техники.

Причины возникновения усталости металла

Локальное перенапряжение приводит к появлению небольшой трещины на металлическом изделии, которая постепенно увеличивается в процессе его использования. В результате деталь ослабевает и резко выходит из строя при разрастании трещины до критических показателей. Это называется механической усталостью металлов.

Причины возникновения усталости металла

Выделяют три этапа усталостного разрушения:

  1. Образование трещины.
  2. Распространение трещины.
  3. Разрушение материала.

Чтобы деталь использовалась в течение максимально долгого срока, не подвергаясь усталостному разрушению, а специалисты не задумывались, через сколько лет наступит усталость металла, важно не допускать превышение локальными напряжениями определенного значения, известного как предел выносливости.

Усталость металла определяется присутствием концентраторов напряжений, в качестве которых могут выступать отверстия, сварные соединения, зазубрины, очаги ржавчины. Не менее важно качество обработки поверхности изделия, так как гладкие плоскости менее подвержены усталостным процессам.

Усталостное разрушение деталей может быть разных типов в соответствии с причиной образования дефекта:

  • перепады температуры – в этом случае говорят о термической усталости металла;
  • совместные циклы давления и температуры;
  • наличие очага коррозии;
  • постоянная вибрация, исходящая от оборудования.

Как определить усталость металла

Экспериментальные методы исследования усталости металлов позволяют создавать надежные конструкций, которые служат долго и справляются с переменными нагрузками. Существуют испытания на усталость для хрупких, малопластичных и пластичных материалов, которые проводят в ускоренном или длительном режиме.

Как определить усталость металла

Нередко предел выносливости определяют в условиях симметричного цикла при помощи гладкого вращающегося образца либо имеющего надрез. Так как специалистам нужно определить усталость металла, прибегают к большому количеству циклов знакопеременных нагрузок. Испытание осуществляется при заданной нагрузке и завершается сразу после разрушения материала, далее фиксируют число выполненных циклов.

Меры повышения выносливости металла

Разрушение крепежных элементов является недопустимым. Избежать преждевременного проявления усталости металла можно таким образом:

  • Прибегнуть к рационализации конструкции, то есть к увеличению радиуса скруглений, переходов между отдельными участками изделия, что позволяет избавиться от концентраторов напряжений.
  • Выбирать материал, обладающий повышенным показателем прочности. Сюда относятся титан, легированная сталь, а также сталь с высоким содержанием углерода.
  • Обеспечить более высокую прочность поверхности при помощи метода закалки с отпуском, азотирования, гальванической обработки металла для защиты от ржавчины.
  • Постоянно затягивать резьбовой крепеж во время работы – практически полная защита от ослабления предварительной затяжки достигается при помощи стопорных клиновых шайб.
  • Тщательно отслеживать качество затяжки соединений, если изготовитель указал величину момента затяжки.
  • Защищать поверхности крепежа от воздействия извне, что позволяет избежать коррозионной усталости металла.
  • Предельно серьезно отнестись к выбору типа крепежа, оценив несущую способность, которая требуется от подобных изделий в конкретной ситуации.
  • Провести грамотный монтаж, благодаря чему удается исключить вибрации, слабину крепежа в рабочем состоянии – так, анкерный болт не должен болтаться при установке в пористый бетон, кирпич.
  • Учесть класс пожаростойкости объекта, конструкции, ведь от этой характеристики зависит необходимость в изделиях с повышенным уровнем стойкости.

Разрушение металла в результате усталости происходит внезапно и связано с большим количеством нюансов, чем обычное. А значит, при проектировании объекта важно проанализировать показатели усталости. На данном этапе уже известен материал, который планируется использовать для проекта, и параметры среды – инженеру нужно выбрать ПО для оценки степени усталости всех элементов конструкций.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Читайте также: