Какие стали относятся к аустенитным сталям

Обновлено: 08.05.2024

Сложно представить себе жизнь современного человека без нержавеющей стали. Создание сплавов с антикоррозийными свойствами стало настоящим прорывом не только в металлургии, но также во многих других отраслях промышленности. О свойствах такого металла мы и поговорим в нашей статье.

Состав

Нержавеющая сталь была изобретена в 1913 г. и сразу же начала активно использоваться в промышленности. Это изобретение по праву считается одним из самых важных в истории сталелитейной отрасли. К нержавейке относятся сплавы с хромом, в которых содержание последнего составляет 10,5% и более. Включение этого элемента придает материалу особые характеристики:

  • высокую прочность;
  • хорошую свариваемость;
  • легкость холодной формовки;
  • противодействие ржавлению;
  • долгий срок службы;
  • привлекательный внешний вид.

Включение хрома обеспечивает создание на поверхности готовых деталей высокопрочной оксидной плёнки — именно она и сдерживает окислительные процессы.

Уровень сопротивления стали ржавлению напрямую зависит от доли хрома. Чем выше будет его концентрация, тем более стойким получится сплав. В классическом варианте нержавейка содержит порядка 13% хрома, для использования в агрессивных средах дозировку повышают до 17% — такие сплавы можно использовать в кислотных средах. Доказано, что они сохраняют все свои основные характеристики даже в растворе азотной кислоты. На долю углерода в таких сталях приходится не более 1,2% в составе. В качестве дополнительных легирующих компонентов могут вводиться кобальт, титан, ниобий и марганец. Для повышения стойкости к щелочным средам в сплав добавляют никель.

Основные свойства

Нержавеющая сталь пользуется высоким спросом не только благодаря своим противокоррозийным свойствам, но также за счёт разнообразия физических характеристик материала. К ее основным свойствам можно отнести следующие моменты.

  • Повышенная прочность — любые изделия, выполненные из нержавеющего сплава, характеризуются большей прочностью по сравнению со своими аналогами. За счет стойкости к интенсивным физическим нагрузкам такие изделия не утрачивают свою первоначальную форму и не изменяют технических характеристик длительное время.
  • Стойкость к внешним агрессивным средам — сплав не меняет своих свойств под действием внешних факторов, поэтому эксплуатационный ресурс изделия из нержавейки очень продолжителен.
  • Жаростойкость — изделия из антикоррозионных сплавов устойчивы к повышенным температурам, они сохраняют свои характеристики даже при воздействии открытого пламени и температурных скачков.
  • Экологичность — хромированные составы практически не содержат вредных примесей, поэтому повсеместно используются в пищевой промышленности.
  • Внешний вид — изделия из нержавейки своим видом выгодно отличаются от предметов, выполненных из других металлов. Такая сталь имеет блестящий, чистый вид, который остается неизменным даже после продолжительного использования.

Сравнение с другими материалами

Нержавеющую сталь часто сравнивают с биостеклофарфором, оцинковкой и латунью. Остановимся подробнее на сходствах и отличиях этих материалов. Чаще всего антикоррозийные стали сравнивают с латунью. Несмотря на схожесть параметров плотности, удельного веса, коэффициента теплопроводности и других характеристик, это принципиально разные материалы. Так, нержавеющая сталь относится к более выносливым металлам, ей не страшны механические и тепловые нагрузки, она не меняет своих характеристик при контакте с агрессивными средами.

В то же время её прочность создает определенные сложности в ходе обработки — резка такого металла довольно сложна, чаще всего используют лазер. В этом смысле латунь будет более удобной в сравнении с нержавейкой, она мягче и пластичнее, проще принимает необходимые формы. Хотя по стойкости к агрессивным воздействиям явно проигрывает. Таким образом, выбирая между латунью и нержавеющим сплавом, в первую очередь нужно определить эксплуатационную среду и основные факторы использования материала — в зависимости от этого можно делать выбор с учетом возможности самих металлов. Немаловажным критерием выбора станет и финансовая составляющая. Обычно изделия из нержавейки стоят намного дороже аналогов, выполненных из латуни.

Если сравнивать противокоррозионные и оцинкованные сплавы, то основное различие заключается в долговечности. При изначально равных эксплуатационных условиях нержавейка служит дольше — срок её использования достигает 50 лет и более. Оцинковка, даже при самом бережном отношении и соблюдении технологических требований, не будет сохранять своих свойств дольше 20-25 лет. Впрочем, для большинства сфер, где сегодня используются оцинкованные металлы (корпус бытовой техники, профнастил и некоторые другие) нержавейка станет отнюдь не самым удачным выбором. Из-за высокой концентрации легирующих примесей в структуре сплава и сложности технологии его производства себестоимость материала возрастает.

Изделия из коррозийноустойчивых сплавов стоят как минимум на 50% дороже аналогов из оцинковки — эти траты не компенсирует даже длительный срок службы. Однако в условиях специфических сред оцинкованный металл не обеспечит желаемых эксплуатационных характеристик. Поэтому высокая стоимость нержавейки будет с лихвой окупаться в атомной энергетике, автомобилестроении и космической отрасли.

Нержавеющие стали представлены в самых разных модификациях — они могут быть матовыми, зеркальными, рифлеными, гофрированными, перфорированными или гладкими. Но основу официальной классификации составляет способ производства.

Ферритные

К группе ферритных сплавов относят любые противокоррозионные стали с хромом, в которых концентрация последнего достигает 30%. Подобные сплавы проявляют повышенные ферромагнитные качества, то есть способны намагничиваться даже при эксплуатации в предельно пониженных температурах вне границ магнитного поля. Среди плюсов подобных составов выделяют:

  • высокую прочность;
  • пластичность;
  • устойчивость к окислению.



Такая сталь востребована при изготовлении трубного и листового профилированного проката.

Аустенитные

Для аустенитных сталей типична максимально высокая доля никеля и хрома — в совокупности их концентрация составляет порядка 33%. Металл данного типа характеризуется эластичностью, высокой прочностью и легкостью сварки на высоте. Сплав проявляет устойчивость к любым электромагнитным воздействиям, он резистентен к агрессивным растворам и абсолютно экологичен. Аустенитную сталь относят к категории сложно обрабатываемых металлов.

Все марки аустенитной стали из группы нержавеющих разделяются еще на 4 подгруппы.

  • А1 — сплав с повышенной концентрацией серы. Такой состав подвержен окислению в большей степени, нежели все остальные.
  • А2 — самая востребованная марка стали. Устойчива к воде, но в агрессивной кислотной среде может подвергаться коррозионному разрушению.
  • А3 — это сталь производная от А2. В ее состав вводятся специальные стабилизирующие компоненты, которые делает материал устойчивым к кислотным растворам и действию повышенных температур.
  • А4 — в этот сплав вводится до 3% молибдена. Получил широкое распространение в судостроении.

Мартенситные

Чтобы получить мартенситную структуру, нужно закалить металлический сплав с его последующим отпуском. В данном случае закалку заготовки производят путем нагрева материала до температуры, превышающей критическую отметку, а затем производят максимально стремительный отпуск. В результате кристаллическая решетка материала перестраивается, он приобретает большую твердость, прочность, упругость, повышается температура плавления. Если при этом повысить долю углерода, то возрастет устойчивость металла к износу.



Комбинированные

Комбинированные сплавы предполагают объединение свойств стали нескольких видов.

  • Аустенитно-ферритные — для таких материалов характерен низкий процент никеля, легирование выполняется титаном, медью и ниобием. Доля хрома при этом максимальна. Такие сплавы с легкостью выдерживают даже самые сильные ударные воздействия. Их характеризует пластичность и устойчивость к коррозии.



  • Аустенитно-мартенситные — в таких составах содержание хрома чуть меньше, в пределах 12-18%. На долю никеля приходится порядка 3-8%. Укрепление структуры осуществляется при температурном воздействии 970 градусов и более с отпуском при 450-500 градусов. Подобные сплавы проявляют повышенную текучесть и повышенную свариваемость.



Маркировка и популярные марки

В промышленности принято несколько систем обозначений нержавеющих сталей. Так, Американским институтом стали и сплавов была внедрена система AISI. В соответствии с ней сплавы делятся на несколько серий:

  • серия 200 — включает только одну марку AISI 201;
  • серия 300 — состоит из аустенитных и комбинированных сплавов;
  • серия 400 — включает ферритные и мартенситные сплавы на основе хрома.

На территории нашей страны маркировка производится с учетом требований ГОСТ, которые задают следующие алгоритмы:

  • первая цифра обозначает углерод, указанный в сотых долях процента;
  • все остальные цифры указывают на содержание того или иного элемента, после которого они стоят в маркировке;
  • если концентрация легирующей добавки ниже 1%, то цифра не пишется.

Среди самых популярных нержавеющих сплавов выделяют следующие.

  • AISI 304 (08Х18Н10) — не содержит серы и фосфора, нашел широкое применение в продовольственной и фармацевтической промышленности. Из этого металла делают трубопроводы и производственные линии. Может использоваться при изготовлении мебели и монтажа лестничных ограждений.
  • AISI 316 (10Х17Н13М2) — в отличие от пищевых составов, такая сталь усилена примесями молибдена. Устойчива к морской воде, может работать в кислотных средах при воздействии повышенных температур.
  • AISI 316T (10Х17Н13М2Т) — добавка титана многократно повышает термическую стойкость материала и успешно противостоит ионам хлора. Применяется для производства теплообменного оборудования.
  • AISI 321 (08Х18Н10Т) — материал с повышенной жаростойкостью. Используется для производства элементов, работающих в условиях высокой агрессивности, то есть трубопроводов, котлов и теплообменников.
  • AISI 430 (12Х17Н) — ещё один жаропрочный сплав. Предназначается для изготовления втулок, валиков и других подвижных деталей, работающих в растворах солей и кислот.
  • AISI 201 (12Х15Г9НД) — бюджетная альтернатива составу AISI 304. Сплав отличает меньшее содержание хрома и никеля. Чаще всего из такой стали делают мебель, заграждения, решетки для гриля и барабаны для стиральных машинок.

Сферы применения

Остановимся подробнее на основных направлениях использования стального сплава с противокоррозийными свойствами.

  • Машиностроение. Нержавейка применяется при создании промышленных станков, машин и всевозможных агрегатов. Чаще всего в данной сфере используются аустенитные или ферритные металлы.
  • Химическая промышленность. Химпром тесно связан с применением агрессивных составов, для хранения которых нужно специализированное оборудование. Именно его и делают из сталей, устойчивых к окислению.
  • Энергетика. В энергетической отрасли востребованы самые прочные сплавы, поскольку принципиальным моментом является надежность основных узлов.
  • Бумажно-целлюлозное дело. В этой отрасли почти все оборудование делают из нержавейки.
  • Пищепром. К транспортировке и хранению продовольствия предъявляются исключительные санитарно-гигиенические требования. Потому при создании оборудования для данной отрасли можно брать только стекло, несколько разновидностей пластика, а также нержавейку.
  • Авиационная и космическая отрасль. Здесь хромированную сталь используют для изготовления ракет, космических кораблей, а также самолетов.





Способы обработки

Исключительная прочность нержавеющей стали создает препятствия при её механической обработке. Подобные манипуляции сопряжены со многими сложностями — ресурс режущей пластины, деформационное упрочнение, а также удаление стружки. При этом в зависимости от концентрации хрома и никеля разные типы противокоррозионных сплавов могут иметь разную обрабатываемость. Чаще всего этот материал подвергают следующим типам воздействия.

Сатинирование

Может использоваться для стальных изделий как в практических, так и в декоративных целях. Чтобы добиться необходимых параметров шероховатости и убрать царапины с изделий из нержавейки, их подвергают шлифовке и полированию. После выполнения этих действий текстура поверхности стального изделия напоминает сатин или даже атлас. Помимо улучшения визуальных характеристик, шлифование позволяет устранить мельчайшие поверхностные изъяны и сделать их почти полностью незаметными. В промышленности используют пневмонапильник ленточного типа или шлифмашинку барабанно-ленточного типа. В домашних мастерских шлифование обычно выполняют вручную при помощи специальной шлифовальной ленты.

Травление

Один из самых распространённых способов обработки изделий из нержавейки. Данная манипуляция позволяет быстро удалить с поверхности металлического изделия всевозможные дефекты. К процедуре часто прибегают после проведения термообработки и для устранения следов сварки. Кроме того, травление удаляет оттенок побежалости с поверхности и обновляет пассивный слой на металле, создавая дополнительную защиту от негативного воздействия высоких температур.

В производственных условиях для травления используют расплавленные щелочные среды либо кислотные растворы. В домашних мастерских обработка производится при помощи специальных желеобразных травильных паст. Они имеют сложный состав — в них входят плавиковая, азотная и соляная кислоты. Эти компоненты могут представлять опасность для жизни и здоровья человека, поэтому в ходе травления следует придерживаться правил техники безопасности.

Хромирование

Подобная обработка нержавейки позволяет повысить устойчивость к трению, ударам и другим механическим воздействиям. Она увеличивает стойкость к окислению и к тому же улучшает внешний вид готового изделия. Однако выполнять хромирование возможно исключительно в производственных условиях, так как для осуществления данных работ требуется специализированное оборудование, особые расходные материалы, а также наличие соответствующего опыта работы.

Для возвращения изначальных характеристик сплава нержавейку часто подвергают воздействию концентрированных кислот — пассивации. Для улучшения стойкости к окислению прибегают к воронению.

Ржавеет ли и как удалить ржавчину?

Некоторые разновидности нержавейки при длительной эксплуатации могут подвергаться коррозии. Обычно это обусловлено особенностями структуры, то есть введением тех либо иных металлов. При этом такие стали имеют некоторые достоинства, которые в полной мере нивелируют подверженность окислительным процессам. Если такое произошло, можно вернуть эстетичный вид изделию одним из следующих способов.

  • Содой — 1 ст. л. пищевой соды растворяют в 1,5-2 ст. л. воды и наносят получившийся раствор на ржавое пятно зубной щеткой. Сода удаляет пятно максимально деликатно, не повреждая зерен. После этого останется только тщательно промыть изделие и вытереть насухо.
  • Кетчупом — содержащаяся в нем уксусная кислота эффективно разрушает ржавчину и тем самым облегчает её удаление. Всё, что нужно для очистки изделий — просто покрыть поврежденный участок, оставить на полчаса, а затем стереть ржавчину влажной салфеткой.
  • Цитрусовыми — лимон и лайм являются надежными помощниками в деле избавления от ржавчины, в некоторых случаях они поистине творят чудеса. Для проведения очистки предварительно посолите загрязненную металлическую поверхность и выдавите верху цитрусовый сок. Подождите несколько часов, ополосните и оставьте сушиться.

Нельзя использовать для удаления следов коррозии сильные абразивные порошки и металлическую губку. Они будут царапать поверхность, удалят защитное покрытие и только ухудшат состояние изделия.

О том, как правильно удалить ржавчину смотрите в следующем видео.

Все об аустенитной стали

Аустенитом называют твердый однофазный раствор углерода. Его особенность – это последовательность расположения атомов, кристаллической решетки то есть. Можно сказать, что аустенит – это не что иное, как структура металла. А вот зачем она нужна, каковы ее свойства, и как обрабатывается аустенитная сталь, в этом и стоит разобраться.



Что это такое?

Итак, аустенит – это состояние металла с особыми теххарактеристиками от допускаемого напряжения до магнитных значений. И в ином состоянии иметь такие характеристики просто невозможно, потому что при измененном строении свойства сплава тоже изменятся. Без аустенита трудно представить себе закалку: ту самую, недорогую и очень распространенную, максимально доступную. Иногда, кроме закалки, и вовсе нет ничего другого, чтобы упрочнить металл. Аустенитными сталями являются стали с высокими показателями легирования. При их кристаллизации образуется однофазная система, которой присуща кристаллически гранецентрированная решетка. И этот тип решеток не изменить даже минусовыми температурами. В отдельных случаях стали такого класса имеют еще одну фазу – фазу феррита (высоколегированного). И тогда решетка будет объемноцентрированной.

Аустенитные стали принято делить на две группы, основываясь на базе, а еще на содержании тех же легирующих компонентов в составе. Первая группа – это композиции с железом, в них будет до 7% никеля, до 15% хрома, а суммарный показатель легирующих включений – не больше 55%. Вторая группа – это композиции на никелевой базе (его там 55% и больше), а также железоникелевой (никеля и железа там от 65%). В подобных составах пластичность никеля увеличивается, как увеличивается и жаропрочность, и также технологичность стали. Хром же в ее составе делает ее более жаростойкой и стойкой к ржавчине.

Чаще аустенитные стали легируют ферритизаторами и аустенитизаторами. К первым относится, например, вольфрам и ниобий, ко вторым – азот, марганец, также углерод.



Свойства

Классификация аустенитной стали и описывает ее свойства. Так, бывают сплавы-аустениты следующие.

  • Аустенитно-ферритные (или дуплексные, двухфазные) – в их составе много хрома, а вот никеля содержится в экономном количестве. Дополнительно материал может легироваться молибденом, титаном, ниобием. Феррита и аустенита примерно в равном количестве содержится в таком виде. Сталь обладает повышенной прочностью, высокой стойкостью против коррозионного растрескивания.
  • Аустенитно-мартенситные – в них не так много хрома, а вот углерода больше. И применение их обычно предусматривает термически обработанное состояние со шлифованной либо полированной поверхностью. Из такой стали делают турбинные лопасти, лезвия для бритв и даже столовые приборы.

А помимо хромоникелевых составов, могут встречаться на производстве сплавы, которые относятся к дисперсионно-твердеющему подклассу. Туда могут добавлять карбидные уплотнители либо интерметаллические. Они упрочняют материал.




Обзор видов и марки

А теперь подробнее о том, что приобретает аустенитная сталь, и почему эти ее свойства так важны.

Жаропрочные

Жаропрочностью называют свойство стали не изменять присущих ей технических характеристик, когда температуры становятся критическими со временем. Разрушается металл, когда исчерпывается его потенциал способности противостояния дислокационной ползучести – это значит, на молекулярном уровне смещение атомов. Плавно приходит разупрочнение (то есть процесс, обратный упрочнению), и старение стали идет высокими темпами. Это может быть и при низких, и при предельных температурах. Как долго будет происходить этот процесс, в каком временном промежутке он растянется, вот так и определяется способность стали к жаропрочности.

Стоит также объяснить понятие ползучести. Ее характеристикой считается предел ползучести, являющийся характеристикой условного растягивающего напряжения. При этом напряжении скорость и деформация ползучести за какое-то время достигнут заданного показателя. Если есть допуск по скорости этого маркера, предел ползучести будет обозначаться сигмой с двумя индексами – нижний будет обозначать заданную скорость ползучести, верхний – актуальную температуру. А вот если задано уже относительное удлинение, в обозначении предела ползучести будет уже три индекса – верхний температурный, два нижних соответствуют деформации и времени.

В тех деталях, которые должны работать долгое время, то есть годы, предел ползучести должен быть связан с малыми деформационными изменениями, что возникают при достаточной длительности приложенной нагрузки. Жаропрочные свойства связаны в первую очередь с температурой плавления, а уже потом с легированием, с режимами той термообработки, которая была ранее. В жаропрочных сталях (и аустенитная не исключение) самым часто встречаемым легирующим компонентом считается хром. К слову, влияет он не только на жаропрочность, но и на жаростойкость.



Нержавеющие

Иначе говоря, коррозионностойкая сталь – это тот металл, который способен противостоять разрушению не только на длительный период, не только при высоких и критически низких температурах, но и в агрессивных средах тоже. Это значит, что металл не будет разрушаться даже в тех составах, которые активно вступают в реакцию с компонентными элементами.

Коррозия бывает двух типов.

  • Химическая. То есть металл окисляется в газовой, воздушной и водной средах.
  • Электрохимическая. Металл растворяется в кислотах с положительно или отрицательно заряженными ионами. Когда есть разность потенциалов электролита и металла, случается поляризация (избежать ее невозможно), и она приводит к некоторому взаимодействию между веществами.

Если температурные условия нормальны, сталь-аустенит не вступит в контакт с азотом, с атмосферным кислородом и углекислым газом, с водой. А значит, образование разрушительных осадков сведено к минимуму. Потому и делают из аустенитной стали детали, эксплуатируемые на морских объектах – турбины, мосты и многое другое. Есть даже отдельный вид стали, антикоррозийный аустенитный. Это будут сплавы, в которых удельное содержание никеля и хрома велико. В меньших количествах там могут быть молибден и марганец, кремний. Для сплавов этой группы главная особенность заключается именно в минимальном риске коррозии, вне зависимости от температурного контекста.

Как можно достичь такой высокой устойчивости: первый фактор – много хрома в составе, а ведь именно он формирует на поверхности защитную пленку. Второй фактор – низкий процент углерода, меньше 0,3%. И в комбинации оба фактора ведут к отсутствию вступления в контакт материала и кислорода, воды, азота.



Хладостойкие

Холодостойкостью называется свойство сохранения структуры в условиях криогенных температур на протяжении длительного времени. Так как кристаллическая решетка стали искажена, а потому она имеет способность принимать строение, которое сравнимо со стандартными малолегированными сталями. Только уже при низких температурах. Но есть у них один существенный минус – полноценные свойства они обретают лишь при отрицательных температурных показателях.

В класс хладостойких входят металлы, в которых велико удельное содержание хрома, а никель содержится в средних количествах. А в роли других легирующих добавок активно используют, например, вольфрам или марганец. Хладостойким сплавам несложно выдерживать очень низкие температуры, да и термоскачки они переносят отлично. Но если температура комнатная нормальная, физсвойства такой стали можно назвать посредственными – прочность не будет высокой, химическая инертность довольно слабая.

Потому используются хладостойкие аустенитные сплавы для создания спецтехники, а также оборудования, предназначенного для холодных регионов. В космической промышленности их также задействуют.



Маркировка

Когда металл изготавливается на предприятии, используют классификацию созданных заготовок относительно их структурных особенностей. Специалисты обычно контролируют, как меняется структура металла, наблюдая за самим процессом металлообработки. И термическая обработка тоже относится к таким наблюдениям. Вот аустенит, к слову, и будет одним из подобных состояний. И уже закаливая металл дальше, можно получить или мартенсит, или перлит, и так далее.

Главный документ для аустенитных сталей – ГОСТ 5632-2014. В нем указаны требования ко всякой марке металла. Если посмотреть на маркировку, видно, что в ней присутствует и буквенный элемент, и числовой. Буквами обозначается та добавка, которой в данном случае в процентах больше. Если примесей совсем немного, в маркировке они указываться не будут, но в техпаспорте металла – обязательно. В начале же маркировки находится только числовой знак, обозначающий сотые доли углерода. Потом идет литера добавки легирования с уточнением в процентах.

Пример прост: 06Х18Н11, углерода здесь 0,06%, хлора – 18%, а никеля – 11%. То есть каждая маркировка расшифровывается как код, в котором указаны легирующие элементы, их процент в составе, процент углерода.



Обработка

Сплавы с жаропрочными и жаростойкими показателями проходят разные виды термоопераций. Это все делается, чтобы заданные свойства сплавов повысились. А также термическая обработка важна, чтобы модифицировать структуру зерна, то есть принцип и число фаз дисперсии, величины зерновых блоков и прочее. Отжигают такие сплавы, чтобы уменьшить их твердость, и устранить хрупкость. Твердость уменьшают, если того требуют эксплуатационные условия стали. Металл будут нагревать минимум до 1200 градусов не менее получаса (а то и в 5 раз дольше), а потом быстро охладят. Если это сложная высоколегированная сталь, ее охладить можно на масле, а можно и на воздухе. А если это сплав, где легирующих компонентов немного, его погрузят в воду.

Чтобы соединять аустенитные детали, применяют сварочную технологию. Соединять их можно по-разному – дуговой сваркой, электрошлаковой и даже сваркой в среде защитных газов. Конечно, этот процесс полон особенностей, учесть которые сможет только подготовленный специалист, но главная из них – значительные трансформации свойств аустенитного металла во время нагревания. А значит, и сварку проводят по особому алгоритму. Если металл нагревать не так, сварной шов не получится качественным, и прочность соединения окажется под вопросом.

Нюансы нагрева (и, соответственно, свариваемости) аустенита, который оценивается расчетным путем:



Чтобы всего этого избежать, на деталь ровно там, где и будет шов, наплавляется малый слой металла с иным составом. Своеобразная безопасная металлическая заплатка. Это должен быть металл с высокой жаропрочностью и с немалой стойкостью к коррозии. Заплатка станет отличной защитой, которая не даст шву растрескаться. Этот защитный слой предстоит обжечь на +800 градусах. Как использовать электрошлаковую сварку:

  • ее производят с проволокой толщиной не более 4 мм, правда, расходоваться она будет быстро, а стоит дороговато;
  • чтобы соединить толстые детали, используют электроды пластинчатого типа с толщиной не более 1,5 см – они дороже стоят, но и разрушаются медленнее;
  • если предстоит работать с коррозионностойкими сплавами, делают отжиг или закалку – это хорошая профилактика ножевой коррозии.

Стоит немного раскрыть содержание и дуговой сварки. А оно заключается в серьезном количестве недостатков – нагревается металл локально, в области шва могут появиться оксиды железа, а также трещины рядом со швом. И то и другое, само собой, мало желательно.

А вот лучший способ взять и соединить аустениты – использовать защитные газы. Риск возникновения трещин, окалины, а также ржавчины и налета почти исключается. Гелий, аргон, углекислый газ – подойдет для этого процесса все. Работать можно с импульсной или горящей дугой. Используется постоянный ток с прямой полярностью. Плавящиеся электроды так же хороши, ведь они препятствуют появлению трещин на шве.

Аустенит – популярный, по многим позициям приоритетный сплав. Работать с ним будет несложно, если знать специфику термообработки, сварки и сферу применения.

Аустенит: класс стали и марки. Полный обзор

Требуемые свойства металла закладываются не только в процессе выплавки, но и термической обработкой — нагревом и охлаждением, вызывающей необратимые структурно – фазовые изменения, влияющие на качество.

Процесс нагрева стали до 1050 - 1100 С, кратковременное (10 мин) выдерживание при этой температуре и последующее быстрое охлаждение называется аустенизацией.

Жаропрочная сталь

Нержавеющий прокат

Аустенит, особенности строения, разновидности

Аустенит – образование, полученное в твердом растворе внедрения углерода в Y- железо (высокотемпературная модификация железа) с гранецентрированной кубической решеткой (ГЦК). Именно расположение атомов в кристаллической решетке определяет характеристики стали – стойкость при низких и высоких температурах, отсутствие магнитных свойств, химическую инертность, прочность.

Благодаря различным превращениям аустенитной структуры стали существуют следующие ее виды:

  • Феррит – твердый раствор углерода в объемноцентрированной кубической решетке (ОЦК)-железа.
  • Охлаждение аустенита до 730 °C приводит эвтектоидную смесь двух фаз — феррита и цементита в перлит.
  • Резкое снижение температуры формирует мартенсит.

Изменения в кристаллической решетке предусматриваются заранее, решающие факторы процесса – время выдержки, запрограммированные температуры нагрева и охлаждения.

Аустенитные сплавы

Аустенитная сталь – модификация железа с высокой степенью легирования основными компонентами – хромом и никелем.

Хром – содержание от 13% до 19% способствует покрытию поверхности сплава оксидной пленкой, исключающей коррозию.

Никель – элемент, концентрация которого в 9-12% стабилизирует в железе аустенит. Повышается прочность и пластичность стали.

Структура аустенитной стали

Дополнительные химические добавки бывают двух видов:

  1. Ферритизаторы
    • Кремний и марганец повышают прочность структуры аустенита.
    • Титан и ниобий добавляют в хладостойкие сплавы.
  2. Аустенизаторы
    • Углерод – в его задачу входит образование карбидов, придающих повышенную прочность. Максимальное количество в составе – 10%.
    • Азот – заменяет углерода при требовании к будущему изделию стойкости в отношении химического и электрического воздействия.
    • Бор – способствует увеличению пластичности.

Для легирования подбирают добавки, соответствующие эксплуатационному назначению и влияющие на физические, химические, технологические свойства сплава.

Марки аустенитной стали

В результате комбинаций и пропорций легирующих примесей получены марки сталей с ярко выраженными характеристиками, позволяющими выделить три основные группы.

Коррозионностойкие

К ним относятся: 08Х18Н10 (хром и никель), 07Х21Г7АН5 (с включением марганца), 03Х16Н16ЬЗ (с добавкой молибдена), 15Х18Н12С4Т10 (увеличенное содержание кремния).

Хромоникелевые нержавеющие стали отличаются высокой пластичностью при горячей и холодной деформациях.

Низкий процент содержания углерода в структуре обеспечивает свойство сопротивляться коррозии при нагревании, а содержание хрома 13% и выше укрепляет эту особенность в слабоагрессивных средах, более 17% – проявляет стойкость в таких агрессивных средах, как 50%-азотная кислота.

Жаропрочные

В этой группе представлены: 08Х16Н9М2, 10Х14Н16Б, 10Х18Н12Т, 10Х14Н14В2БР.

Содержание хрома в сплаве более 12% образует прочную пленку оксида, обеспечивающую окалино- и жаростойкость, сопротивляемость воздействию высоких температур (до 1100 °C). Структура сталей укрепляется легированием ванадия или молибдена, вольфрама и т.п.

Сплавы с такой характеристикой востребованы при изготовлении турбин самолетов, деталей двигателей внутреннего сгорания машин, при контактах изделий с раскаленными предметами, паром, огнем и пр.

Круги аустенитной стали

Хладостойкие

Характерные представители: 03Х20Н16АГ6 и 07Х13Н4АГ20.

Эффект создается за счет повышенного содержания никеля 25% и 17-19% хрома, придающих сплавам высокую вязкость и пластичность, повышенную стойкость к коррозии. Сплавы незаменимы в процессах, проходящих в криогенном режиме.

Данные свойства сохраняются при резком снижении температуры, но в условиях комнатной температуры характеристики способны измениться в худшую сторону.

Применение хладостойких сплавов ограничено из-за высокой стоимости входящего в состав никеля.

Маркировка

Сочетание букв и цифр, характеризующих сплав, обусловлено нормами ГОСТ 5632-2014.

На первом месте стоит цифра – указание в процентах долей углерода. Потом обозначение добавок с процентным содержанием в составе.

Примечание: небольшие примеси не отображаются в маркировке, но обязательно перечисляются в техническом паспорте сплава.

Пример: 15Х18Н12С4Т10 – 0,15% углерода, хром 18%,никель 12%, кремний 4%, титан10%

Применение

Изделия из нержавеющей стали аустенитного класса используются в механизмах, работающих в агрессивных средах, а также в сложных температурных условиях.

Поставляются в виде полуфабрикатов:

  • Листов толщиной от 4 до 50 мм.
  • Поковок – изделий заданной формы, которые используются в качестве заготовок для производства широкого спектра продукции.

Требования к данному классу сталей оговариваются в нескольких нормативных документах:

  1. ГОСТ 5632 – общие требования.
  2. ГОСТ 5949 – требования к механическим свойствам.
  3. ГОСТ 7350, 5582, 4986 определяют перечень марок листового проката.
  4. ГОСТ 18143 – требования к объёмным профилям (пруток, проволока).
  5. ГОСТ 11068, 9940, 9941 содержат технические условия производства нержавеющих труб.

Аустенитные сплавы обеспечивают широкие возможности для организации сложных технологический процессов в нефтяной и химической промышленности, космической отрасли, самолетостроении, медицине, радио- и электротехнике.

Жаропрочная сталь

Нержавеющий прокат

Структура аустенитной стали

Круги аустенитной стали

Читайте также: