Стальной компенсатор деформационного шва для кровли

Обновлено: 20.05.2024

Полезная модель относится к области строительства и может быть использована при ремонте старой и устройстве новой кровельной оклеечной рулонной гидроизоляции из наплавляемых битумных рулонных материалов (стеклоизол, линокром и т.п.) на плоских крышах больших площадей (свыше 1000 кв.м) или имеющих линейные размеры свыше 30 метров.

Одной из часто встречающихся ошибок проектирования (особенно в гидроизоляции перекрытий выносных сооружений) является отсутствие температурно-усадочных и деформационных швов. При протяженном выносном сооружении длиной 70 м не предусматривается устройства температурно-усадочных швов, поэтому при таком решении следует выбирать материалы с относительным удлинением при разрыве более 400% (например Резитрикс и т.п.).

Наиболее часто случающееся смещение - это местная деформация между горизонтальной (кровельной системой) и вертикальной (стеной) поверхностями. Местное смещение может возникнуть из-за того, что кровля и стены ведут себя как независимые одиночные пластины. В этом случае трещины направлены в сторону торца цементных бортиков и могут сопровождаться сдвиговыми деформациями в гидроизоляционном покрытии. Проявляются они в виде идущих наискось складок и являются убедительным свидетельством различного смещения между кровельной конструкцией и стеной. При этом недостатками известных решений являются отсутствие подвижности металлических элементов шва, напрямую повторяющих температурные деформации кровельной гидроизоляции. Появление морщин и затем трещин в верхнем слое гидроизоляции является следствием отсутствия такой подвижности.

Рисунок 2

Рисунок 3

Итог заключается в повышении надежности гидроизоляционного покрытия кровли за счет уменьшения риска разрыва кровельного оклеечного гидроизоляционного материала при расширениях и сужениях материала вследствие перепада температуры в диапазоне от минус 40 до плюс 50 градусов Цельсия.
Целостность гидроизоляционного покрытия исключает риск попадания влаги под кровельный материал и, соответственно, внутрь здания.

Технический результат достигается за счет конструкции компенсатора температурных линейных деформаций рулонной кровельной оклеечной гидроизоляции, включающий шляпный профиль из листового металла, П-образный выступ которого расположен под рулонной кровельной оклеечной гидроизоляцией, а полость профиля заполнена утеплителем, а поверх шляпного профиля уложены полотна гидроизоляционного оклеечного материала таким образом, что их края расположены внахлест по верхней плоскости шляпного профиля.

Монтаж термошва

Заявленное техническое решение применяется при ремонте старой кровли, в частности, в случае разрыва рулонного гидроизоляционного материала (стеклоизол, линокром, унифлекс и т.п.) вследствие температурных перепадов или устройстве новой кровли. Для исключения в дальнейшем риска разрыва кровельного гидроизоляционного материала применяется свободная укладка профиля компенсатора без применения механических средств крепления (без гвоздей, саморезов, анкерных болтов и т.д.). Применяется данный компенсатор для наплавляемых битумно-полимерных рулонных материалов (стеклоизол, линокром, унифлекс и т.п.), а для мембранных материалов с высокими показателями относительного удлинения при разрыве (типа ПВХ мембраны LOGICROOF, мембраны Resitrix (Резитрикс) и т.п.) применение компенсатора не обязательно.

Номер патента на полезную модель №163880

Применение компенсатора температурных деформаций рулонного покрытия кровли

Ремонт кровли ТД "ЛЮКС" 2011 год

Начало монтажа

1. Начало монтажа

Монтаж компенсатора температурных деформаций

2. Монтаж термошва компенсатора температурных деформаций

Компенсатор установлен

3. Компенсатор температурных деформаций рулонной кровли установлен

Кровля готова

4. Кровля готова и сдана заказчику в срок

Ремонт кровли здания "Балтавтотрейд" на Рублевском шоссе 2013 год

Компенсатор температурных деформаций рулонной кровли

Компенсатор температурных деформаций рулонной кровли готов

Завершена реконструкция кровли на историческом здании усадьбы Нарышкиных в Солдатёнковском парке. Подробнее


Капитальный ремонт и реконструкция скатной фальцевой кровли дома в Москве 1911 года

Компенсатор температурных линейных деформаций рулонной кровельной гидроизоляции

Рисунок 1

Рисунок 2

Рисунок 3

Монтаж термошва

Начало монтажа

Монтаж компенсатора температурных деформаций

Компенсатор установлен

Кровля готова

Компенсатор температурных деформаций рулонной кровли

Компенсатор температурных деформаций рулонной кровли готов


Деформационный шов кровли и конструкций крыш

4.11 В кровлях с несущим металлическим профилированным настилом и теплоизоляционным слоем из материалов групп горючести Г2-Г4 должно быть предусмотрено заполнение пустот гофр настилов на длину 250 мм материалами группы горючести НГ в местах примыкания настилов к стенам, деформационным швам, стенкам фонарей, а также с каждой стороны конька и ендовы кровли. В случае, если для утепления кровли применяется два и более слоев утепления с разными показателями горючести, необходимость заполнения гофр настилов определяется группой горючести нижнего слоя теплоизоляционного материала.

Заполнение пустот гофр насыпным утеплителем не допускается.

4.15 В рабочих чертежах покрытия (крыши) зданий необходимо указывать:

конструкцию кровли, наименование и марки материалов и изделий со ссылками на документы в области стандартизации;

величину уклонов, места установки водосточных воронок и расположение деформационных швов;

детали кровель в местах установки водосточных воронок, водоотводящих желобов и примыканий к стенам, парапетам, вентиляционным и лифтовым шахтам, карнизам, трубам, мансардным окнам и другим конструктивным элементам.

В рабочих чертежах строительной части проекта должно быть указано на необходимость разработки мероприятий по противопожарной защите, контролю за выполнением правил пожарной безопасности и правил техники безопасности при производстве строительно-монтажных работ.

5.12 Пароизоляцию для защиты теплоизоляционного слоя и основания под кровлю от увлажнения парообразной влаги помещений следует предусматривать в соответствии с требованиями СП 50.13330. Пароизоляционный слой должен быть непрерывным и водонепроницаемым.

В местах примыкания теплоизоляционного слоя к стенам, стенкам фонарей, шахтам и оборудованию, проходящему через покрытие или чердачное перекрытие, пароизоляция должна быть поднята на высоту, равную толщине теплоизоляционного слоя, а в местах деформационных швов она должна быть заведена на края металлического компенсатора и герметично приклеена или приварена.

5.26 В деформационном шве с металлическими компенсаторами пароизоляция должна перекрывать нижний компенсатор, а в шве предусмотрен сжимаемый утеплитель, например из стеклянного штапельного волокна по ГОСТ 31309 или из минеральной ваты по ГОСТ 21880.

Конструкция поперечных соединений листов (деформационных швов) и водоотводящих желобов зависит от угла наклона кровли (приложение С).

Зона расположения неподвижных (жестких) кляммеров на основной плоскости кровли (шириной 3 м) зависит от ее уклона (приложение С).

9.4 Присоединение воронок, установленных по обеим сторонам деформационного шва, к одному стояку или к общей подвесной линии допускается предусматривать при условии обязательного устройства компенсационных стыков.

 Рисунок Ж.4 - Деформационный шов

1 — железобетонная плита; 2 — пароизоляция; 3 — теплоизоляция; 4 — цементно-песчаная стяжка; 5 — основной водоизоляционный ковер из битумных и битумно-полимерных материалов; 6 — дополнительный водоизоляционный слой; 7 — защитный слой; 8 — бортик из цементно-песчаного раствора; 9 — стальной компенсатор; 10 — костыль (полоса 4×40 мм); 11 — защитный фартук из оцинкованной кровельной стали; 12 — деревянный брусок антисептированный и антипирированный; 13 — штукатурка; 14 — минеральная вата; 15 — разделительный слой; 16 — полиэтиленовая пленка; 17 — кладка из многощелевого или поризованного кирпича; 18 — лента для деформационного шва; 19 — приклейка по кромкам

Рисунок Ж.4 — Деформационный шов

Рисунок С.4 - Деформационный поперечный шов

Температурные швы

Температурный деформационный шов в железобетонных и монолитных конструкциях, а также кирпичной кладке и других строительных сооружениях и зданиях представляет собой зазор (щель или прорезь) между отдельными частями строительной конструкции. Наличие такого зазора позволяет перемещаться обеим частям строительного сооружения по обе стороны зазора. Температурным шов называется потому, что изменения в геометрии частей строительного сооружения вызываются перепадам температур, а как следствие происходит изменение объема материала. Температурный деформационный шов в применяется повсеместно в строительных конструкциях промышленного, гражданского, в некоторых случаях и частного домостроения.

Вилатерм для швов

Жгут Вилатерм 10 мм из вспененного полиэтилена (НПЭ) полнотелый

Вилатерм 10 мм

Жгут Вилатерм 15 мм из вспененного полиэтилена (НПЭ) полнотелый

Вилатерм 15 мм

Жгут Вилатерм 20 мм из вспененного полиэтилена (НПЭ) полнотелый

Вилатерм 20 мм

Жгут Вилатерм 30 мм из вспененного полиэтилена (НПЭ) полнотелый

Вилатерм 30 мм

Гернит для швов

Гернитовый шнур ПРП-40П60х60х400
Гернитовый шнур ПРП-40П60х60х400

Гернитовый шнур ПРП-40К.10.400

Гернитовый шнур ПРП-40К.100.400

Гернитовый шнур ПРП-40К.120.400

Гернитовый шнур ПРП-40К.15.400

Температурный шов может обустраиваться в кирпичной кладке, бетонных конструкциях, а также железобетонных конструкциях. Кроме вышеперечисленных случаев, температурный шов также рекомендуется применять в любых случаях, когда строительный материал имеет свойство расширяться под воздействием температур.

Располагаются деформационные швы повсеместно, в зависимости от решения проектного института: они могут располагаться в бетонном полу с колоннами, маршами лестницы, бордюрными камнями, пандусами, на стыках различных плит, между зданиями, а также в других случаях.

При устройстве температурного шва возможно применение различных материалов: начиная от простых изоляционных, в случае когда деформационный температурный шов имеет небольшие размеры и необходима гидроизоляция деформационного усадочного шва, заканчивая сложными решениями по установке внутренней гидроизоляционной гидрошпонки, утеплению деформационного температурного шва экструдированным пенополистиролом, Вилотермом, Гернитовым шнуром или аналогичным материалом, в зависимости от проектного решения.

Температурные швы, согласно основным типовым узлам могут подразделяться на усадочный шов или шов сжатия, изоляционный шов, шов с примыканием к металлической закладной детали, температурный шов (расширения и сжатия), изоляционный шов с полимерным плинтусом, а также шов, примыкающий к другим типам покрытия с усилением сцепление с помощью полимерного (химического) анкера.


Температурный Усадочный шов

Температурный усадочной шов или что в сжатия герметизируется полиуретановым герметиком а также кромка деформационного шва усиливается полимерном ремонтным составом. Шов заполняется теплоизоляционным эластичным материалом из вспененного полиэтилена Вилотермом.


Изоляционный температурный шов

Изоляционный шов также может изолироваться полиуретановым герметиком, а заполняется жгутом Вилотерм , кромка усиливается. Существенными отличиями между усадочным и изоляционным швом в температурных швах является тот факт, что изоляционный шов находится на стыке горизонтальной и вертикальной плиты.

Классический температурный шов


Классический температурный шов или “шов расширения-сжатия” изолируется специальной гидроизоляционной шпонкой , которая может устанавливаться в основании, либо посередине шва. Гидроизоляционные шпонки также могут контактировать с полимерными гидроизоляционными мембранами , в случае если первый и второй материал сделан из одного и того же полимерного материала с добавлением похожих пластификаторов. Заполняется классический температурный шов экструдированным пенополистиролом, но в ряди случаев возможно также заполнения жгута Типа Вилатерм, Гернитовым шнуром или другим теплоизоляционным гигроскопичны гидрофобным материалом.

Деформационные швы фундаментов

Деформационные швы – это подвижные швы в конструкциях сооружений, позволяющие компенсировать различного рода деформации (тепловые, осадочные и т.д.) и представляет собой специальный зазор между двумя сопрягаемыми элементами. Основными материалами для герметизации деформационных швов являются гидрошпонки, эластичные герметики и гидроизоляционные ленты.

Конструктивно деформационный шов состоит:

  • Зазор шва соответствующей величины;
  • Гидроизоляционный (противофильтрационный) элемент;
  • Заполнитель полости шва.



По величине зазора деформационные швы подразделяются:

  • Узкие, до 30 мм;
  • Средние, до 60 мм;
  • Широкие, более 60 мм.

Дополнительно деформационные швы различают:

Минимальная величина зазора деформационного шва зависит от расстояния между деформационными швами в конструкции и выражается в отношении между ними. В зависимости от типа конструкции это соотношение может быть разным.

Расстояния между деформационными швами регламентировано и проводится в нормативно-технической документации. Они зависят от вида сопрягаемых конструкций, условий эксплуатации, применяемого строительного материала и т.д.

К заполнителю полости шва не предъявляют никаких требований по водонепроницаемости. Поэтому в качестве заполнителя часто применяют дерево с антисептированной пропиткой, пенопласт, просмоленную паклю (канат). В последнее время материалом для заполнения полости шва служит экструзионный пенополистирол, который закладывают в шов при его формировании в процессе бетонирования, что обеспечивает свободное сжатие и раскрытие шва практически без напряжений сопрягаемых элементов. В тоже время он не впитывает воду и достаточно прочный для восприятия нагрузок от свежеуложенного бетона, что очень важно при производстве бетонных работ.

Гидрошпонки

Гидрошпонки для деформационных швов отличаются от гидрошпонок для технологических швов наличием деформационного элемента, который может воспринимать различные деформации конструкции. В зависимости от возможных подвижек подбирается размер и форму деформационного элемента. Деформационные элементы бывают круглых, овальных и П-образных видов.


Так же, как и гидрошпонки для технологических швов, шпонки для деформационных швов подразделяются на внутренние/центральные/двухсторонние (располагаются в центре массива бетона и развязываются к арматуре) и внешние/боковые/односторонние (располагаются с боку массива и крепятся к опалубке). Основные параметры шпонок, физико-механические характеристики и монтажные схемы можно найти в технических листах на материалы и альбоме технических решений Компании ТЕХНОНИКОЛЬ.


Внутренние и внешние шпонки разделяются между собой по типоразмеру, области применения и максимальному давлению воды, которое она может воспринять.

Специализированные герметики

При подборе материала герметика следует исходить из условия, что максимально допустимые деформации герметика при заданном его сечении, должны быть больше максимальных перемещений смежных конструкций в деформационном шве.

Работоспособность герметика в шве не зависит от конструкции самого шва. Между тем огромное влияние на работоспособность герметика оказывает отношение глубины заполнения шва к его ширине. Это отношение называется коэффициент формы (К): K=D/W.


Когда коэффициент формы в шве для герметика равен или меньше единицы, обеспечиваются наилучшие условия реализации его эластомерных характеристик. И наоборот, чем больше коэффициент формы, тем меньшую величину зазора в шве может обеспечить герметик.

Улучшение условий работы герметиков может быть достигнуто выполнением, так называемых Т-образных швов. При выполнении Т-образного шва должно быть обеспечено условие, когда длина деформирующегося элемента, выполненного из герметика, должна быть много больше, чем изолируемый зазор шва.


Кроме того, в конструкцию деформационного шва может быть введен дополнительный элемент – антиадгезионная прокладка. Ее назначение – убрать адгезионное сцепление герметика с третьей стороной шва (бетонной подложкой) и/или материалом заполнителя шва.


В качестве антиадгезионной прокладки можно использовать скотч или полиэтиленовую пленку. Широкое применение для данных целей нашел шнур «Вилатерм» - вспененный полиэтилен, который обеспечивает отсутствие адгезии с герметиком и создает форму шва.

Для эффективной работы в деформационном шве герметик должен удовлетворять следующим требованиям:

  • Быть водонепроницаемым материалом;
  • Изменять форму и размеры для восприятия деформаций, происходящих в шве;
  • Обладать хорошими адгезионными свойствами;
  • Работать без разрушения при положительных и отрицательных температурах.

Гидроизоляционные ленты

Как уже говорилось выше, лучшие условия эксплуатации уплотнительных материалов достигается при коэффициенте формы стремящимся к нулю (K=D/W → 0). В этом случае реализуются предельные эластомерные свойства герметика. Обеспечить такие условия герметизации деформационных швов можно уменьшением толщины D герметика, или Т-образной конструкцией шва (см. раздел «Специализированные герметики»).

В качестве тонкослойного герметика обычно применяют безосновные битумно-полимерные и ПВХ гидроизоляционные ленты , которые либо наплавляются на подготовленное основание, либо укладываются на специальный клей.


При значительных деформациях конструкции гидроизоляционная лента монтируется с компенсатором, что существенно повышает надежность уплотнения деформационного шва. Кроме того, гидроизоляционная лента может быть уложена в подготовленную штрабу, что позволяет сохранить начальный профиль конструкции.


В процессе установки гидроизоляционная лента может быть состыкована с гидроизоляционной мембраной, при этом следует учитывать совместимость материалов между собой. Оптимальным вариант – когда гидроизоляционная мембрана и гидроизоляционная лента изготавливаются из одного и того же типа материала.

Читайте также: