Взаимодействие этилового спирта с металлическим натрием

Обновлено: 04.10.2024

При взаимодействии спиртов с натрием образуются газообразный водород и соответствующие алкоголяты натрия.
Приготовили пробирки с метиловым, этиловым и бутиловым спиртами. Опустили в пробирку с метиловым спиртом кусочек металлического натрия.
2СН3ОН + 2 Na = 2 CH3ONa + H2
Наблюдения
Начинается энергичная реакция.
Натрий плавится, выделяется водород.
Посмотрите этот видеоопыт и самостоятельно составьте уравнение химической реакции.
Взаимодействие метилового спирта с металлическим натрием
Видео здесь!

Опустили натрий в пробирку с этиловым спиртом. Выделяющийся водород можно поджечь. По окончании реакции выделим этилат натрия. Для этого опустим в пробирку стеклянную палочку и подержим ее над пламенем горелки. Избыток спирта испаряется. На палочке остается белый налет этилата натрия.
2С2Н5ОН + 2 Na = 2 C2H5ONa + H2
Взаимодействие этилового спирта
с металлическим натрием
Реакция идет немного медленней.

Наблюдения
В пробирке с бутиловым спиртом реакция с натрием идет еще медленнее.

2С4Н9ОН + 2 Na = 2 C4H9ONa + H2
Взаимодействие бутилового спирта с металлическим натрием
Вывод: с удлинением и разветвлением углеводородного радикала скорость реакции спиртов с натрием уменьшается

В пробирку с глицерином поместили кусочек натрия. Пробирку слегка подогрели. Реакция идет вначале медленно, затем более энергично.
Что выделяется в результате реакции?
Что свидетельствует о бурной реакции?
Составьте уравнения реакции.

Взаимодействие глицерина
с металлическим натрием

Вывод: Как и одноатомные спирты, многоатомные спирты реагируют с металлическим натрием.
Наблюдения
Выделяющийся водород можно поджечь. Реакция протекает очень энергично, выделяется много теплоты, на завершающей стадии реакции происходит обугливание глицерина.

Взаимодействие глицерина
с металлическим натрием
СН2
ОН
СН
СН2
ОН
ОН
+ 6 Na
СН2
О Na
СН
СН2
ОNa

Взаимодействие этилового спирта
с бромоводородом
В прибор для получения галоидоалканов налили смесь этилового спирта с концентрированной серной кислотой. Прибавили к смеси сначала несколько капель воды, а затем – бромид натрия. В верхнюю часть прибора, холодильник, налили воды и добавили кусочки льда. Нагрели колбу. Через некоторое время начинается реакция. Бромид натрия реагирует с серной кислотой с образованием бромоводорода.
NaBr + H2SO4 = NaHSO4 + HBr
Видео здесь!

Взаимодействие этилового спирта
с бромоводородом
HBr +С2Н5ОН = C2H5Br + H2O
Наблюдения

Бромэтан - легкокипящая жидкость. Бромэтан испаряется, пары поступают в холодильник, где бромэтан конденсируется. Капли бромэтана падают в приемник. На дне приемника собирается тяжелая маслянистая жидкость – бромэтан.
Бромоводород реагирует
с этиловым спиртом с образованием бромэтана.

Получите гидроксид меди (II) путем сливания растворов гидроксида натрия и сульфата меди (II). Прилейте полученный осадок к глицерину, этиленгликолю и этанолу.
Постарайтесь составить уравнение химической реакции

Взаимодействие многоатомных спиртов с гидроксидом меди (II)

Осадок гидроксида меди растворяется и образуется темно-синий раствор глицерата меди (II).С этиленгликолем также образуется темно-синий раствор, с этанолом реакция не идет.

Вывод: многоатомные спирты лучше реагируют с гидроксидом меди, что связано с усилением у них кислотных свойств по сравнению с одноатомными спиртами.
СН2 –
СН2 –
СН2 –
О
О
ОН
СН2 –
СН2 –
СН2 –
ОН
ОН
ОН
+Cu(OH)2
НOH
Cu
Н

Вывод:
С увеличением числа гидроксильных групп в молекуле вещества возрастает подвижность атомов водорода, т.е. увеличиваются кислотные свойства.
Поэтому атомы водорода в многоатомных спиртах могут замещаться не только щелочными металлами, но и менее активными металлами.
Реакция с гидроксидом меди (II) является качественной реакцией на многоатомные спирты.

К растертому в тонкий порошок перманганату калия прилейте немного глицерина.

Взаимодействие глицерина
с кристаллическим перманганатом калия
2 С3Н8О3 + 7 О2 = 6 СО2 + 8Н2О
Вывод: Под действием сильных окислителей глицерин сгорает с образованием углекислого газа и воды.
Наблюдения
Через некоторое время над смесью появляется дымок, а затем происходит загорание глицерина.
Видео здесь!

СН3-СН2-ОН + [О] = CH3 -COH + H2O
Окисление этилового спирта
кристаллическим перманганатом калия
Очень энергично протекает реакция этилового спирта с перманганатом калия в присутствии концентрированной серной кислоты. В стеклянный цилиндр наливаем серную кислоту. Осторожно, по стенке приливаем этиловый спирт. Образуются два слоя жидкости. Сверху - этиловый спирт, снизу - серная кислота. В цилиндр бросаем немного кристаллического перманганата калия. Через некоторое время на границе раздела спирта и кислоты возникают вспышки и слышатся щелчки.
При попадании кристаллов перманганата калия в серную кислоту образуется марганцевый ангидрид (оксид марганца (VII)) - очень сильный окислитель. Он взаимодействует с этиловым спиртом. При этом образуется уксусный альдегид.
Видео здесь!

СН3-СН2-ОН + [О] = CH3 -COH + H2O
Окисление этилового спирта
раствором перманганата калия
Спирты легко окисляются раствором перманганата калия. В пробирку с этиловым спиртом прильем немного подкисленного раствора перманганата калия. Осторожно подогрейте пробирку.

Что произошло с раствором?
В какое вещество превратился этиловый спирт?
Раствор постепенно обесцвечивается. В данных условиях этиловый спирт окисляется, превращаясь в уксусный альдегид.
Видео здесь!

2СН3-СН2-ОН + О2 = 2CH3 -COH + 2H2O
Каталитическое окисление этанола
Окисление этилового спирта кислородом воздуха происходит очень легко в присутствии оксида хрома (III). В фарфоровую чашку поместили кусочек ваты, смоченный спиртом. Подожгли вату. Осторожно насыпали на горящую вату оксид хрома. Пламя гаснет. Но оксид хрома начинает раскаляться. Реакция окисления спирта протекает с выделением энергии. Продукт реакции окисления спирта - уксусный альдегид.
Видео здесь!

СН3-СН2-ОН + СuO = CH3 -COH + Cu + H2O
Окисление этилового спирта оксидом меди (II)
В прибор для окисления спиртов нальем немного этилового спирта. Присоединим к газоотводной трубке прибор для подачи воздуха. Раскалим в горелке медную спираль и поместим ее в прибор. Подадим в прибор ток воздуха. Медная спираль в приборе продолжает быть раскаленной, так как начинается окисление спирта. Продукт окисления спирта - уксусный альдегид.
Альдегид обнаруживаем, пропуская через фуксинсернистую кислоту выходящие из прибора газы. Под действием альдегида фуксинсернистая кислота приобретает фиолетовую окраску. Покажем, что медная спираль раскалена. Извлечем спираль из прибора и поднесем к ней спичку. Спичка загорается.
Вывод: при окислении одноатомных спиртов образуются альдегиды.
Видео здесь!

С2Н5ОН + 3О2 = 2СО2 + 3 Н2О

С4Н9ОН + 6О2 = 4СО2 + 5 Н2О

2С5Н11ОН + 15О2 = 10СО2 + 12 Н2О
Горение спиртов
В фарфоровые чашки налили немного этилового, бутилового и изоамилового спиртов. Поднесли к чашкам горящую лучину.
Наблюдения
Этиловый спирт быстро загорается и горит голубоватым, слабосветящимся пламенем. Бутиловый спирт горит светящимся пламенем. Труднее загорается изоамиловый спирт, он горит коптящим пламенем.
Видео здесь!

Этиловый спирт быстро загорается и горит голубоватым, слабосветящимся пламенем. Бутиловый спирт горит светящимся пламенем. Труднее загорается изоамиловый спирт, он горит коптящим пламенем.
Вывод: С увеличением молекулярной массы одноатомных спиртов повышается температура кипения и возрастает светимость их пламени.
Горение спиртов

С2Н5ОН + 6 NaОН + 4 I2 = CHI3 +HCOONa + 5 NaI + H2O
Качественная реакция на этанол
Чувствительной реакцией на этиловый спирт является так называемая йодоформная проба: образование характерного желтоватого осадка йодоформа при действии на спирт йода и щелочи. Этой реакцией можно установить наличие спирта в воде даже при концентрации 0,05%. При охлаждении образующегося раствора появляется желтая взвесь йодоформа, при высоких концентрациях спирта выпадает желтый осадок йодоформа.
Видео здесь!

Рабочие листы и материалы для учителей и воспитателей

Более 3 000 дидактических материалов для школьного и домашнего обучения

Строение этанола

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Этанол смешивается с водой в любых соотношениях.

Изомерия спиртов

Структурная изомерия

Для этанола характерна структурная изомерия – межклассовая изомерия.

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.

Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3

Этиловый спирт Диметиловый эфир
СН3–CH2–OH CH3–O–CH3

Химические свойства этанола

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этанола с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этанол не взаимодействуют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этанол взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этанол взаимодействует с калием с образованием этилата калия и водорода .


Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:


2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.


2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.


2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.


Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):


2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат :


3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140 о С) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:


В качестве катализатора этой реакции также используют оксид алюминия.

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140 о С образуется диэтиловый эфир:


4. Окисление этанола

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

Например, этанол окисляется оксидом меди до уксусного альдегида

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот.

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота


4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания этанола:

5. Дегидрирование этанола

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этанола образуется этаналь


Получение этанола

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании хлорэтана с водным раствором гидроксида натрия образуется этанол

2. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

3. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.

Например, при гидрировании этаналя образуется этанол


4. Получение этанола спиртовым брожением глюкозы

Для глюкозы характерно ферментативное брожение, то есть распад молекул на части под действием ферментов. Один из вариантов — спиртовое брожение.

Химические свойства спиртов


Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н + соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

При взаимодействии спиртов с растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция практически не идет.

Спирты взаимодействуют с активными металлами. При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Многоатомные спирты также реагируют с активными металлами:


1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется ярко-синий раствор гликолята меди:


Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:


Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:


Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):


Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140 о С из бутанола-2 в основном образуется бутен-2:


4. Окисление спиртов

Вторичные спирты окисляются в кетоны: в торичные спирты → кетоны

Легкость окисления спиртов уменьшается в ряду:

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Третичные спирты окисляются только в жестких условиях.

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь


Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метанол СН3-ОН CO2 K2CO3
Первичный спирт R-СН2-ОН R-COOH/ R-CHO R-COOK/ R-CHO
Вторичный спирт R1-СНОН-R2 R1-СО-R2 R1-СО-R2

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ


Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон


Например, уравнение сгорания метанола:

5. Дегидрирование спиртов

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны.

Лекция к уроку химии по теме "Спирты"

Спирты - органические соединения, в состав молекул которых входит одна или несколько гидроксильных групп, соединенных с углеводородным радикалом.

По числу гидроксильных групп в молекуле спирты делятся на одноатомные, двухатомные трехатомные и т. д.

Одноатомные спирты:

Двухатомный спирт:

Трехатомный спирт:

CH3—OH
метанол (метиловый спирт)


пропантриол-1,2,3 (глицерин)

Общая формула одноатомных спиртов - R—OH.

По типу углеводородного радикала спирты делятся на предельные, непредельные и ароматические.

Предельный спирт:

Непредельный спирт:

Ароматический спирт:

2. Предельные одноатомные спирты.

Общая формула предельных одноатомных спиртов - CnН2n+1—OH.

Органические вещества, содержащие в молекуле гидроксильные группы, непосредственно связанные с атомами углерода бензольного кольца называются фенолами. Например, C6H5—OH - гидроксобензол (фенол).

По типу атома углерода, с которым связана гидроксильная группа, различают первичные (R—CH2—OH), вторичные (R—CHOH—R') и третичные (RR'R''C—OH) спирты.

Первичный спирт:

Вторичный спирт:

Третичный спирт:


бутанол-2 (втор-бутиловый спирт)


2-метилпропанол-2 (трет-бутиловый спирт)

3. Номенклатура и изомерия.

Название спирта образуется прибавлением суффикса -ол к названию соответствующего углеводорода или на основе углеводородного радикала. Для спиртов характерна структурная изомерия (изомерия углеродного скелета, изомерия положения заместителя или гидроксильной группы), а также межклассовая изомерия (предельные одноатомные спирты изомерны простым эфирам - соединениям с общей формулой R—O—R')

Изомеры и гомологи


пропанол-2


бутанол-2


2-метил-пропанол-2


2-метил-пропанол-1

и з о м е р ы

Алгоритм составления названий одноатомных спиртов

1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, с одним из которых связана функциональная группа.

2. Пронумеруйте атомы углерода в главной цепи, начиная с того конца, к которому ближе функциональная группа.

3. Назовите соединение по алгоритму для углеводородов.

4. В конце названия допишите суффикс -ол и укажите номер атома углерода, с которым связана функциональная группа.

4. Физические свойства спиртов во многом определяются наличием между молекулами этих веществ водородных связей:

С этим же связана и хорошая растворимость в воде низших спиртов.

Простейшие спирты - жидкости с характерными запахами. С увеличением числа атомов углерода температура кипения возрастает, а растворимость в воде падает. Температура кипения у первичных спиртов больше, чем у вторичных спиртов, а у вторичных - больше, чем у третичных. Метанол крайне ядовит.

5. Химические свойства спиртов

C2H5OH + 3O2 2CO2 +3H2O + Q

2. Реакции с щелочными и щелочноземельными металлами ("кислотные" свойства):

Атомы водорода гидроксильных групп молекул спиртов, также как и атомы водорода в молекулах воды, могут восстанавливаться атомами щелочных и щелочноземельных металлов ("замещаться" на них).

2Na + 2H—O—H 2NaOH + H2
2Na + 2R—O—H 2RONa + H2

Атомы натрия легче восстанавливают те атомы водорода, у которых больше положительный частичный заряд ( +). И в молекулах воды, и в молекулах спиртов этот заряд образуется за счет смещения в сторону атома кислорода, обладающего большой электроотрицательностью, электронных облаков (электронный пар) ковалентных связей. Молекулу спирта можно рассматривать как молекулу воды, в которой один из атомов водорода замещен углеводородным радикалом. А такой радикал, богатый электронными парами, легче, чем атом водорода, позволяет атому кислорода оттягивать на себя электронную пару связи R O.

Атом кислорода как бы "насыщается", и за счет этого связь O—H оказывается менее поляризованной, чем в молекуле воды ( + на атоме водорода меньше, чем в молекуле воды).

В результате атомы натрия труднее восстанавливают атомы водорода в молекулах спиртов, чем в молекулах воды, и реакция идет намного медленнее.

Иногда, основываясь на этом, говорят, что кислотные свойства спиртов выражены слабее, чем кислотные свойства воды.

Из-за влияния радикала кислотные свойства спиртов убывают в ряду

метанол первичные спирты вторичные спирты третичные спирты

С твердыми щелочами и с их растворами спирты не реагируют.

3. Реакции с галогеноводородами:

C2H5OH + HBr C2H5Br + H2O

4. Внутримолекулярная дегидратация (t > 140 o С, образуются алкены):

C2H5OH C2H4 + H2O

2C2H5OH C2H5OC2H5 + H2O

6. Окисление (мягкое, до альдегидов):

CH3CH2OH + CuO CH3—CHO + Cu + H2O

Это качественная реакция на спирты: цвет осадка изменяется с черного на розовый, ощущается своеобразный "фруктовый" запах альдегида).

6. Получение спиртов

1. Щелочной гидролиз галогеналканов (лабораторный способ): C2H5Cl + NaOH C2H5OH + NaCl.

2. Гидратация алкенов: C2H4 + H2O C2H5OH.

3. Брожение глюкозы : C6H12O6 2C2H5OH + 2CO2 .

4. Синтез метанола: CO + 2H2 CH3OH

Задание 1 . Напишите структурные формулы следующих спиртов: 2 – метилпропанола – 2; 2,3 – диметилпентанола – 3; 3 – метилбутанола – 2.

Задание 2 . Как называются вещества:

http://him.1september.ru/2003/07/16-2.gif

http://him.1september.ru/2003/07/16-3.gif

Задание 3. Постройте все возможные изомеры вещества C4H9OH. Назовите их.

Задание 4 . Написать уравнения реакций, с помощью которых можно осуществить превращения:

а) этен хлорэтан этанол этен этандиол 1,2-дихлорэтан этен;

б) этан хлорэтан этанол этилен этан хлорэтан пропан 2-бромпропан
пропанол-2 ацетон;

Задание 5. Составить структурные формулы третичных спиртов, содержащих 7 углеродных атомов, и назвать соединения.

Задача 1. Определите объем этилена, который можно получить при дегидратации 92 г этилового спирта, если выход продукта составляет 50 %.

http://shkola.lv/goods/ymk/chemistry/work2/theory/2/ch_2_13.gif


Ответ: 22,4 л

Задача 2. Из 18,4 г этанола получили 6 г простого эфира. Найти выход продукта.

Задача 3. При взаимодействии 13,8 г этанола и 28 г оксида меди(II) получили 9,24 г альдегида. Найти выход продукта.

Многоатомные спирты

Многоатомные спирты – это органические соединения, в молекулах которых содержатся две или более гидроксильных групп, соединенных с углеводородным радикалом.
Группы -ОН в многоатомных спиртах размещаются у разных атомов углерода:

http://him.1september.ru/2004/29/16-1.jpg

Соединения с двумя группами -ОН при соседних атомах углерода называют гликолями (или диолами).

Получение

1. Гликоли получают окислением алкенов в водной среде. Например, при действии перманганата калия или кислорода воздуха в присутствии серебряного катализатора алкены превращаются в двухатомные спирты:

http://him.1september.ru/2004/29/17-1.jpg

2. Другой способ получения многоатомных спиртов – гидролиз галогенпроизводных углеводородов:

http://him.1september.ru/2004/29/17-2.jpg

3. На производстве глицерин получают по схеме:

17-3.jpg (9584 bytes)

Физические свойства

Этиленгликоль и глицерин – бесцветные вязкие жидкости со сладким вкусом (от греч. – сладкий). Растворимость в воде – неограниченная. Температуры кипения этиленгликоля – 197,2 °С, глицерина – 290 °С. Этиленгликоль – яд.

Химические свойства

Этиленгликоль и глицерин подобны одноатомным спиртам.
1. Так, они реагируют с активными металлами:

2. Многоатомные спирты в реакции с галогеноводородами обменивают одну или несколько гидроксильных групп ОН на атомы галогена:

3. Глицерин взаимодействует с азотной кислотой с образованием сложных эфиров. В зависимости от условий реакции (мольного соотношения реагентов, концентрации катализатора – серной кислоты и температуры) получаются моно-, ди- и тринитроглицериды:

4. Качественная реакция многоатомных спиртов , позволяющая отличить соединения этого класса, – взаимодействие со свежеприготовленным гидроксидом меди(II). В щелочной среде при достаточной концентрации глицерина голубой осадок Cu(OH)2 растворяется с образованием раствора ярко-синего цвета – гликолята меди(II):

Читайте также: