Выделение металла при электролизе раствора соли происходит

Обновлено: 16.05.2024

В данном разделе представлены задачи по теме Электролиз: составление уравнений электродных реакций, протекающих при электролизе, расчеты с применением законов Фарадея.

Задача 1. Составьте уравнения электродных реакций, протекающих при электролизе с нерастворимыми анодами: а) MgCl2; б) MgCl2 и ZnSO4. Рассчитайте, сколько выделится хлора в литрах (н. у.) при пропускании тока силой 5А в течение 3 ч.

Решение.

Переведем часы в секунды: t = 3 ч = 10800 с

V = 11,2∙5∙10800/96500 = 6,3 л.

Составим уравнения электродных реакций, протекающих при электролизе:

MgCl2 расплав

К: Mg 2+ + 2e → Mg 0

A: 2Cl — — 2e → Cl2 0

MgCl2 раствор

К: 2H2O + 2e → H2 0 + 2OH —

MgCl2 и ZnSO4растворы

Задача 2. Составьте уравнения электродных реакций, протекающих при электролизе раствора CuSO4 с растворимым медным анодом и нерастворимым графитовым анодом. Рассчитайте, сколько растворится меди на аноде при пропускании тока силой 10 А в течение 3 ч.

Применим II закон Фарадея

ЭCu = 64/2 = 32 г/моль

m =32∙10∙3∙3600/96500 = 35,8 г

E 0 (Cu 2+ /Cu) = 0,34 В

Растворимый медный анод:

На катоде возможно восстановление меди и воды. Но потенциал меди имеет более положительное значение, чем потенциал восстановления воды (E 0 (H2O/H + ) = -0,41 В), поэтому на катоде будет восстанавливаться медь. На аноде также возможно окисление меди или воды и, т.к. потенциал меди имеет меди имеет меньшее значение, чем потенциал окисления воды (E 0 (H2O/O2) = 0,82 В), то на аноде будет окисляться медь:

К: Cu 2+ + 2e = Cu 0

A: Cu 0 – 2e = Cu 2+

Cu 2+ + Cu 0 = Cu 0 + Cu 2+

Инертный нерастворимый анод:

Соль состоит из катиона неактивного металла и аниона кислородсодержащей кислоты. В этом случае на катоде происходит восстановление меди, а на аноде окисление воды:

K: Cu 2+ + 2e — = Cu

A: 2H 2 O -4e — = O 2 + 4H +

Задача 3. При электролизе соли трехвалентного металла ток силой в 3 А в течение 2 часов выделил на катоде 4,18 г металла. Определите, какой это металл. Напишите уравнения катодного и анодного процессов, а также суммарное уравнение электролиза расплава и водного раствора карбоната натрия с платиновым анодом.

По закону Фарадея:

Подставим значения

М = 4,18∙3∙96500/(3∙2∙3600) = 56 г/моль

Молярную массу равную 56 г/моль имеет атом железа

Напишем уравнения катодного и анодного процессов:

Платиновый анод – инертный, поэтому он не будет участвовать в процессе.

Na2CO3– соль, образованная катионом активного металла и аниона кислородсодержащей кислоты, поэтому, в случае раствора, в обоих процессах будет участвовать вода:

А: 2 H 2 O — 4 e → O2 0 + 4 H +

К: Na + + e → Na 0

А : 2CO 3 2- — 4e — → 2CO2 + O 2

Задача 4. При рафинировании меди током 4,5 А за 1,5 часа выделяется 7,5 г меди. Рассчитайте выход по току. Напишите уравнения катодного и анодного процессов, а также суммарное уравнение электролиза водного раствора Pb(NO3)2: а) с угольным анодом; б) со свинцовым анодом.

Применим закон Фарадея с учетом выхода по току:

Э(Cu) = 64/2 = 32 г/моль

Составим уравнения катодного и анодного процессов, а также суммарное уравнение электролиза водного раствора Pb(NO3)2:

Pb(NO3)2— соль, образованная катионом неактивного металла и аниона кислородсодержащей кислоты, поэтому

а) с угольным анодом

К: Pb 2+ + 2e → Pb 0

А: 2 H 2 O — 4 e → O 2 0 + 4 H +

2Pb 2+ + 2H2O → 2Pb 0 + O2 0 + 4H +

В прикатодном пространстве накапливается азотная кислота.

б) со свинцовым анодом

А: Pb 0 — 2 e → Pb 2+

Pb 2+ + Pb 0 → Pb 0 + Pb 2+

Задача 5. Найдите объем водорода, который выделится при пропускании тока силой в 5 А в течение 3,5 ч через водный раствор серной кислоты. Напишите уравнения анодного и катодного процессов, а также суммарное уравнение электролиза раствора Н24 с инертным анодом.

V = 11,2∙5∙3,5∙3600/96500 = 7,3 л

Напишим уравнения анодного и катодного процессов, а также суммарное уравнение электролиза раствора Н24 с инертным анодом:

К: 2H + + 2e → H2 0

Таким образом, при электролизе серной кислоты с инертными анодами происходит разложение воды.

Задача 6. При электролизе одного из соединений олова ток силой в 2,5А за 20 мин выделил на электродах металл массой 0,9 г. Чему равна валентность олова в этом соединении. Какие продукты могут быть получены при электролизе раствора SnSO4 с графитовыми электродами.

Следовательно, валентность олова z = 4

SnSO4 — соль, образованная катионом неактивного металла и аниона кислородсодержащей кислоты, поэтому в процессе будут участвовать Sn и H2O.

Электроды инертные, поэтому в процессах участия не принимают:

К: Sn 2+ + 2e → Sn 0

2Sn 2+ + 2H2O → 2Sn 0 + O2 0 + 4H +

В прикатодном пространстве накапливается серная кислота.

Задача 7. Сколько времени потребуется на электролиз раствора KCl при силе тока 5 А, чтобы выделить хлор объемом 11,2 л (н.у.), если выход по току составляет 90%? Напишите уравнения анодного и катодного процессов, а также суммарное уравнение электролиза.

Решение

Применим закон Фарадея, учитывая при этом выход по току:

t =11,2∙96500∙2/(0,9∙22,4∙5∙3600) = 5,95 ч

KCl — соль, образованная катионом активного металла и аниона бескислородной кислоты, поэтому в катодном процессе участвует вода, а в анодном – хлор:

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.


Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :


Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

На аноде окисляются хлорид-ионы до молекулярного хлора:

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl – → 2 Na 0 + Cl2 0


Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH – → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0


В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присутствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

Электролиз

Электролиз (греч. elektron - янтарь + lysis — разложение) - химическая реакция, происходящая при прохождении постоянного тока через электролит. Это разложение веществ на их составные части под действием электрического тока.

Процесс электролиза заключается в перемещении катионов (положительно заряженных ионов) к катоду (заряжен отрицательно), и отрицательно заряженных ионов (анионов) к аноду (заряжен положительно).

Электролиз

Итак, анионы и катионы устремляются соответственно к аноду и катоду. Здесь и происходит химическая реакция. Чтобы успешно решать задания по этой теме и писать реакции, необходимо разделять процессы на катоде и аноде. Именно так и будет построена эта статья.

Катод

К катоду притягиваются катионы - положительно заряженные ионы: Na + , K + , Cu 2+ , Fe 3+ , Ag + и т.д.

Чтобы установить, какая реакция идет на катоде, прежде всего, нужно определиться с активностью металла: его положением в электрохимическом ряду напряжений металлов.

Электролиз катод

Если на катоде появился активный металл (Li, Na, K) то вместо него восстанавливаются молекулы воды, из которых выделяется водород. Если металл средней активности (Cr, Fe, Cd) - на катоде выделяется и водород, и сам металл. Малоактивные металлы выделяются на катоде в чистом виде (Cu, Ag).

Замечу, что границей между металлами активными и средней активности в ряду напряжений считается алюминий. При электролизе на катоде металлы до алюминия (включительно!) не восстанавливаются, вместо них восстанавливаются молекулы воды - выделяется водород.

В случае, если на катод поступают ионы водорода - H + (например при электролизе кислот HCl, H2SO4) восстанавливается водород из молекул кислоты: 2H + - 2e = H2

К аноду притягиваются анионы - отрицательно заряженные ионы: SO4 2- , PO4 3- , Cl - , Br - , I - , F - , S 2- , CH3COO - .

Электролиз анод

При электролизе кислородсодержащих анионов: SO4 2- , PO4 3- - на аноде окисляются не анионы, а молекулы воды, из которых выделяется кислород.

Бескислородные анионы окисляются и выделяют соответствующие галогены. Сульфид-ион при оксилении окислении серу. Исключением является фтор - если он попадает анод, то разряжается молекула воды и выделяется кислород. Фтор - самый электроотрицательный элемент, поэтому и является исключением.

Анионы органических кислот окисляются особым образом: радикал, примыкающий к карбоксильной группе, удваивается, а сама карбоксильная группа (COO) превращается в углекислый газ - CO2.

Примеры решения

В процессе тренировки вам могут попадаться металлы, которые пропущены в ряду активности. На этапе обучения вы можете пользоваться расширенным рядом активности металлов.

Ряд активности металлов

Теперь вы точно будете знать, что выделяется на катоде ;-)

Итак, потренируемся. Выясним, что образуется на катоде и аноде при электролизе растворов AgCl, Cu(NO3)2, AlBr3, NaF, FeI2, CH3COOLi.

Задания на электролиз

Иногда в заданиях требуется записать реакцию электролиза. Сообщаю: если вы понимаете, что образуется на катоде, а что на аноде, то написать реакцию не составляет никакого труда. Возьмем, например, электролиз NaCl и запишем реакцию:

NaCl + H2O → H2 + Cl2 + NaOH (обычно в продуктах оставляют именно запись "NaOH", не подвергая его дальнейшему электролизу)

Натрий - активный металл, поэтому на катоде выделяется водород. Анион не содержит кислорода, выделяется галоген - хлор. Мы пишем уравнение, так что не можем заставить натрий испариться бесследно :) Натрий вступает в реакцию с водой, образуется NaOH.

Запишем реакцию электролиза для CuSO4:

Медь относится к малоактивным металлам, поэтому сама в чистом виде выделяется на катоде. Анион кислородсодержащий, поэтому в реакции выделяется кислород. Сульфат-ион никуда не исчезает, он соединяется с водородом воды и превращается в серую кислоту.

Электролиз расплавов

Все, что мы обсуждали до этого момента, касалось электролиза растворов, где растворителем является вода.

Перед промышленной химией стоит важная задача - получить металлы (вещества) в чистом виде. Малоактивные металлы (Ag, Cu) можно легко получать методом электролиза растворов.

Но как быть с активными металлами: Na, K, Li? Ведь при электролизе их растворов они не выделяются на катоде в чистом виде, вместо них восстанавливаются молекулы воды и выделяется водород. Тут нам как раз пригодятся расплавы, которые не содержат воды.

Электролиз расплава

В безводных расплавах реакции записываются еще проще: вещества распадаются на составные части:

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Электролиз солей

Самопроизвольные окислительно-восстановительные реакции дают возможность создания гальванических элементов, в которых вырабатывается электрическая энергия. Если же реакция несамопроизвольна, то ее осуществление возможно при помощи электрической энергии. Подобные процессы осуществляют в электролизерах и называются они реакциями электролиза (электролиз солей).

Электролизер

Как видно на рисунке ниже, электролизер состоит из двух электродов, погруженных в расплав или водный раствор соли. Источник электрического тока передает электроны в один из электродов и удаляет их с другого электрода. При отдаче электронов электрод заряжается положительно, а при получении электронов – отрицательно.

Электролизер

Электролизер

Электролиз расплава NaCl

При электролизе расплава NaCl на отрицательном электроде (катоде) происходит присоединение электронов ионом натрия Na + и его восстановление. При этом вблизи электрода концентрация ионов Na + уменьшается и, вследствие этого, к электроду перемещается дополнительное количество ионов Na + .

Аналогично происходит миграция ионов Cl — к положительному электроду, где в результате отдачи электронов протекает процесс окисления. Таким образом, на электродах идет накопление продуктов окисления и восстановления.

Как и в гальваническом элементе, процесс восстановления протекает на катоде, а процесс окисления – на аноде.

При электролизе расплава NaCl протекают следующие реакции:

Анод2Cl — -2e — → Cl2 0
Катод 2Na + + 2e — → 2Na 0
2Na + + 2Cl — → 2Na 0 + Cl2 0

В промышленности таким образом получают натрий, используя электролизер Даунса, представленный на рисунке ниже.

электролизер Даунса

электролизер Даунса

Сложнее протекает электролиз водных растворов электролитов.

Электролиз водного раствора NaCl

Так, например, при электролизе водного раствора хлорида натрия, происходят иные процессы, нежели при электролизе его расплава. На катоде происходит восстановление воды, а не натрия; на аноде происходит окисление хлорид-ионов:

Анод2Cl — -2e — → Cl2 0
Катод 2H 2 O + 2e — → H2 0 +2OH —
2H2O + 2Cl — → H2 0 + Cl2 0

Таким образом, получить натрий путем электролиза водного раствора его соли не удастся: на катоде выделяется водород, а на аноде хлор.

При электролизе водных растворов солей окислительно-восстановительные процессы, протекающие на катоде и аноде зависят от природы катионов металлов и характера аниона соли.

Процесс на катоде

Предсказать результат восстановительного процесса на катоде можно с помощью таблицы стандартных электродных потенциалов металлов:

  • Катионы металлов, имеющие большую величину стандартного потенциала и расположенные в ряду после водорода полностью восстанавливаются на катоде и выделяются в виде металлов: Cu 2+ , Hg2 2+ , Ag + , Hg 2+ , Pt 2+ до Pt 4+
  • Катионы металлов, имеющие малую величину стандартного потенциала не восстанавливаются на катоде, вместо этого происходит восстановление воды: от Li + , Na + … до Al 3+ включительно.
  • Катионы металлов, имеющие среднюю величину стандартного потенциала будут восстанавливаться на катоде вместе с молекулами воды: от Mn 2+ , Zn 2+ … до H

Если имеется смесь катионов, то легче всего на катоде будут восстанавливаться катионы металла с наиболее положительным потенциалом, например, из смеси Cu 2+ , Ag + , Zn 2+ сначала восстановится Ag + (E = +0,79 В), затем Cu 2+ (E = +0,337 В) и только потом Zn 2+ (E = +0,76 В).

Процесс на аноде

Какие процессы будут протекать на аноде зависит от материала анода и самого электролита. Нерастворимые аноды в процессе электролиза не окисляются, тогда как растворимые аноды разрушаются и в виде ионов переходят в раствор.

Рассмотрим процессы, происходящие на инертном (нерастворимом) аноде:

  • При электролизебескислородных кислот и их солей (исключение HF и фториды) на аноде окисляются их анионы.

2Cl — -2e — = Cl2

  • При электролизекислородсодержащих кислот и их солей c максимальной степенью окисления на аноде происходит окисление воды, в связи с тем, что потенциал окисления воды меньше, чем для таких анионов.

2H2O -4e — = O2 + 4H +

  • При электролизе кислородсодержащих кислот и их солей c промежуточной степенью окисления на аноде происходит окисление анионов кислот

SO3 2- + H2O -2e — = SO4 2- + 2H +

В таблице ниже представлены наиболее типичные случаи электролиза с химической точки зрения

Т.е. происходит разложение воды

A: Cu — 2e — = Cu 2+

Электролиз солей — количественные аспекты

Связь между количеством вещества, выделившегося при электролизе соли и количеством прошедшего через него электричества отражена в законах Фарадея.

1 закон Фарадея

Массы веществ (m), выделившихся на катоде или аноде (или образовавшиеся в катодном и анодном пространстве), пропорциональны количеству прошедшего через раствор или расплав электричества (Q):

где k – коэффициент пропорциональности или электрохимический эквивалент, численно равный массе вещества, которое выделяется при прохождении 1 кулона электричества.

2 закон Фарадея

Равные количества электричества в процессе электролиза выделяют эквивалентные количества различных веществ.

Т.е. чтобы выделился один химический эквивалент любого соединения необходимо приложить одинаковое количество электричества, которое равно 96484,56 Кл/моль. Это величина называется постоянной Фарадея.

m – масса вещества,

Э – электрохимический эквивалент,

t – время электролиза.

Законы Фарадея имеют большое значение при проведении расчетов, связанных с электролизом.

Задачи с решениями на составление уравнений электродных реакций, протекающих при электролизе, а также на применение законов Фарадея приведены в разделе Задачи к разделу Электролиз солей

Читайте также: