Взаимодействие углерода с оксидами металлов

Обновлено: 17.05.2024

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля. Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Все галогениды кремния легко гидролизуются водой:

а также растворами щелочей:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Силициды активных металлов легко гидролизуются водой или разбавленными растворами кислот-неокислителей:

При этом образуется газ силан SiH4 – аналог метана CH4.

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода:

1. Углерод. Аллотропия углерода

Углерод — химический элемент № \(6\). Он расположен в IVА группе втором периоде Периодической системы.

На внешнем слое атома углерода содержатся четыре валентных электрона, и до его завершения не хватает четырёх электронов. Поэтому в соединениях с металлами углероду характерна степень окисления \(–4\), а при взаимодействии с более электроотрицательными неметаллами он проявляет положительные степени окисления: \( +2\) или \(+4\).

В природе углерод встречается как в виде простых веществ, так и в виде соединений. В воздухе содержится углекислый газ . В земной коре распространены карбонаты (например, Ca CO 3 образует мел, мрамор, известняк). Горючие ископаемые (уголь, торф, нефть, природный газ) состоят из органических соединений , главным элементом которых является углерод.

Углерод относится к жизненно важным элементам, так как входит в состав молекул всех органических веществ.

Существует несколько аллотропных видоизменений, образованных атомами углерода. Наиболее распространены алмаз и графит .

Алмаз имеет атомную кристаллическую решётку. Каждый атом углерода в алмазе связан четырьмя прочными ковалентными связями с соседними атомами, расположенными в вершинах тетраэдра.

Алмазw200.png

Благодаря такому строению алмаз — самое твёрдое из известных природных веществ. Все четыре валентных электрона каждого атома углерода участвуют в образовании связей, поэтому алмаз не проводит электрический ток. Это бесцветное прозрачное кристаллическое вещество, хорошо преломляющее свет.

Графит тоже имеет атомную кристаллическую решётку, но устроена она иначе. Решётка графита слоистая. Каждый атом углерода соединён прочными ковалентными связями с тремя соседними атомами. Образуются плоские слои из шестиугольников, которые между собой связаны слабо. Один валентный электрон у атома углерода остаётся свободным.

Графитw200.png

Графит представляет собой тёмно-серое вещество с металлическим блеском, жирное на ощупь. В отличие от алмаза графит непрозрачный, проводит электрический ток и оставляет серый след на бумаге. У графита очень высокая температура плавления (\(3700\) °С).

158_grafit.jpg

Алмаз и графит взаимопревращаемы. При сильном нагревании без доступа воздуха алмаз чернеет и превращается в графит. Графит можно превратить в алмаз при высокой температуре и большом давлении.

Из мельчайших частиц графита состоят сажа , древесный уголь и кокс . Сажа образуется при неполном сгорании топлива. Древесный уголь получают при нагревании древесины без доступа воздуха, а кокс — переработкой каменного угля.

Древесный уголь имеет пористое строение и обладает способностью поглощать газы и растворённые вещества. Такое свойство называется адсорбцией .

charcoal-powder-1053836_640.png

Аллотропные модификации углерода в химических реакциях могут проявлять и окислительные , и восстановительные свойства. Окислительные свойства углерода выражены слабее, чем у других неметаллов второго периода (азота, кислорода и фтора).

Углерод горит в кислороде с образованием углекислого газа и проявляет в этой реакции восстановительные свойства:

Реакции, взаимодействие углерода. Уравнения реакции углерода с веществами

Реакции, взаимодействие углерода. Уравнения реакции углерода с веществами

Реакции, взаимодействие углерода. Уравнения реакции углерода с веществами.



Углерод реагирует, взаимодействует с неметаллами, металлами, полуметаллами, оксидами, кислотами, солями, гидридами и пр. веществами.

Реакции, взаимодействие углерода с неметаллами. Уравнения реакции:

1. Реакция взаимодействия углерода и кислорода:

Реакция взаимодействия углерода и кислорода происходит с образованием оксида углерода (IV). Реакция представляет собой сжигание кокса на воздухе .

2C + O2 → 2CO (t > 1000 °C).

Реакция взаимодействия углерода и кислорода происходит с образованием оксида углерода (II).

2. Реакция взаимодействия бора и углерода:

4B + C → B4C (t > 2000 °C).

Реакция взаимодействия бора и углерода ( графит ) происходит с образованием карбида бора. Образуется также примесь B13C2.

3. Реакция взаимодействия углерода и серы:

C + 2S ⇄ CS2 (t = 750-1000 °C).

Реакция взаимодействия углерода и серы происходит с образованием сероуглерода.

4. Реакция взаимодействия углерода и водорода:

Реакция взаимодействия углерода и водорода происходит с образованием ацетилена .

Реакция взаимодействия углерода и водорода происходит с образованием метана . Реакция протекает самовольно при обычных условиях. В сторону образования метана равновесие сдвигается при наличии измельченного никелевого или платинового катализатора и высоких давлений.

5. Реакция взаимодействия аморфного углерода и фтора:

Реакция взаимодействия углерода и фтора происходит с образованием тетрафторида углерода .

6. Реакция взаимодействия углерода и кремния:

C + Si → SiC (t = 1200-1300 °C).

Реакция взаимодействия углерода и кремния происходит с образованием карбида кремния . Реакция протекает медленно.

Реакции, взаимодействие углерода с металлами и полуметаллами. Уравнения реакции:

1. Реакция взаимодействия углерода и бериллия:

2Be + C → Be2C (t = 1700-1900 °C).

Реакция взаимодействия бериллия и углерода ( графит ) происходит с образованием карбида бериллия. Реакция протекает в вакууме .

2. Реакция взаимодействия углерода (угля) и марганца:

3Mn + C → Mn3C (t = 1600 °C).

Реакция взаимодействия марганца и углерода ( угля ) происходит с образованием карбида марганца. Реакция протекает в вакууме.

3. Реакция взаимодействия углерода и железа:

Реакция взаимодействия железа и углерода происходит с образованием карбида железа.

4. Реакция взаимодействия углерода и гафния:

Hf + C → HfC (t = 1800-2000 °C).

Реакция взаимодействия гафния и углерода происходит с образованием карбида гафния .

5. Реакция взаимодействия углерода и циркония:

Zr + C → ZrC (t = 1800-2400 °C).

Реакция взаимодействия циркония и углерода происходит с образованием карбида циркония.

6. Реакция взаимодействия углерода и титана:

Ti + C → TiC (t = 1800-2400 °C).

Реакция взаимодействия титана и углерода происходит с образованием карбида титана .

7. Реакция взаимодействия углерода и вольфрама:

W + C → WC (t = 1430-1630 °C).

Реакция взаимодействия вольфрама и углерода происходит с образованием монокарбида вольфрама. Реакция протекает в атмосфере водорода.

8. Реакция взаимодействия углерода и алюминия:

Реакция взаимодействия алюминия и углерода происходит с образованием карбида алюминия .

9. Реакция взаимодействия углерода и натрия:

Реакция взаимодействия натрия и углерода происходит с образованием ацетиленида натрия.

Реакции, взаимодействие углерода с оксидами. Уравнения реакции:

1. Реакция взаимодействия углерода и оксида углерода (IV):

CO2 + C ⇄ 2CO (t = 700-1000 °C).

Реакция взаимодействия оксида углерода (IV) и углерода происходит с образованием оксида углерода (II). Реакция представляет собой взаимодействие углекислого газа с раскаленными углями.

2. Реакция взаимодействия углерода и оксида магния:

MgO + C → Mg + CO (t > 2000 °C).

Реакция взаимодействия оксида магния и углерода происходит с образованием магния и оксида углерода (II).

3. Реакция взаимодействия углерода и воды:

Реакция взаимодействия воды и углерода происходит с образованием оксида углерода (II) и водорода . Реакция представляет собой восстановление воды углеродом. Водяной пар при температуре свыше 1000°C взаимодействует с раскаленным коксом с образованием водяного газа (смеси водорода и оксида углерода (II)).

Реакция взаимодействия углерода и воды происходит с образованием оксида углерода (IV) и водорода.

4. Реакция взаимодействия углерода и оксида железа:

FeO + C → Fe + CO (t > 1000 °C).

Реакция взаимодействия оксида железа и углерода происходит с образованием железа и оксида углерода (II).

5. Реакция взаимодействия углерода и оксида меди:

C + CuO → Cu + CO (t = 1200 °C).

Реакция взаимодействия углерода и оксида меди происходит с образованием меди и оксида углерода (II).

6. Реакция взаимодействия углерода и оксида германия:

GeO2 + C → Ge + CO2 (t = 500-600 °C).

Реакция взаимодействия оксида германия и углерода происходит с образованием германия и оксида углерода (IV). Реакция протекает в атмосфере водорода.

7. Реакция взаимодействия углерода и оксида азота:

Реакция взаимодействия оксида азота (II) и углерода происходит с образованием азота и оксида углерода (IV).

8. Реакция взаимодействия углерода и оксида теллура:

TeO2 + C → Te + CO2 (t = 600-700 °C).

Реакция взаимодействия оксида теллура и углерода происходит с образованием теллура и оксида углерода (IV).

9. Реакция взаимодействия углерода и оксида цинка:

ZnO + C → Zn + CO (t = 1200-1300 °C).

Реакция взаимодействия оксида цинка и углерода происходит с образованием цинка и оксида углерода (II).

10. Реакция взаимодействия углерода и оксида серы:

Реакция взаимодействия оксида серы и углерода происходит с образованием серы и оксида углерода (IV).

11. Реакция взаимодействия углерода и оксида никеля:

NiO + C → Ni + CO (t = 300-400 °C).

Реакция взаимодействия оксида никеля и углерода происходит с образованием никеля и оксида углерода (II).

12. Реакция взаимодействия углерода и оксида марганца:

MnO2 + C → Mn + CO2 (t = 600-700 °C).

Реакция взаимодействия оксида марганца и углерода происходит с образованием марганца и оксида углерода (IV).

13. Реакция взаимодействия углерода и оксида свинца:

2PbO + C → 2Pb + CO2 (t = 600 °C).

Реакция взаимодействия оксида свинца и углерода происходит с образованием свинца и оксида углерода (IV).

14. Реакция взаимодействия углерода и оксида кремния (IV) :

SiO2 + C → SiO + CO (t = 1300 °C).

Реакция взаимодействия оксида кремния (IV) и углерода происходит с образованием оксида кремния (II) и оксида углерода (II). Реакция протекает в вакууме. Образуются примеси: кремний Si, карбид кремния SiC.

15. Реакция взаимодействия углерода, оксида магния и хлора:

MgO + Cl2 + C → MgCl2 + CO (t = 800-1000 °C).

Реакция взаимодействия оксида магния, хлора и углерода происходит с образованием хлорида магния и оксида углерода (II).

16. Реакция взаимодействия углерода, оксида кальция и хлора:

CaO + C + Cl2 → CaCl2 + CO (t = 1000 °C).

Реакция взаимодействия оксида кальция , углерода и хлора происходит с образованием хлорида кальция и оксида углерода (II).

17. Реакция взаимодействия углерода, оксида бериллия и хлора:

BeO + Cl2 + C → BeCl2 + CO (t = 700-900 °C).

Реакция взаимодействия оксида бериллия, хлора и углерода (графит) происходит с образованием хлорида бериллия и оксида углерода (II).

18. Реакция взаимодействия углерода, оксида титана и водорода:

Реакция взаимодействия оксида титана , углерода и водорода происходит с образованием карбида титана и воды.

19. Реакция взаимодействия углерода, оксида гафния и брома:

Реакция взаимодействия оксида гафния, углерода и брома происходит с образованием бромида гафния и оксида углерода (IV).

20. Реакция взаимодействия оксида углерода, циркония и брома:

Реакция взаимодействия оксида циркония, углерода и брома происходит с образованием бромида циркония и оксида углерода (IV).

Реакции, взаимодействие углерода с солями. Уравнения реакции:

1. Реакция взаимодействия углерода и карбоната лития:

Реакция взаимодействия карбоната лития и углерода происходит с образованием оксида лития и оксида углерода (II).

2. Реакция взаимодействия углерода (графита) и карбоната кальция:

CaCO3 + C → CaO + 2CO (t = 800-850 °C).

Реакция взаимодействия карбоната кальция и углерода (графита) происходит с образованием оксида кальция и оксида углерода (II).

3. Реакция взаимодействия углерода (кокса) и карбоната бария:

BaCO3 + C → BaO + 2CO (t > 1000 °C).

Реакция взаимодействия карбоната бария и углерода (кокс) происходит с образованием оксида бария и оксида углерода (II).

4. Реакция взаимодействия углерода и ортофосфата кальция:

Реакция взаимодействия ортофосфата кальция и углерода происходит с образованием фосфида кальция и оксида углерода (II).

5. Реакция взаимодействия углерода и сульфата магния:

2MgSO4 + C → 2MgO + 2SO2 + CO2 (t = 700-900 °C).

Реакция взаимодействия сульфата магния и углерода происходит с образованием оксида магния, оксида серы и оксида углерода (IV).

6. Реакция взаимодействия углерода (кокса) и сульфата кальция:

2CaSO4 + C → 2CaO + 2SO2 + CO2 (t = 1200-1400 °C).

Реакция взаимодействия сульфата кальция и углерода (кокса) происходит с образованием оксида кальция, оксида серы и оксида углерода (IV). Данная реакция представляет собой способ Мюллера-Кюна, применяемый для извлечения полезных соединений серы из агидрита и гипса. Реакцию проводят во вращающихся цилиндрических печах.

Реакции, взаимодействие углерода с кислотами. Уравнения реакции:

1. Реакция взаимодействия углерода и азотной кислоты:

Реакция взаимодействия углерода и азотной кислоты происходит с образованием оксида углерода (IV), оксида азота и воды. В ходе реакции используется концентрированный горячий раствор азотной кислоты.

Аналогичные реакции происходят и с другими кислотами.

Реакции, взаимодействие углерода с гидридами. Уравнения реакции:

1. Реакция взаимодействия углерода и гидрида лития:

Реакция взаимодействия гидрида лития и углерода происходит с образованием ацетиленида лития и ацетилена.

2. Реакция взаимодействия углерода и гидрида натрия:

Реакция взаимодействия гидрида натрия и углерода происходит с образованием ацетиленида натрия и ацетилена .

Мировая экономика

Справочники

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (107 236)
  • Экономика Второй индустриализации России (103 685)
  • Этилен (этен), получение, свойства, химические реакции (30 334)
  • Программа искусственного интеллекта ЭЛИС (30 329)
  • Метан, получение, свойства, химические реакции (27 136)
  • Крахмал, свойства, получение и применение (26 869)
  • Природный газ, свойства, химический состав, добыча и применение (25 789)
  • Целлюлоза, свойства, получение и применение (25 494)
  • Пропилен (пропен), получение, свойства, химические реакции (24 228)
  • Прямоугольный треугольник, свойства, признаки и формулы (24 161)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Углерод. Химия углерода и его соединений


Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение углерода

Электронная конфигурация углерода в основном состоянии :

+6С 1s 2 2s 2 2p 2 1s 2p

Электронная конфигурация углерода в возбужденном состоянии :

+6С * 1s 2 2s 1 2p 3 1s 2p

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.



Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.



Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n



Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.


В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественные реакции

Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:


Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.

Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.

Соединения углерода

Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

карбиды металлов (карбид алюминия Al4C3)

Химические свойства

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:


Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Карбиды

Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.

Например :

Это соединения с металлами, при гидролизе которых образуется пропин

Например : Mg2C3

Например:

СаС2+ 2Н2O →

Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли

Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .

Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):

SiC + 8HNO3 → 3SiO2 + 3CO2 + 8NO + 4H2O

Оксид углерода (II)

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:


Способы получения

В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

Угарный газ в промышленности также можно получать неполным окислением метана:

Химические свойства

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Оксид углерода (IV)

Оксид углерода (IV) (углекислый газ) — газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также «сухой лед». Сухой лед легко подвергается сублимации — переходит из твердого состояния в газообразное.

Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:

Углекислый газ не горит, поэтому его применяют при пожаротушении.

Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:


Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):


Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.

В лаборатории углекислый газ можно получить разными способами:

1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.

Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:

2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.

Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:

3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.

Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:

Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .

1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.

2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.

Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:

При избытке щелочи образуется средняя соль, карбонат калия:

Помутнение известковой воды — качественная реакция на углекислый газ:

Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.

3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.

Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:

4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .

Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:

Магний горит в атмосфере углекислого газа:

2М g + CO 2 → C + 2 MgO

Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.

Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.

Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:

Карбонаты и гидрокарбонаты

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

Гидрокарбонаты при нагревании переходят в карбонаты:

Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.

Например , карбонат натрия взаимодействует с соляной кислотой:

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

NaHCO3 + HCl → NaCl + CO2 ↑ + H2O

Гидролиз карбонатов и гидрокарбонатов

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Читайте также: