Зависимость сопротивления металлов от температуры сверхпроводимость

Обновлено: 19.09.2024

Природа электрического тока в металлах. В металлических проводниках носители электрического заряда — свободные электроны. Под действием внешнего электрического поля свободные электроны упорядоченно движутся, создавая электрический ток ( рис. 194 ).

Электронная проводимость металлов была впервые экспериментально подтверждена немецким физиком К. Рикке ( 1845–1915 ) в 1901 г. Суть опыта Рикке заключалась в следующем: по проводнику, состоявшему из трёх отполированных и плотно прижатых друг к другу цилиндров — двух медных и одного алюминиевого ( рис. 195 ), в течение года проходил ток одного и того же направления. За этот промежуток времени через проводник прошёл заряд более 3,5 МКл. После завершения опыта взвешивание показало, что массы цилиндров остались неизменными. Это явилось экспериментальным доказательством того, что перенос заряда при прохождении тока в металлах не сопровождается химическими процессами и переносом вещества, а осуществляется частицами, которые являются одинаковыми для всех металлов, т. е. электронами.

В 1916 г. американский физик Р. Толмен ( 1881—1948 ) и шотландский физик Т. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением свободных электронов.

В этих опытах катушку с большим числом витков тонкой проволоки подключали к гальванометру и приводили в быстрое вращение вокруг своей оси ( рис. 195.1 ). При резком торможении катушки в цепи возникал кратковременный ток, обусловленный инерцией носителей заряда. По направлению отклонения стрелки гальванометра было установлено, что электрический ток создают отрицательно заряженные частицы. При этом экспериментально полученное отношение заряда каждой из этих частиц к её массе (удельный заряд) близко к удельному заряду электрона, полученному из других опытов. Так было экспериментально доказано, что носителями свободных зарядов в металлах являются электроны.

Вещества, обладающие электронной проводимостью, называют проводниками первого рода.

В соответствии с классической электронной теорией проводимости металлов, созданной немецким физиком П. Друде ( 1863–1906 ) в 1900 г., металлический проводник можно рассматривать как физическую систему, состоящую из свободных электронов и положительно заряженных ионов, колеблющихся около положений равновесия ( рис. 196 ).

Появление свободных электронов при образовании металлического кристалла из нейтральных атомов можно упрощённо объяснить следующим образом. Электроны, находящиеся на внешних оболочках атомов, слабо связаны со своими ядрами. При образовании кристалла атомы сближаются на расстояние r 0,1 нм , и электроны начинают взаимодействовать не только со своими ядрами, но и с ядрами соседних атомов. В результате этого их взаимодействие с собственными ядрами значительно ослабевает, вследствие чего они теряют с ними связь и могут двигаться по всему кристаллу в любом направлении как свободные частицы. Атомы превращаются при этом в положительно заряженные ионы. В пространстве между ионами беспорядочно движутся подобно частицам идеального газа свободные электроны. Поэтому для описания движения электронов используют модель «электронный газ» — совокупность свободных электронов в кристаллической решётке металла. На рисунке 196.1 пунктирной линией изображена траектория движения одного из электронов.

В этой модели электроны, упорядоченное движение которых является током проводимости, рассматривают как материальные точки, модуль потенциальной энергии взаимодействия которых пренебрежимо мал по сравнению с их кинетической энергией. Считают, что движение электронов под действием электрического поля подчиняется законам классической механики, а их столкновения с ионами кристаллической решётки металла являются неупругими, т. е. при столкновениях электроны полностью передают ионам кинетическую энергию своего упорядоченного движения. В промежутках между столкновениями свободные электроны совершают беспорядочное тепловое движение и в то же время движутся упорядоченно и равноускоренно под воздействием электрического поля.

Интересно знать

Модель электронного газа позволяет теоретически объяснить природу сопротивления и обосновать закон Ома для участка цепи, не содержащего источника тока, на основе классической электронной теории проводимости металлов. Проанализируем упорядоченное движение электронов проводимости.

Пусть электрон движется с ускорением в направлении, противоположном направлению напряжённости электрического поля ( рис. 196.2 ): где m0 — масса электрона, e — элементарный электрический заряд (модуль заряда электрона).

Тогда модуль средней скорости его направленного движения: , где — усреднённый промежуток времени между двумя последовательными столкновениями электрона с ионами кристаллической решётки.

Поскольку электрическое поле внутри однородного прямолинейного проводника с током однородное, то модуль напряжённости этого поля где l — длина проводника, U — напряжение между его концами. Тогда модуль средней скорости направленного движения электронов пропорционален напряжению между концами проводника .

Сила тока в проводнике пропорциональна модулю средней скорости направленного движения электронов:

где q — модуль заряда электронов проводимости, находящихся в проводнике, — усреднённое время прохождения этих электронов по проводнику, N — количество электронов проводимости в проводнике, n — концентрация этих электронов, V = Sl — объём проводника. Следовательно, сила тока пропорциональна напряжению между концами проводника I U.

А зависит ли сопротивление от температуры проводника?

Проведём опыт. Соберём электрическую цепь, состоящую из источника тока, проволочной спирали и гальванометра ( рис. 197 ). Из опыта следует, что при нагревании спирали показания гальванометра уменьшаются. Вывод очевиден: при увеличении температуры сопротивление металлов увеличивается.

Удельное сопротивление вещества металлического проводника зависит от концентрации свободных носителей заряда и частоты их столкновений с ионами кристаллической решётки, совершающими колебательные движения около положений устойчивого равновесия.

В металлических проводниках концентрация свободных электронов практически постоянна для данного проводника и не зависит от температуры. Однако частота столкновений свободных электронов с ионами кристаллической решётки с ростом температуры возрастает. Это приводит к возрастанию удельного сопротивления металлического проводника при повышении температуры.

При описании температурной зависимости удельного сопротивления проводника вводят температурный коэффициент сопротивления α, численно равный относительному изменению удельного сопротивления вещества проводника при приращении его температуры на 1 К:

где ρ 0 и ρ — удельные сопротивления вещества проводника соответственно при температуре T0 = 273 К (0 °С) и данной температуре Т .

Из формулы (1) следует, что

где ΔT = T - T0 — приращение абсолютной температуры проводника, которое совпадает с приращением температуры по шкале Цельсия ΔT = Δt . Таким образом, удельное сопротивление вещества металлического проводника возрастает с увеличением температуры.

График этой зависимости представлен на рисунке 197.1.

Поскольку сопротивление проводника , то, пренебрегая незначительной температурной зависимостью отношения , можно записать:

где R0 и R — сопротивления проводника соответственно при температуре T0 = 273 К (0 °С) и данной температуре T(t).

Для металлических проводников эти формулы применимы при температурах T > 140 К . У всех металлов при повышении температуры сопротивление возрастает, т. е. температурный коэффициент сопротивления α — величина положительная. Для большинства металлов (но не сплавов) при температурах от 0 для 100 °С среднее значение температурного коэффициента сопротивления .

Зависимость сопротивления металлов от температуры используют в специальных приборах — термометрах сопротивления ( рис. 198 ).

Широкое распространение получили термометры сопротивления из чистых металлов, особенно платины и меди, которые конструктивно представляют собой металлическую проволоку, намотанную на жёсткий каркас (из кварца, фарфора, слюды), заключённый в защитную оболочку (из металла, кварца, фарфора, стекла) ( рис. 199 ).Платиновые термометры сопротивления применяют для измерения температуры в пределах от –263 до 1064 °С, медные — от –50 до 180 °С.

Если при изготовлении электроизмерительных приборов требуются проводники, сопротивление которых должно как можно меньше зависеть от температуры окружающей среды, то используют специальные сплавы — константан и манганин. Температурный коэффициент у константана в 820 раз, а у манганина в 510 раз меньше, чем у серебра.

Сверхпроводимость. При очень низких температурах сопротивление некоторых металлических проводников резко (скачком) уменьшается до нуля. Впервые это обнаружил в 1911 г. нидерландский физик Г. Камерлинг-Оннес ( 1853–1926 ). Он экспериментально установил, что при температуре Т ≤ 4,12 К (по современным измерениям 4,15 К) электрическое сопротивление ртути исчезает. Позже многочисленными опытами было установлено, что это явление характерно для многих проводников. Температуру, при которой электрическое сопротивление проводника уменьшается до нуля, называют критической температурой. Состояние проводника при этом называют сверхпроводимостью, а сам проводник — сверхпроводником. Каждый сверхпроводящий металл характеризуется своей критической температурой. Явление сверхпроводимости свойственно не только некоторым металлам, но и сплавам, полупроводникам и полимерам.

Если в сверхпроводнике создать электрический ток, то он будет существовать в нём неограниченно долго. При этом для поддержания тока нет необходимости в источнике тока. Это указывает на перспективу использования явления сверхпроводимости при передаче электрической энергии.

Сверхпроводящие соединения нашли применение в качестве материала обмоток электромагнитов для создания сильных магнитных полей в мощных электрических двигателях, генераторах, ускорителях и др. Разрабатывают проекты сверхпроводящих электронно-вычислительных машин. Уже созданы компактные интегральные схемы на сверхпроводниках, обладающие рядом преимуществ по сравнению с имеющимися аналогами.

img

1. Какова природа электрического тока в металлах?

2. Как было доказано, что носителями электрического заряда в металлах являются электроны?

3. Как изменяется сопротивление металлического проводника при повышении температуры?

4. Что понимают под электронным газом?

5. Что называют температурным коэффициентом сопротивления?

6. На каком свойстве проводников основано действие термометра сопротивления?

7. В чём проявляется явление сверхпроводимости?

Определите сопротивление алюминиевого проводника при температуре t2 = 90 °С , если при температуре t1 = 20 °С его сопротивление R1 = 4,0 Ом . Температурный коэффициент сопротивления алюминия α = 4,2 · 10 -3 К -1 .

Решение: Согласно формуле сопротивления проводника при температурах t1 и t2 соответственно

Решая систему уравнений, получим:

Упражнение 24.1

1. В металлическом проводнике длиной l = 1,0 м проходит электрический ток. Число электронов проводимости, упорядоченно движущихся в этом проводнике, N = 2,5 · 10 19 , а сила тока I = 2,0 мА . Определите модуль средней скорости упорядоченного движения электронов проводимости.

2. Сопротивление металлического проводника при температуре t0 = 0,0 °С в b = 1,5 раза меньше, чем при температуре t = 120 °С . Определите температурный коэффициент сопротивления вещества проводника.

3. При температуре t0 = 0,0 °С сопротивление вольфрамового ( α = 5,0 · 10 -3 К -1 ) проводника R0 = 40 Ом . При прохождении электрического тока по проводнику его сопротивление увеличилось на ΔR = 100 Ом . Определите изменение температуры проводника.

4. При температуре t1 = 20,0 °С сопротивление латунного ( α = 6,50 · 10 -3 К -1 ) проводника R1 = 30,0 Ом . Проводник подключили к сети, напряжение которой U = 120 В . Определите температуру проводника, если сила электрического тока, проходящего по нему, I = 800 мА .

5. При нагревании медного проводника, площадь поперечного сечения которого S = 0,10 мм 2 , его сопротивление увеличилось на ΔR = 30 мОм . Определите изменение внутренней энергии проводника. Для меди температурный коэффициент сопротивления α = 4,3 · 10 -3 К -1 , плотность D = 8,9 · 10 3 , удельная теплоёмкость с = 380 , удельное сопротивление ρ = 1,7 · 10 -8 Ом·м .

Зависимость сопротивления металлов от температуры сверхпроводимость

«Физика - 10 класс»

Какую физическую величину называют сопротивлением
От чего и как зависит сопротивление металлического проводника?

Различные вещества имеют разные удельные сопротивления. Зависит ли сопротивление от состояния проводника? от его температуры? Ответ должен дать опыт.

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать её в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной 0 °С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:

Коэффициент пропорциональности α называют температурным коэффициентом сопротивления.

Температурный коэффициент сопротивления — величина, равная отношению относительного изменения сопротивления проводника к изменению его температуры.

Он характеризует зависимость сопротивления вещества от температуры.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К (на 1 °С).

Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов

У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Для них α < 0. Например, для 10%-ного раствора поваренной соли α = -0,02 К -1 .

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счёт изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (16.1) подставить значения

где ΔТ — изменение абсолютной температуры.

Так как а мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 16.2).

Увеличение сопротивления можно объяснить тем, что при повышении температуры увеличивается амплитуда колебаний ионов в узлах кристаллической решётки, поэтому свободные электроны сталкиваются с ними чаще, теряя при этом направленность движения. Хотя коэффициент а довольно мал, учёт зависимости сопротивления от температуры при расчёте параметров нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока за счёт нагревания более чем в 10 раз.

У некоторых сплавов, например у сплава меди с никелем (Константин), температурный коэффициент сопротивления очень мал: α ≈ 10 -5 К -1 ; удельное сопротивление Константина велико: ρ ≈ 10 -6 Ом • м. Такие сплавы используют для изготовления эталонных резисторов и добавочных резисторов к измерительным приборам, т. е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Существуют и такие металлы, например никель, олово, платина и др., температурный коэффициент которых существенно больше: α ≈ 10 -3 К -1 . Зависимость их сопротивления от температуры можно использовать для измерения самой температуры, что и осуществляется в термометрах сопротивления.

На зависимости сопротивления от температуры основаны и приборы, изготовленные из полупроводниковых материалов, — термисторы. Для них характерны большой температурный коэффициент сопротивления (в десятки раз превышающий этот коэффициент у металлов), стабильность характеристик во времени. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм.

Обычно в качестве основного рабочего элемента термометра сопротивления берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить.Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Сверхпроводимость.

Сопротивление металлов уменьшается с уменьшением температуры. Что произойдёт при стремлении температуры к абсолютному нулю?

В 1911 г. голландский физик X. Камерлинг-Оннес открыл замечательное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля (рис. 16.3).

Явление падения до нуля сопротивления проводника при критической температуре называется сверхпроводимостью.

Открытие Камерлинг-Оннеса, за которое в 1913 г. ему была присуждена Нобелевская премия, повлекло за собой исследования свойств веществ при низких температурах. Позже было открыто много других сверхпроводников.

Сверхпроводимость многих металлов и сплавов наблюдается при очень низких температурах — начиная примерно с 25 К. В справочных таблицах приводятся температуры перехода в сверхпроводящее состояние некоторых веществ.

Температура, при которой вещество переходит в сверхпроводящее состояние, называется критической температурой.

Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово имеет структуру алмаза с кубической кристаллической решёткой и является полупроводником, а белое олово обладает тетрагональной элементарной ячейкой и является серебристо-белым, мягким, пластичным металлом, способным при температуре, равной 3,72 К, переходить в сверхпроводящее состояние.

У веществ в сверхпроводящем состоянии были отмечены резкие аномалии магнитных, тепловых и ряда других свойств, так что правильнее говорить не о сверхпроводящем состоянии, а об особом, наблюдаемом при низких температурах состоянии вещества.

Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем удалить источник тока, то сила этого тока не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается.

Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения тепла в сверхпроводящей обмотке не происходит.

Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано и током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превысить которое, не нарушая сверхпроводящего состояния, нельзя.

Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскалённого ионизованного газа, движущегося в магнитном поле, в электрическую энергию.

Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г. американскими учёными Дж. Бардиным, Л. Купером, Дж. Шриффером и советским учёным, академиком Н. Н. Боголюбовым.

В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К).

Высокотемпературная сверхпроводимость в недалёком будущем приведёт наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозится необходимостью охлаждения проводников до температур кипения дорогого газа — гелия.

Физический механизм сверхпроводимости довольно сложен. Очень упрощённо его можно объяснить так: электроны объединяются в правильную шеренгу и движутся, не сталкиваясь с кристаллической решёткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.

Надо надеяться, что удастся создать сверхпроводники и при комнатной температуре. Генераторы и электродвигатели станут исключительно компактными (уменьшатся в несколько раз) и экономичными. Электроэнергию можно будет передавать на любые расстояния без потерь и аккумулировать в простых устройствах.

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электрический ток в различных средах - Физика, учебник для 10 класса - Класс!ная физика

Физика. 10 класс

§ 34. Электрический ток в металлах. Сверхпроводимость

Типичными представителями класса проводников являются металлы. Какова природа электрического тока в металлах?

Электрическая проводимость ( электропроводность) - - это физическая величина , обратная сопротивлению, характеризует свойство вещества проводить электрический ток.
R - сопротивление
1/ R - электрическая проводимость

ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ

Носители свободных зарядов в металлах - свободные электроны, которые упорядоченно перемещаются вдоль проводника под действием эл.поля с постоянной средней скоростью (из-за тормозного действия положительно заряженных ионов кристаллической решетки).
Металлы обладают электронной проводимостью.

Зависимость сопротивления проводника R от температуры:


При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.
Удельное сопротивление проводника зависит от температуры:

где ро - удельное сопротивление при 0 градусов, t - температура,


- температурный коэффициент сопротивления
( т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)

Для металлов и сплавов


Обычно для чистых металлов принимается


Таким образом, для металлических проводников с ростом температуры

увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается эл.ток в цепи.

Сопротивление проводника при изменении температуры можно рассчитать по формуле:


R = Ro ( 1 +

где Ro - сопротивление проводника при 0 градусов Цельсия
t - температура проводника

- температурный коэффициент сопротивления

Открытие низкотемпературной сверхпроводимости: 1911г. - голландский ученый Камерлинг - Оннес
наблюдается при сверхнизких температурах (ниже 25 К) во многих металлах и сплавах;
при таких температурах удельное сопротивление этих веществ становится исчезающе малым.

В 1957 г. дано теоретическое объяснение явления сверхпроводимости: Купер (США), Боголюбов (СССР)

1957г. опыт Коллинза: ток в замкнутой цепи без источника тока не прекращался в течение 2,5 лет.

В 1986 г. открыта (для металлокерамики) высокотемпературная сверхпроводимость (при 100 К).

Трудность достижения сверхпроводимости:
- необходимость сильного охлаждения вещества

Область применения:
- получение сильных магнитных полей;
- мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах.

В настоящий момент в энергетике существует большая проблема
- большие потери электроэнергии при передаче ее по проводам.

Возможное решение проблемы: при сверхпроводимости сопротивление проводников приблизительно равно 0 и потери энергии резко уменьшаются.

Вещество с самой высокой температурой сверхпроводимости
В 1988 г. США, при температуре –148°С было получено явление сверхпроводимости. Проводником служила смесь оксидов таллия, кальция, бария и меди.

Зависимость сопротивления проводника от температуры. Сверхпроводимость


Список вопросов теста

Вопрос 1

Какие частицы являются носителями электрического тока в металлах?

  • электроны
  • протоны
  • положительные ионы
  • отрицательные ионы
Вопрос 2
  • носителями зарядов являются электроны.
  • вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.
  • носителями тока выступают ионы и электроны.
  • носителями тока являются термоэлектроны.
  • носителями тока являются электроны и дырки
Вопрос 3

О чём свидетельствовало направление отклонения стрелки гальванометра в опытах Л. И. Мандельштама и Н. Д. Папалекси?

  • электрический ток создаётся отрицательно заряженными частицами.
  • электрический ток создаётся положительно заряженными частицами.
  • Электрический ток в металлах - это упорядоченное движение свободных электронов под действием электрического поля.
  • Любой металлический проводник - это физическая система, состоящая из двух подсистем: свободных электронов и положительно заряженных ионов, колеблющихся около положений равновесия.
Вопрос 4

Укажите верные утверждения.

  • при увеличении температуры сопротивление металлов увеличивается.
  • при увеличении освещённости поверхности сопротивление металлов увеличивается.
  • удельное сопротивление вещества металлического проводника линейно растёт с ростом температуры.
  • удельное сопротивление вещества металлического проводника экспоненциально растёт с ростом температуры.
  • У всех металлов температурный коэффициент больше нуля.
Вопрос 5

Электронный прибор, датчик, предназначенный для измерения температуры.

Вопрос 6

Как называется явление падения до нуля сопротивления проводника при определённой температуре?

  • сверхпроводимость
  • суперпроводимость
  • мегапроводимость
  • эффект Мейснера
Вопрос 7


Вопрос 8

К источнику тока, внутреннее сопротивление которого 1,2 Ом, подключён проволочный резистор сопротивлением 1 Ом при температуре 0 о C. Определите температурный коэффициент сопротивления металла проволоки, если при температурах 0 о С и 110 о С тепловые мощности тока в резисторе одинаковы. Ответ дайте с точностью до тысячных К -1 . Единицы измерения не пишите, только число.

Вопрос 9

При температуре 20 о С сопротивление платиновой проволоки 20 Ом, а при температуре 500 о С сопротивление равно 59 Ом. Найдите значение температурного коэффициента сопротивления платины. Ответ дайте с точностью до тысячных К -1 . Единицы измерения не пишите, только число.

Вопрос 10

Электрическая лампочка с вольфрамовой нитью включена в цепь при температуре 25 °С, при этом вольтметр показывает 0,01 В, а амперметр - 0,004 А. В рабочем состоянии напряжение на лампочке 120 В, а сила тока - 4 А. Определите температуру лампочки (с точностью до градуса Цельсия) в рабочем состоянии (α = 4,2 · 10-3 К -1 ). Единицы измерения не пишите, только число.

Читайте также: