Усталость металла методы определения

Обновлено: 18.05.2024

Механические свойства металлов (прочность, упругость, пластичность, вязкость), как и другие свойства, являются исходными данными при проектировании и создании различных машин, механизмов и сооружений.

Методы определения механических свойств металлов делятся на следующие группы:

· статические, когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

· динамические, когда нагрузка возрастает с большой скоростью (испытания на ударный изгиб);

· циклические, когда нагрузка многократно изменяется (испытание на усталость);

· технологические — для оценки поведения металла при обработке давлением (испытания на изгиб, перегиб, выдавливание).

Испытания на растяжение (ГОСТ 1497-84) проводятся на стандартных образцах круглого или прямоугольного сечения. При растяжении под действием плавно возрастающей нагрузки образец деформируется до момента разрыва. Во время испытания образца снимают диаграмму растяжения (рис. 1.36, а), фиксирующую зависимость между действующей на образец силой Р, и вызванной ею деформацией Δl (Δl — абсолютное удлинение).


Рис. 1.36. Диаграмма растяжения низкоуглеродистой стали (а) и зависимость между напряжением и относительным удлинением (б)

Вязкость (внутреннее трение) — способность металла поглощать энергию внешних сил при пластической деформации и разрушении (определяется величиной касательной силы, приложенной к единице площади слоя металла, подлежащего сдвигу).

Пластичность — способность твердых тел необратимо деформироваться под действием внешних сил.

При испытании на растяжение определяют:

· σв — границу прочности, МН/м 2 (кг/мм 2 ):

где Рb — наибольшая нагрузка; F0 — начальная площадь сечения образца;

· σпц — границу пропорциональности, МН/м 2 (кг/мм 2 ):

где Pпц — нагрузка, соответствующая границе пропорциональности;

· σпр — границу упругости, МН/м 2 (кг/мм 2 ):

где Рпр — нагрузка, соответствующая границе упругости (при σпр остаточная деформация соответствует 0,05-0,005 % начальной длины);

· σт — границу текучести, МН/м 2 (кг/мм 2 ):

где Рт — нагрузка, соответствующая границе текучести, Н;

· δ — относительное удлинение, %:

где l0 — длина образца до разрыва, м; l1 — длина образца после разрыва, м;

· ψ — относительное сужение, %:

где F0 — площадь сечения до разрыва, м 2 ; F — площадь сечения после разрыва, м 2 .

Испытания на твердость

Твердость — это сопротивление материала проникновению в него другого, более твердого тела. Из всех видов механического испытания определение твердости является самым распространенным.

Испытания по Бринеллю (ГОСТ 9012-83) проводятся путем вдавливания в металл стального шарика. В результате на поверхности металла образуется сферический отпечаток (рис. 1.37, а).

Твердость по Бринеллю определяется по формуле:

где P — нагрузка на металл, Н; D — диаметр шарика, м; d — диаметр отпечатка, м.

Чем тверже металл, тем меньше площадь отпечатка.

Диаметр шарика и нагрузку устанавливают в зависимости от исследуемого металла, его твердости и толщины. При испытании стали и чугуна выбирают D = 10 мм и P = 30 кН (3000 кгс), при испытании меди и ее сплавов D = 10 мм и P = 10 кН (1000 кгс), а при испытании очень мягких металлов (алюминия, баббитов и др.) D = 10 мм и P = 2,5 кН (250 кгс). При испытании образцов толщиной менее 6 мм выбирают шарики с меньшим диаметром — 5 и 2,5 мм. На практике пользуются таблицей перевода площади отпечатка в число твердости.

Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450 (4500 МПа), поскольку шарик может деформироваться, что исказит результаты испытаний.

Испытания по Роквеллу (ГОСТ 9013-83). Проводятся путем вдавливания в металл алмазного конуса (α = 120°) или стального шарика (D = 1,588 мм или 1/16", рис. 1.37, б). Прибор Роквелла имеет три шкалы — В, С и А. Алмазный конус применяют для испытания твердых материалов (шкалы С и А), а шарик — для испытания мягких материалов (шкала В). Конус и шарик вдавливают двумя последовательными нагрузками: предварительной Р0 и общей Р:

где Р1 — основная нагрузка.

Предварительная нагрузка Р0 = 100 Н (10 кгс). Основная нагрузка составляет 900 Н (90 кгс) для шкалы В; 1400 Н (140 кгс) для шкалы С и 500 Н (50 кгс) для шкалы А.


Рис. 1.37. Схема определения твердости: а — по Бринеллю; б — по Рoквеллу; в — по Виккерсу

Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принимают величину, которая соответствует осевому перемещению наконечника на расстояние 0,002 мм.

Твердость по Роквеллу вычисляют следующим способом:

НR = 100 – e (шкалы А и С); НR = 130 – e (шкала В).

Величину e определяют по формуле:

где h — глубина проникновения наконечника в металл под действием общей нагрузки Р (Р =Р0+ Р1); h0 — глубина проникновения наконечника под действием предварительной нагрузки Р0.

В зависимости от шкалы твердость по Роквеллу обозначают НRВ, НRС, НRА.

Испытания по Виккерсу (ГОСТ 2999-83). В основе метода — вдавливание в испытываемую поверхность (шлифованную или даже полированную) четырехгранной алмазной пирамиды (α = 136°) (рис. 1.37, в). Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость.

Твердость по Виккерсу:

где Р — нагрузка на пирамиду, Н; d — среднее арифметическое двух диагоналей отпечатка, измеренных после снятия нагрузки, м.

Число твердости по Виккерсу определяют по специальным таблицам по диагонали отпечатка d. При измерении твердости применяют нагрузку от 10 до 500 Н.

Микротвердость (ГОСТ 9450-84). Принцип определения микротвердости такой же, как и по Виккерсу, согласно соотношению:

Метод применяется для определения микротвердости изделий мелких размеров и отдельных составляющих сплавов. Прибор для измерения микротвердости — это механизм вдавливания алмазной пирамиды и металлографический микроскоп. Образцы для измерений должны быть подготовлены так же тщательно, как микрошлифы.

Испытание на ударную вязкость

Для испытания на удар изготавливают специальные образцы с надрезом, которые затем разрушают на маятниковом копре (рис. 1.39). Общий запас энергии маятника будет расходоваться на разрушение образца и на подъем маятника после его разрушения. Поэтому если из общего запаса энергии маятника отнять часть, которая тратится на подъем (взлет) после разрушения образца, получим работу разрушения образца:

K = Рl(соs β – соs α), Дж (кг·м),

де P — масса маятника, Н (кг); h1 — высота подъема центра масс маятника до удара, м; h2 — высота взлета маятника после удара, м; l — длина маятника, м; α, β — углы подъема маятника соответственно до разрушения образца и после него.


Рис. 1.39. Испытание на ударную вязкость: 1 — маятник; 2 — нож маятника; 3 — опоры

Ударную вязкость, т. е. работу, затраченную на разрушение образца и отнесенную к поперечному сечению образца в месте надреза, определяют по формуле:

где F — площадь поперечного сечения в месте надреза образца, м 2 (см 2 ).

Для определения пользуются специальными таблицами, в которых для каждого угла β определена величина работы удара K. При этом F = 0,8 · 10 –4 м 2 .

Для обозначения ударной вязкости добавляют и третью букву, указывающую на вид надреза на образце: U, V, Т. Запись KСU означает ударную вязкость образца с U-образным надрезом, KСV — с V-образным надрезом, а KСТ — с трещиной (рис. 1.40).

Рис. 1.40. Виды надрезов на образцах для испытания на ударную вязкость:
аU-образный надрез (KCU); бV-образный надрез (KСV); в — надрез с трещиной (KСТ)

Испытание на усталость (ГОСТ 2860-84). Разрушение металла под действием повторных или знакопеременных напряжений называется усталостью металла. При разрушении металла вследствие усталости на воздухе излом состоит из двух зон: первая зона имеет гладкую притертую поверхность (зона усталости), вторая — зона долома, в хрупких металлах она имеет грубокристаллическое строение, а в вязких — волокнистое.

При испытании на усталость определяют границу усталости (выносливости), т. е. то наибольшее напряжение, которое может выдержать металл (образец) без разрушения заданное число циклов. Самым распространенным методом испытания на усталость является испытание на изгиб при вращении (рис. 1.41).

Рис. 1.41. Схема испытания на изгиб при вращении:
1 — образец; Р — нагрузка; Мвиг — изгибающий момент

Применяют следующие основные виды технологических испытаний (проб).

Проба на изгиб (рис. 1.42) в холодном и горячем состоянии — для определения способности металла выдерживать заданный изгиб; размеры образцов — длина l = 5а + 150 мм, ширина b = 2а (но не менее 10 мм), где а — толщина материала.


Рис. 1.42. Технологическая проба на изгиб: а — образец до испытания; б — загиб до определенного угла; в — загиб до параллельности сторон; г — загиб до соприкосновения сторон

Проба на перегиб предусматривает оценку способности металла выдерживать повторный изгиб и применяется для проволоки и прутков диаметром 0,8—7 мм из полосового и листового материала толщиной до 55 мм. Образцы сгибают попеременно направо и налево на 90° с равномерной — около 60 перегибов в минуту — скоростью до разрушения образца.

Проба на выдавливание (рис. 1.43) — для определения способности металла к холодной штамповке и вытягиванию тонкого листового материала. Состоит в продавливании пуансоном листового материала, зажатого между матрицей и зажимом. Характеристикой пластичности металла является глубина выдавливания ямки, что соответствует появлению первой трещины.


Рис. 1.43. Испытание на выдавливание: 1 — лист; h — мера способности материала к вытяжке

Проба на навивку проволоки диаметром d ≤ 6 мм. Испытание состоит в навивке 5—6 плотно прилегающих по винтовой линии витков на цилиндр заданного диаметра. Выполняется только в холодном состоянии. Проволока после навивки не должна иметь повреждений.

Проба на искру используется при необходимости определения марки стали при отсутствии специального оборудования и маркировки.

Усталость металла методы определения

Построение кривой усталости при эксплуатационном нагружении

Примечание. - одноступенчатое испытание (испытание по Велеру); - блок-программное испытание; - случайное испытание с цифровым моделированием последовательности экстремумов; - случайное испытание со слежением.

1.2. Определяемые характеристики - по ГОСТ 25.502-79 и ГОСТ 25.504-82.

1.3. Испытания на усталость проводят в случае, если расчетные методы определения характеристик сопротивления усталости не применимы или слишком ненадежны.

1.4. Испытания деталей или их частей следует проводить до изготовления конструкции в сборе с целью сокращения времени на ее разработку.

1.5. Назначение размеров детали (с помощью испытаний на усталость) осуществляют в три этапа:

предварительное расчетное определение размеров;

оптимизация размеров экспериментальным путем с помощью упрощенного процесса нагружения (сравнительные испытания);

оценка усталостной долговечности детали при нагружении, максимально приближенном к эксплуатационному.

2. ТРЕБОВАНИЯ К ОБЪЕКТАМ ИСПЫТАНИЙ И ФОРМИРОВАНИЕ ВЫБОРКИ ДЛЯ ИСПЫТАНИЙ

2.1. Для усталостных испытаний используют детали, а также геометрически подобные конструктивные элементы (модели) уменьшенных размеров или отдельные, вырезанные из детали, части, исходя из особенностей испытательного оборудования, затрат времени и средств.

2.2. Требования к изготовлению деталей и моделей должны соответствовать требованиям серийного (или опытного) производства.

2.3. Влияние размеров детали на предел выносливости при отсутствии экспериментальных данных следует определять по ГОСТ 25.504-82.

2.4. При испытании на усталость геометрически подобных моделей уменьшенных размеров или частей детали следует учитывать:

геометрическое влияние размеров, как следствие уменьшенного объема материала (статистическая доля) и увеличенного градиента напряжений (доля механических напряжений);

технологическое влияние размеров, как следствие технологической обработки материала или детали;

влияние размеров с точки зрения обработки поверхности, как следствие упрочнения поверхности и связанного с ним внутреннего напряженного состояния и увеличения твердости поверхностного слоя материала.

2.5. Для построения кривых равной вероятности неразрушения испытывают партию деталей, объем которой определяют в зависимости от целей испытаний, заданной точности и доверительной вероятности оцениваемого параметра, в соответствии с требованиями ГОСТ 25.502-79.

2.6. Минимально необходимое число деталей определяют по номограмме, приведенной на чертеже приложения 2.

2.7. Методика и примеры определения минимального числа испытуемых деталей для оценки среднего ресурса приведены в приложении 2.

3. АНАЛИЗ ЭКСПЛУАТАЦИОННОЙ НАГРУЖЕННОСТИ

3.1. Характеристики нагружения

Эксплуатационное нагружение может быть охарактеризовано:

характером нагружения (случайное, детерминированное одно- или многоступенчатое, квазистатическое, колебательное, ударное);

числом наложенных многоосных составляющих и отношениями между ними (при случайном нагружении - коррелированные или некоррелированные; при детерминированном нагружении - различные или одинаковые частоты, со сдвигом или без сдвига фаз);

регулированием усилия, перемещения, деформации или ускорения;

параметрами окружающей среды (температурой, давлением, коррозией трения);

видом нагружения (растяжение-сжатие, изгиб, кручение, сдвиг);

асимметрией нагружения (знакопеременный или знакопостоянный цикл напряжений);

формой спектра (распределения) нагрузок (узкополосный или широкополосный).

Характеристики однопараметрического спектра нагружения с постоянным средним значением цикла напряжений приведены на черт.1.

Характеристики однопараметрического спектра нагружения с постоянным средним значением цикла напряжений


Примечание. Форму спектра описывают с помощью дополнительной функции частоты максимумов

3.2. Стандартные спектры нагружения

3.2.1. Если испытания на усталость проводят не с действительным спектром или действительной последовательностью экстремумов (на стадии проекта, при сравнительных испытаниях, при разработке документации на определение размеров, при незначительном отклонении действительного нагружения), то их осуществляют со стандартными спектрами (при испытании по блок-программе), а также со стандартными последовательностями экстремумов (при случайном испытании).

3.2.2. Использование стандартных спектров или стандартных последовательностей экстремумов дает следующие преимущества:

Методика проведения усталостных испытаний

Под действием циклических напряжений в металлах и сплавах зарождаются и постепенно развиваются трещины, вызывающие в конечном итоге полное разрушение детали или образца. Это разрушение особенно опасно потому, что может протекать под действием напряжений, намного меньших пределов прочности и текучести. Подсчитано, что более 80% всех случаев эксплуатационного разрушения происходит в результате циклического нагружения.

Процесс постепенного накопления повреждений в материале под действием циклических нагрузок, приводящий к изменению его свойств, образованию трещин и разрушению, называют усталостью, а свойство противостоять усталости – сопротивлением усталости.

Усталостная трещина обычно зарождается в поверхностных слоях и затем развивается вглубь образца или детали, образуя острый надрез. Распространение усталостной трещины обычно длительно. Оно продолжается до тех пор, пока сечение не окажется столь малым, что действующие в нем напряжения превысят разрушающие. Тогда произойдет быстрое разрушение, как правило хрупкое, из-за наличия острого надреза.

Задача усталостных испытаний – дать количественную оценку способности материала работать в условиях циклического нагружения без разрушения.

Современные методы испытаний на усталость разнообразны. Они отличаются характером изменения напряжений во времени, схемой нагружения (изгиб, растяжение – сжатие, кручение), наличием или отсутствием концентраторов напряжений. Основные требования и методика усталостных испытаний обобщены в ГОСТ 25.502 – 79.

Во время любого усталостного испытания на образец действуют циклические напряжения, непрерывно изменяющиеся во времени и часто по знаку. Типичные примеры используемых циклических напряжений показаны на рис. 2.89. Цикл напряжений – это совокупность переменных значений напряжений за один период их изменения. Каждый цикл характеризуется несколькими параметрами. За максимальное напряжение цикла σmax принимают наибольшее по алгебраической величине напряжение. Минимальное напряжение цикла – σmin – наименьшее по алгебраической величине напряжение.

Среднее напряжение цикла

Амплитуда напряжений цикла

Сложение и вычитание максимальных и минимальных напряжений производят с учетом их знака. Из рис. 2.89 ясно, что

Цикл характеризуется также коэффициентом ассиметрии

Наиболее распространенные схемы нагружения при усталостных испытаниях – изгиб и растяжение – сжатие. Схема изгиба реализуется по-разному. Особенно проста и чаще всего применяется схема чистого изгиба образца при вращении (см. рис. 2.90). Нагрузка здесь прилагается в двух точках, что обеспечивает постоянство изгибающего момента на всей рабочей длине образца.

Для испытаний в условиях циклического растяжения – сжатия чаще всего используют гидропульсационные машины с гидравлическим приводом и гидропульсатором.

Схемы некоторых стандартных образцов, используемых при усталостных испытаниях, показаны на рис. 2.91. Их рабочая часть имеет круглое или прямоугольное сечение. Используют гладкие (без надрезов) и образцы с концентраторами напряжений.

Усталостные испытания делятся на две большие группы: высокоцикловые и малоцикловые. Первые характеризуются большой частотой нагружения (10 1 – 10 3 Гц), вторые – низкой частотой, не более 10 Гц.

Основным первичным результатом высокоциклового усталостного испытания одного образца является число циклов до разрушения (циклическая долговечность) при заданных характеристиках цикла. По результатам испытаниям серии образцов могут быть определены различные характеристики сопротивления усталости. Главной из них является предел усталости σR – наибольшее значение максимального напряжения цикла, при действии которого не происходит усталостного разрушения образца после произвольно большого или заданного числа циклов нагружения.

Для того, чтобы оценить предел усталости, необходимо испытывать целую серию образцов, как правило, не меньше 15. Каждый образец испытывают при определенном значении максимального напряжения цикла. При этом циклы для всех образцов одной серии должны быть подобны, т.е. иметь одинаковую форму и отношение различных характеристик цикла.

По результатам испытания отдельных образцов строят кривую усталости в координатах максимальное напряжение цикла σmax – циклическая долговечность N (рис. 2.92). Максимальное напряжение для первого образца обычно задают на уровне ⅔ σв. Нижний предел используемых напряжений составляет 0,3 – 0,5 σв. Из-за относительно большого разброса экспериментальных точек строить эти кривые рекомендуется методом наименьших квадратов. Наиболее наглядны кривые усталости в логарифмических координатах (см. рис. 2.92,б).

Рисунок 2.92 - Кривые усталости в различных координатах

По мере уменьшения максимального напряжения цикла циклическая долговечность всех материалов возрастает. При этом у сталей и некоторых цветных сплавов, склонных к динамическому деформационному старению, кривая усталости асимптотически приближается к прямой, параллельной оси абсцисс (см.рис. 2.92, а, кривая 1). Ордината, соответствующая постоянному значению σmax, и есть предел усталости таких материалов σR – наибольшее напряжение, которое не вызывает разрушения при любом числе циклов N (его иногда называют физическим пределом выносливости). Наиболее просто определяется σR при использовании логарифмического масштаба (см.рис. 2.92,б). Удобно оценивать σR и по кривым в координатах σmax – 1/N (см.рис. 2.92,в). Здесь предел усталости определяют, экстраполируя кривую в точку ее пересечения с осью ординат, где 1/N = 0. Этот способ особенно целесообразен для приближенной оценки σR по результатам испытания небольшого числа образцов.

Многие цветные металлы и сплавы не имеют горизонтального участка на кривых усталости (см.рис. 2.93, а, б, кривые 2). В этом случае определяют предел ограниченной усталости – наибольшее напряжение σmax, которое материал выдерживает, не разрушаясь в течение определенного числа циклов нагружения. Это число циклов называют базой испытания, обычно 10 8 циклов (когда на кривой усталости имеется горизонтальный участок, испытания продолжают не более чем до 10 7 циклов).

Кривые усталости, построенные при использовании цикла с R = - 1, для многих металлических материалов хорошо описываются уравнением Вейбулла:

σmax = σ-1 + a (N + B) - α ,

где σ-1 – предел усталости; N – долговечность; a, B, α – коэффициенты.

Для усталостных испытаний характерен значительный разброс экспериментальных данных, поэтому особенно важна их правильная статистическая обработка, регламентируемая ГОСТом. При ограниченном числе образцов предел выносливости определяется с 50%-ной вероятностью. Для этого, строя кривую усталости, необходимо при напряжениях, равных 0,95 – 1,05 σR, провести испытание нескольких (не менее трех) образцов, половина которых должна остаться неразрушенной по достижении заданной базы испытаний.

Как уже говорилось выше, по результатам усталостных испытаний для каждого образца определяют циклическую долговечность N – число циклов нагружения, которое выдерживает материал перед разрушением при определенном напряжении. Циклическая долговечность – вторая по важности после σR характеристика сопротивления высокоцикловой усталости металлических материалов.

Предел усталости и циклическую (или усталостную) долговечность можно определять и по результатам испытаний на малоцикловую усталость (МЦУ). Однако в них эти характеристики не являются основными. Испытания на МЦУ проводят с использованием относительно высоких напряжений и малой частоты циклов напряжений, имитируя условия эксплуатации конструкций, например самолетных, которые подвергаются воздействию относительно редких, но значительных по величине циклических нагрузок. База испытания на малоцикловую усталость не превышает 5 · 10 4 циклов. Таким образом, малоцикловая усталость относится к левой ветви кривых усталости (см.рис. 2.92, а, б) до их выхода на горизонталь или появления перегиба.

Границей между мало- и многоцикловой усталостью является зона перехода от упруго-пластического к упругому деформированию в условиях циклического нагружения. Названная выше база (5·10 4 циклов) является такой условной границей, характеризующей среднее число циклов нагружения для этой переходной зоны у пластичных сталей и сплавов цветных металлов. Для высокопластичных сплавов переходная зона смещается в сторону большего числа циклов, а для хрупких – в сторону меньшего.

Малоцикловые испытания чаще всего проводят по схеме растяжение – сжатие. При этом по ГОСТ 25.502 – 79 необходимо обеспечить непрерывное измерение и регистрацию деформирования рабочей части образца. В отличие от испытаний на многоцикловую усталость, где в основном используют цилиндрические образцы, в малоцикловых испытаниях предпочитают образцы с прямоугольным сечением, в частности пластины с концентратором напряжений.

Важнейшим первичным результатом испытаний на МЦУ является скорость роста трещины при усталости dl/dN (СРТУ). Ее удобно определять на больших по размеру образцах шириной B=200÷500, длиной L=3B и длиной исходной щели 2l0=0,3 – 4 мм, при этом 2l/B≈0,3, где l= l0l, а Δl – длина предварительно выращенной усталостной трещины от 1,5 до 2 мм. В этом случае легко проводить замеры величины l на поверхности образца и рассчитывать dl/dN с достаточно высокой точностью.

Все большее развитие в последние годы получают испытания на МЦУ, базирующиеся на концепциях механики разрушения. Эти испытания получили название испытаний на циклическую трещиностойкость. Их основным результатом является построение диаграммы усталостного разрушения – зависимости СРТУ от наибольшего значения Kmax или размаха ΔK коэффициента интенсивности напряжений цикла (рис. 2.93). При этом

lg Kmax = lg[ΔK/(l – Rσ)].

Диаграмма усталостного разрушения состоит из трех участков. Первый, соответствующий низким скоростям роста усталостных трещин (менее 10 -5 мм/цикл), характеризуется затуханием СРТУ с увеличением Kmax или ΔK. Величина Kmax на участке 1 близка к пороговому значению Ks, за которое принимают величину Kmax, при которой трещина не развивается на протяжении заданного числа циклов нагружения.

Линейный участок 2 диаграммы усталостного разрушения (см.рис. 2.93) описывается степенной зависимостью

dl/dN = CK) m или dl/dN = C’(Kmax) m , (2.43)

где для различных материалов m = 2÷10, m’=2÷6. Зависимости (2.43) обычно реализуются в диапазоне СРТУ от 10 -5 до 10 -3 мм/цикл.

На участке 3 скорость роста трещины возрастает с увеличением Kmax, приближающимся к критическому коэффициенту интенсивности напряжений Kили K- значению Kmax, при котором образец разрушается. Критические коэффициенты Kили Kназывают циклической вязкостью разрушения. Кроме них, по диаграмме усталостного разрушения определяют еще несколько характеристик циклической трещиностойкости. Наиболее важными из них считают: коэффициенты C и m в уравнении (2.43), пороговый коэффициент интенсивности напряжений Ks. Оценивают также величины Kmax и ΔK при заданной СРТУ и, наоборот, величину СРТУ при определенных значениях Kmax и ΔK, коэффициенты интенсивности напряжений K1-2 и K2-3, соответствующие началу и концу второго участка диаграммы усталостного разрушения (см. рис. 2.93 и др.)

Расчеты и испытания на прочность

МЕТОДЫ РАСЧЕТА ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ УСТАЛОСТИ

Strength calculation and testing. Methods of fatigue strength behaviour calculation

Дата введения 1983-07-01

1. РАЗРАБОТАН Академией наук СССР, Государственным комитетом СССР по стандартам, Министерством высшего и среднего специального образования СССР, Министерством тракторного и сельскохозяйственного машиностроения

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 18.05.82 N 1972

3. Стандарт унифицирован со стандартами ГДР TGL 19340/03 и TGL 19340/04

4. ВВЕДЕН ВПЕРВЫЕ

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

5.4.1, 5.6.1, приложение 1

6. Ограничение срока действия снято по протоколу N 3-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6-93)

7. ИЗДАНИЕ с Изменением N 1, утвержденным в декабре 1988 г. (ИУС 4-89)

Настоящий стандарт устанавливает методы расчета следующих характеристик сопротивления усталости деталей машин и элементов конструкций, изготовленных из сталей, в много- и малоцикловой упругой и упругопластической области:

- медианных значений пределов выносливости на базе 10 циклов;

- пределов выносливости для заданной вероятности разрушения на базе 10 циклов;

- коэффициента вариации пределов выносливости;

- показателя наклона левой ветви кривой усталости в двойных логарифмических координатах;

- абсциссы точки перелома кривой усталости;

- коэффициента чувствительности к асимметрии цикла напряжений;

- предельных амплитуд при асимметричных циклах нагружения;

- параметров уравнения кривой малоцикловой усталости (в пределах до 10 циклов) при:

растяжении - сжатии, изгибе и кручении;

симметричных и асимметричных циклах напряжений или деформаций, изменяющихся по простому периодическому закону с постоянными параметрами;

абсолютных размерах поперечного сечения детали до 300 мм;

наличии и отсутствии концентрации напряжений;

температуре от минус 40 °С до плюс 100 °С;

наличии и отсутствии агрессивной среды;

частоте нагружения в пределах 1-300 Гц.

Стандарт не распространяется на методы расчета характеристик сопротивления усталости сварных конструкций и их элементов.

Область применения стандарта ограничивается случаями, для которых в тексте стандарта и приложений имеются все исходные и справочные данные.

Выбор требуемой номенклатуры характеристик сопротивления много- и малоцикловой усталости определяется в каждом конкретном случае задачами и методом расчета по действующим в отраслях нормативно-техническим документам.

Термины, определения и обозначения, применяемые в стандарте, - по ГОСТ 23207.

Обозначения, применяемые в стандарте, приведены в обязательном приложении 1.

Размерность напряжений - МПа, геометрических размеров - мм.

Настоящий стандарт унифицирован со стандартами ГДР ТГЛ 19340/03 и ТГЛ 19340/04.

(Измененная редакция, Изм. N 1).

1. ОПРЕДЕЛЕНИЕ ПРЕДЕЛОВ ВЫНОСЛИВОСТИ ДЕТАЛЕЙ МАШИН И ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

1.1. Определение медианных значений пределов выносливости

Медианные значения пределов выносливости деталей машин в номинальных напряжениях (соответствующие вероятности разрушения =50%) определяют с учетом коэффициента снижения предела выносливости по формулам:

- при растяжении-сжатии или изгибе:

где - медианное значение предела выносливости на совокупности всех плавок металла данной марки гладких лабораторных образцов диаметром =7,5 мм, изготовленных из заготовок диаметром , равным абсолютному размеру рассчитываемой детали;

- медианное значение предела выносливости на совокупности всех плавок металла данной марки гладких лабораторных образцов диаметром =7,5 мм, изготовленных из заготовок размерами 10-20 мм;

- коэффициент, учитывающий снижение механических свойств металла (, , ) с ростом размеров заготовок (п.1.3)

Медианные значения пределов выносливости деталей , , полученные по формулам (1) и (4) для =50%, используют для оценки пределов выносливости деталей при любой заданной вероятности разрушения (разд.2 и 3).

1. При наличии коррозионных воздействий в формулы (2) и (5) вместо следует подставлять значения .

2. При отсутствии экспериментальных данных ориентировочно величины , допускается оценивать на основе соотношений:

где - среднее значение предела прочности стали данной марки, определенное на образцах, изготовленных из заготовок диаметром , равным абсолютному размеру рассчитываемой детали, МПа;

1.2. Определение эффективных коэффициентов концентрации напряжений , и отношений ,

1.2.1. Коэффициенты , и отношения определяют по экспериментальным данным или путем расчета.

1.2.2. Определение , , по экспериментальным данным.

Коэффициенты , могут определяться экспериментально на геометрически подобных образцах диаметром или толщиной поперечного сечения не менее 40 мм, если или рассчитываемой детали превышают это значение. Если или рассчитываемой детали меньше 40 мм, то при экспериментальном определении , целесообразно вести испытания на натурных деталях или моделях тех же поперечных размеров.

Для ряда деталей экспериментально полученные значения , и приведены в приложении 2 (черт.1-7, 13-16).

Определения. Методы определения механических свойств металлов разделяют на:

Методы определения механических свойств металлов разделяют на:

- статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

- динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);

- циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).

1.2.2.1 Испытание на растяжение

При испытании на растяжение определяют предел прочности (sв), предел текучести (sт), относительное удлинение (δ) и относительное сужение (y). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo. В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.

Предел прочности (sв) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/F0).

Рисунок 1 – Диаграмма растяжения

Необходимо отметить, что при растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается. Истинное напряжение определяется делением действующей в определенный момент нагрузки на площадь, которую образец имеет в этот момент. Истинные напряжения в повседневной практике не определяют, а пользуются условными напряжениями, считая, что поперечное сечение Fо образца остается неизменным.

Предел текучести (sт) – это нагрузка, при которой происходит пластическая деформация, отнесенная к начальной площади поперечного сечения образца (Рт / F0). Однако при испытаниях на растяжение у большинства сплавов площадки текучести на диаграммах нет. Поэтому определяется условный предел текучести (s0,2) - напряжение, которому соответствует пластическая деформация 0,2%. Выбранное значение 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

К характеристикам материала относят также предел упругости (sпр), под которым подразумевают напряжение, при котором пластическая деформация достигает заданного значения. Обычно используют значения остаточной деформации 0,005; 0,02; 0,05%. Таким образом, s0,05 = Рпр / F0 пр – нагрузка, при которой остаточное удлинение составляет 0,05%).

Предел пропорциональности sпц = Рпц / F0пц – максимальная нагрузка, при действии которой еще выполняется закон Гука).

Пластичность характеризуется относительным удлинением (d) и относительным сужением (y ):

где lk - конечная длина образца; lo и F0 - начальные длина и площадь поперечного сечения образца; Fk - площадь поперечного сечения в месте разрыва.

Для малопластичных материалов испытания на растяжение вызывают затруднения, поскольку незначительные перекосы при установке образца вносят существенную погрешность в определение разрушающей нагрузки. Такие материалы, как правило, подвергают испытанию на изгиб.

1.2.2.2 Испытания на твердость

Твердость – способность материала оказывать сопротивление проникновению в него другого, более твердого тела – индентора. Твердость материала определяют методами Бринелля, Роквелла, Виккерса, Шора (рис.2).

Определение твердости по Бринеллю проводится путем вдавливания в металл стального шарика. При этом на поверхности металла образуется сферический отпечаток, диаметр которого зависит от твердости металла. Диаметр шарика (Д) и нагрузки (Р) выбирают в зависимости от металла, который исследуют. При испытании стали и чугунов выбирают Д = 10 мм и Р = 30 кН, при испытании меди и её сплавов - Д = 10 мм и Р = 10 кН, а при испытании очень мягких металлов (алюминия, баббита и др.) - Д = 10 мм и Р = 2,5 кН.

Рисунок 2 – Схемы определения твердости по Бринеллю(а),

Роквеллу(б) и Виккерсу(в)

Твердость металла по Бринеллю указывается буквами НВ и числом. Для перевода числа твердости в систему СИ пользуются коэффициентом К = 9,8 · 10 6 , на который умножают значение твердости по Бринеллю: НВ = НВ · К, Па.

Метод определения твердости по Бринеллю не рекомендуется применять для сталей с твердостью свыше НВ 450 и цветных металлов с твердостью более 200 НВ.

Для различных материалов установлена корреляционная связь между пределом прочности (в МПа) и числом твердости НВ: sв » 3,4 НВ - для горячекатаных углеродистых сталей; sв » 4,5 НВ - для медных сплавов, sв » 3,5НВ - для алюминиевых сплавов.

Определение твердости методом Роквелла осуществляют путем вдавливания в металл алмазного конуса или стального шарика. Прибор Роквелла имеет три шкалы – А,В,С. Алмазный конус применяют для испытания твердых материалов (шкалы А и С), а шарик – для испытания мягких материалов (шкала В). В зависимости от шкалы твердость обозначается буквами HRB, HRC, HRA и выражается в специальных единицах.

При измерении твердости по методу Виккерса производят вдавливание в поверхность металла (шлифуемую или полируемую) четырехгранной алмазной пирамиды. Этот метод применяют для определения твердости деталей малой толщины и тонких поверхностных слоев, которые имеют высокую твердость (например, после азотирования). Твердость по Виккерсу обозначают HV. Перевод числа твердости HV в систему СИ производится аналогично переводу числа твердости НВ.

При измерении твердости по методу Шора шарик с индентором падает на образец, перпендикулярно его поверхности, а твердость определяется по высоте отскока шарика и обозначается HS.

Твердость металла в малых объемах оценивают путем определения микротвердости. Прибор для измерения – это механизм для вдавливания индентора (алмазной пирамиды) и металлографический микроскоп. Микротвердость оценивают по величине диагонали отпечатка на образце, который должен быть подготовлен как микрошлиф. Метод применяют для определения микротвердости тонких упрочненных поверхностных слоев после химико-термической обработки (например, борированных), отдельных структурных составляющих и т.п.

1.2.2.3 Испытание на ударную вязкость

Ударная вязкость характеризует способность материала оказывать сопротивление динамическим нагрузкам и проявляющейся при этом склонности к хрупкому разрушению. Для испытания на удар изготовляют специальные образцы с надрезом, которые потом разрушают на маятниковом копре (рис.3). По шкале маятникового копра определяют работу К, затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний – ударную вязкость. Она определяется отношением работы разрушения образца к площади его поперечного сечения и измеряется в МДж/м 2 .

Для обозначения ударной вязкости применяют буквы КС и добавляют третью, которая указывает на вид надреза на образце: U, V, T. Запись KCU означает ударную вязкость образца с U-подобным надрезом, KCV - с V-подобным надрезом, а KCT - с трещиной, созданной в основании надреза. Работа разрушения образца при проведении ударных испытаний содержит две составляющие: работу зарождения трещины (Аз) и работу распространения трещины (Ар).

Определение ударной вязкости особенно важно для металлов, которые работают при низких температурах и выявляют склонность к хладноломкости, то есть к снижению ударной вязкости при понижении температуры эксплуатации.

Рисунок 3 – Схема маятникового копра и ударного образца

При проведении ударных испытаний образцов с надрезом при низких температурах определяют порог хладноломкости, который характеризует влияние снижения температуры на склонность материала к хрупкому разрушению. При переходе от вязкого к хрупкому разрушению наблюдается резкое снижение ударной вязкости в интервале температур, который имеет название температурный порог хладноломкости. При этом изменяется строение излома от волокнистого матового (вязкое разрушение) к кристаллическому блестящему (хрупкое разрушение). Порог хладноломкости обозначают интервалом температур (tв.– tхр.) или одной температурой t50, при которой в изломе образца наблюдается 50% волокнистой составляющей или же величина ударной вязкости снижается в два раза.

О пригодности материала к работе при заданной температуре судят по температурному запасу вязкости, который определяется по разнице между температурой эксплуатации и переходной температурой хладноломкости, и чем он больше, тем надежнее материал.

1.2.2.4 Испытания на трещиностойкость

Сопротивление материала распространению трещин или его трещиностойкость характеризуется коэффициентом интенсивности напряжений К. Значение К определяют экспериментально на образцах с надрезом, на дне которого инициирована усталостная трещина. Для расчета К при нагрузке образца фиксируют усилие в момент подрастания трещины на некоторую величину и перехода к её нестабильному распространению.

Величина К характеризует сопротивление развитию вязкой трещины, и чем она больше, тем выше сопротивление материала разрушению, то есть его надежность. Коэффициент интенсивности напряжений в вершине трещины в момент разрушения К дополняет параметры s0,2 и модуль Юнга Е при расчетах на прочность деталей, изготовленных из высокопрочных сталей с sв > 1500 МПа, титановых (sв > 800 МПа) и алюминиевых (sв > 450 МПа) сплавов. Он позволяет определить безопасный размер трещины при известном напряжении или безопасное напряжение при известном размере дефекта.

1.2.2.5 Испытания на усталость

Усталость – процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, которые приводят к образованию трещин и разрушений. Усталость металла вызывается концентрацией напряжений в отдельных его объемах (в местах скопления неметаллических и газовых включений, структурных дефектов). Свойство металла сопротивляться усталости называется выносливостью.

Испытания на усталость проводят на машинах для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, или на машинах для испытаний на растяжение-сжатие, или на повторно-переменное скручивание. В результате испытаний определяют предел выносливости, который характеризует сопротивление материала усталости.

Предел выносливости – максимальное напряжение, при действии которого не происходит усталостного разрушения после базового количества циклов нагружения. За максимальное smax или минимальное smin напряжение цикла принимают наибольшее или наименьшее по алгебраической величине напряжение. Цикл характеризуется коэффициентом асимметрии R = smin /smax. Если R=-1, то цикл называют симметричным, если smin и smax не равны по величине, то цикл считается асимметричным. Предел выносливости обозначается sR, где R - коэффициент асимметрии цикла.

Для определения предела выносливости проводят испытания не менее десяти образцов. Каждый образец испытывают только при одном напряжении до разрушения или при базовом числе циклов. Базовое число циклов должно быть не ниже 10 7 нагружений (для стали) и 10 8 (для цветных металлов).

По результатам испытаний отдельных образцов строят кривые усталости в логарифмических координатах. С уменьшением smax долговечность возрастает и напряжение, не вызывающее разрушения при базовом числе циклов (горизонтальный участок на кривой усталости), соответствует пределу выносливости sR (рис.4).

Многие металлы (обычно цветные и их сплавы) не имеют горизонтального участка на кривой усталости и в этом случае определяют ограниченный предел выносливости, т. е. наибольшее напряжение, которое выдерживает металл в течение заданного числа циклов нагружения.

Если образование трещин или полное разрушение происходит при 5×10 4 , то такая усталость называется малоцикловой и она имеет большое значение для штампового инструмента, сосудов высокого давления, деталей самолета и т. д.

Для многих сталей отношение предела выносливости к пределу прочности при растяжении приблизительно равно 0,5, но для высокопрочных сталей это отношение уменьшается, поскольку из-за снижения пластичности затрудняется релаксация напряжений у вершины трещины и ускоряется её развитие.

Важной характеристикой конструкционной прочности является живучесть при циклическом нагружении, под которой понимают продолжительность эксплуатации детали от момента зарождения первой макроскопической усталостной трещины размером 0,5…1 мм до окончательного разрушения. Живучесть имеет особое значение для надежности эксплуатации изделий, безаварийная работа которых поддерживается путем раннего обнаружения и предотвращения дальнейшего развития усталостных трещин.

Читайте также: