Твердость таблица сталей hrc

Обновлено: 04.05.2024

Выбирая инструмент для работы, мы сталкиваемся с такой его характеристикой как твердость, которая характеризует его качество. Чем выше этот показатель, тем выше его способность сопротивляться пластической деформации и износу при воздействии на обрабатываемый материал. Именно этот показатель определяет, согнется ли зуб пилы при распиловке заготовок, или какую проволоку смогут перекусить кусачки.

Метод Роквелла

Среди всех существующих методов определения твердости сталей и цветных металлов самым распространенным и наиболее точным является метод Роквелла.

Метод Роквелла - определение твердости металла

Метод Роквелла - определение твердости металла

Проведение измерений и определение числа твердости по Роквеллу регламентируется соответствующими документами ГОСТа 9013-59. Этот метод реализуется путем вдавливания в тестируемый материал инденторов – алмазного конуса или твердосплавного шарика. Алмазные инденторы используются для тестирования закаленных сталей и твердых сплавов, а твердосплавные шарики – для менее твердых и относительно мягких металлов. Измерения проводят на механических или электронных твердомерах.

Методом Роквелла предусматривается возможность применения целого ряда шкал твердости A, B, C, D, E, F, G, H (всего – 54), каждая из которых обеспечивает наибольшую точность только в своем, относительно узком диапазоне измерений.

Для измерения высоких значений твердости алмазным конусом чаще всего используются шкалы «А», «С». По ним тестируют образцы из закаленных инструментальных сталей и других твердых стальных сплавов. А сравнительно более мягкие материалы, такие как алюминий, медь, латунь, отожженные стали испытываются шариковыми инденторами по шкале «В».

Пример обозначения твердости по Роквеллу: 58 HRC или 42 HRB.

(!) Два одинаковых значения от разных шкал – это не одно и то же, например, 58 HRC ≠ 58 HRA. Сопоставлять числовые значения по Роквеллу можно только в том случае, если они относятся к одной шкале.

Диапазоны шкал Роквелла по ГОСТ 8.064-94:

A 70-93 HR
B 25-100 HR
C 20-67 HR


Слесарный инструмент


Инструменты для ручной обработки металлов (рубка, резка, опиливание, клеймение, пробивка, разметка) изготавливают из углеродистых и легированных инструментальных сталей. Их рабочие части подвергают закаливанию до определенной твердости, которая должна находиться в пределах:

Ножовочные полотна, напильники 58 – 64 HRC
Зубила, крейцмессели, бородки, кернеры, чертилки 54 – 60 HRC
Молотки (боек, носок) 50 – 57 HRC


Монтажный инструмент


Сюда относятся различные гаечные ключи, отвертки, шарнирно-губцевый инструмент. Норму твердости для их рабочих частей устанавливают действующие стандарты. Это очень важный показатель, от которого зависит, насколько инструмент износостоек и способен сопротивляться смятию. Достаточные значения для некоторых инструментов приведены ниже:

Гаечные ключи с размером зева до 36 мм 45,5 – 51,5 HRC
Гаечные ключи с размером зева от 36 мм 40,5 – 46,5 HRC
Отвертки крестовые, шлицевые 47 – 52 HRC
Плоскогубцы, пассатижи, утконосы 44 – 50 HRC
Кусачки, бокорезы, ножницы по металлу 56 – 61 HRC


Металлорежущий инструмент


В эту категорию входит расходная оснастка для обработки металла резанием, используемая на станках или с ручными инструментами. Для ее изготовления используются быстрорежущие стали или твердые сплавы, которые сохраняют твердость в холодном и перегретом состоянии.

Метчики, плашки 61 – 64 HRC
Зенкеры, зенковки, цековки 61 – 65 HRC
Сверла по металлу 63 – 69 HRC
Сверла с покрытием нитрид-титана до 80 HRC
Фрезы из HSS 62 – 66 HRC


Примечание:
Некоторые производители фрез указывают в маркировке твердость не самой фрезы, а материала, который она может обрабатывать.

Крепежные изделия


Существует взаимосвязь между классом прочности крепежа и его твердостью. Для высокопрочных болтов, винтов, гаек эта взаимосвязь отражена в таблице:


Если для болтов и гаек главной механической характеристикой является класс прочности, то для таких крепежных изделий как стопорные гайки, шайбы, установочные винты, твердость не менее важна.

Стандартами установлены следующие минимальные / максимальные значения по Роквеллу:

Стопорные кольца до Ø 38 мм 47 – 52 HRC
Стопорные кольца Ø 38 -200 мм 44 – 49 HRC
Стопорные кольца от Ø 200 мм 41 – 46 HRC
Стопорные зубчатые шайбы 43.5 – 47.5 HRB
Шайбы пружинные стальные (гровер) 41.5 – 51 HRC
Шайбы пружинные бронзовые (гровер) 90 HRB
Установочные винты класса прочности 14Н и 22Н 75 – 105 HRB
Установочные винты класса прочности 33Н и 45Н 33 – 53 HRC


Относительное измерение твердости при помощи напильников

Стоимость стационарных и портативных твердомеров довольно высока, поэтому их приобретение оправдано только необходимостью частой эксплуатации. Многие мастеровые по мере надобности практикуют измерять твердость металлов и сплавов относительно, при помощи подручных средств.

Измерение твердости при помощи напильников - фото

Измерение твердости при помощи напильников

Опиливание образца напильником – один из самых доступных, однако далеко не самый объективный способ проверки твердости стальных деталей, инструмента, оснастки. Напильник должен иметь не затупленную двойную насечку средней величины №3 или №4. Сопротивление опиливанию и сопровождающий его скрежет позволяет даже при небольшом навыке отличить незакаленную сталь от умеренно (40 HRC) или твердо закаленной (55 HRC).

Для тестирования с большей точностью существуют наборы тарированных напильников, именуемые также царапающий твердомер. Они применяются для испытания зубьев пил, фрез, шестерен. Каждый такой напильник является носителем определенного значения по шкале Роквелла. Твердость измеряется коротким царапанием металлической поверхности поочередно напильниками из набора. Затем выбираются два близко стоящие – более твердый, который оставил царапину и менее твердый, который не смог поцарапать поверхность. Твердость тестируемого металла будет находиться между значениями твердости этих двух напильников.

Переводная таблица твердости

Для сопоставления чисел твердости Роквелла, Бринелля, Виккерса, а также для перевода показателей одного метода в другой существует справочная таблица:

Виккерс, HV Бринелль, HB Роквелл, HRB
100 100 52.4
105 105 57.5
110 110 60.9
115 115 64.1
120 120 67.0
125 125 69.8
130 130 72.4
135 135 74.7
140 140 76.6
145 145 78.3
150 150 79.9
155 155 81.4
160 160 82.8
165 165 84.2
170 170 85.6
175 175 87.0
180 180 88.3
185 185 89.5
190 190 90.6
195 195 91.7
200 200 92.8
205 205 93.8
210 210 94.8
215 215 95.7
220 220 96.6
225 225 97.5
230 230 98.4
235 235 99.2
240 240 100

Виккерс, HV Бринелль, HB Роквелл, HRC
245 245 21.2
250 250 22.1
255 255 23.0
260 260 23.9
265 265 24.8
270 270 25.6
275 275 26.4
280 280 27.2
285 285 28.0
290 290 28.8
295 295 29.5
300 300 30.2
310 310 31.6
320 319 33.0
330 328 34.2
340 336 35.3
350 344 36.3
360 352 37.2
370 360 38.1
380 368 38.9
390 376 39.7
400 384 40.5
410 392 41.3
420 400 42.1
430 408 42.9
440 416 43.7
450 425 44.5
460 434 45.3
470 443 46.1
490 - 47.5
500 - 48.2
520 - 49.6
540 - 50.8
560 - 52.0
580 - 53.1
600 - 54.2
620 - 55.4
640 - 56.5
660 - 57.5
680 - 58.4
700 - 59.3
720 - 60.2
740 - 61.1
760 - 62.0
780 - 62.8
800 - 63.6
820 - 64.3
840 - 65.1
860 - 65.8
880 - 66.4
900 - 67.0
1114 - 69.0
1120 - 72.0


Примечание:
В таблице приведены приближенные соотношения чисел, полученные разными методами. Погрешность перевода значений HV в HB составляет ±20 единиц, а перевода HV в HR (шкала C и B) до ±3 единиц.

При выборе инструмента желательно предпочесть модели известных производителей. Это дает уверенность в том, что приобретаемый продукт изготовлен с соблюдением технологий, а его твердость отвечает заявленным значениям.

Перевод твердости HRC, HRA, HRB, HB, HV, HSD (по Бринеллю, Роквеллу, Виккерсу и Шору)

Твёрдость — свойство материала сопротивляться внедрению более твёрдого тела при контактном воздействии стандартного тела-наконечника (индентора) на поверхностные слои материала, т.е. оказывать сопротивление пластической деформации.

Таблица перевода между числами твердости HRC, HRA, HRB, HB, HV, HSD по Бринеллю, Роквеллу, Виккерсу и Шору.

В таблице использован справочник «Марочник сталей и сплавов» [1].

d10 — Диаметр отпечатка по Бринеллю при диаметре шарика 10 мм и испытательной нагрузке 2943 Н.

Измерения твёрдости осуществляют при 20±10°С.

Определение твердости по методу Бринелля (НВ) по имени шведского инженера Ю.А.Бринелля (J.A.Brinell).

Определение твердости по методу Бринелля (НВ)

Мерой твердости служит величина численно равная отношению приложенного усилия F к площади сферического отпечатка А и рассчитывается по формуле:

формула твердости по методу Бринелля

Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ определяется отношением нагрузки к сферической поверхности отпечатка.

Пример обозначения: 185 НВ

Метод Роквелла (HR) по имени американского металлурга С. Роквелла (S.Rockwell) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой.

Сущность метода измерения твердости по Роквеллу заключается во внедрении в поверхность образца (или изделия) алмазного конусного (шкалы A, C, D) или стального сферического наконечника (шкалы B, E, F, G, H, K) под действием последовательно прилагаемых усилий предварительного F0 и основного F1 усилий и в определении глубины внедрения наконечника после снятия основного усилия F1 (ГОСТ 9013).

Определение твердости по методу Роквелла (HR)

В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB. При использовании алмазного конуса твердость обозначают как HRA или HRC (в зависимости от нагрузки).

Пример обозначения: 61,5 HRC – твердость по Роквеллу 61,5 единиц по шкале С.

Твердость по методу Виккерса (HV). Определение твердости по Виккерсу было разработано в 1921 году Робертом Л. Смитом и Джорджем Э. Сэндлендом в компании Vickers Ltd в качестве альтернативы методу Бринелла.

Определение твердости по методу Виккерса

Твердость определяют путем статического вдавливания в испытуемую поверхность правильной алмазной четырехгранной пирамиды с углом 136° под действием силы F, приложенной в течение определенного времени, и измерении диагоналей отпечатка d1, d2, оставшихся на поверхности образца после снятия нагрузки. В результате испытаний на поверхности образца получают отпечаток в виде ромба, для которого измеряют обе диагонали и вычисляют их среднее значение.

формула Твердости по Виккерсу

При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.

Пример обозначения: 500 HV – твердость по Виккерсу, полученная при силе 30 кгс и времени выдержки 10 … 15 с. При других условиях испытания после букв HV указывают нагрузку и время выдержки: 220 HV 10/40 – твердость по Виккерсу, полученная при силе 98,07 Н (10 кгс) и времени выдержки 40 с.

Метод Шора (HSD). Метод и шкала были предложены Альбертом Ф. Шором (Albert F. Shore) в 1920-х годах. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Метод отличается сравнительно большим разбросом значений результатов измерений, но удобен своей простотой (в том числе конструкцией измерительного прибора) и оперативностью проведения измерений.

Определение твердости по методу Шора (HSD)

Определение проводится по шкале Шор А (Sh A) и Шор D (Sh D) согласно стандарту, DIN 53505. Под твердостью по Шору понимается сопротивление материала вдавливанию наконечника определенной формы под действием силы давления пружины. Чем больше число, тем выше твердость. Буква А определяет более мягкие значения, буква D — более твердые, причем области пересекаются. Пример обозначения: 75 Шор (Sh) D.

Твердость (HRC) стали

Твердость HRC – одна из основных характеристик инструмента. Параметр отображает прочностные показатели продукции, определяет ее устойчивость к деформации и абразивному износу. Чем выше твердость стали HRC, тем надежнее, долговечнее и функциональнее изделие.

Метод Роквелла – наиболее популярный способ определения твердости. Процедура регламентирована ГОСТ 9013-59, предполагает вдавливание в образец одного из типов инденторов:

  • алмазный конус для твердых сталей и закаленных сплавов;
  • твердосплавный шарик для цветных металлов и сплавов с умеренной твердостью.

При проведении работ задействуется профильное оборудование. Оно обеспечивает надежную фиксацию заготовки, планомерное погружение индентора и отображение результатов замеров.

Измерение твердости методом Роквелла

Рис. 1 Измерение твердости методом Роквелла

Метод измерения твердости по Роквеллу предполагает использование различных шкал с буквенным обозначением. Шкалы А и С применяются для работы с алмазными инденторами, шкала В – с твердосплавными шариками.

ВАЖНО ! При измерении твердости металла по методу Роквелла сведения о применяемой шкале отображаются в конце обозначения. Например, выражение 57 HRC информирует, что твердость заготовки составляет 57 единиц, испытания проводились методом Роквелла (HR) с использованием шкалы С.

При измерении твердости металлов методом Роквелла нельзя уравнивать значения, полученные при работе с разными шкалами. Это принципиально разные показатели, ориентированные на определенные типы материалов.

Измерение методом Роквелла по ГОСТ предполагает использование следующих диапазонов значений.

  • Проведение испытаний в соответствии со шкалой А – от 70 до 93 HR.
  • Использование метода измерения Роквелла в рамках шкалы В – от 25 до 100 HR.
  • Определение твердости стали HRC (шкала С) – от 20 до 67 HR.

При работе с инструментами и крепежами принято использовать шкалу С. Каждая группа изделий имеет рекомендуемые показатели твердости. Соответствие указанным значениям гарантирует долгую службу продукции.

Слесарный инструмент

При изготовлении слесарного инструмента задействуются легированные и углеродистые стали. Твердость материала HRC должна находиться в следующих диапазонах:

  • напильники и сменные отрезные полотна для ножовок – от 56 до 64 единиц;
  • чертилки, кернеры, зубила и бородки – от 54 до 60 единиц;
  • ударный инструмент, представленный молотками и их аналогами – от 50 до 57 единиц.

Твердость 56 HRC является универсальным показателем. Значение подтверждает высокую прочность изделий для всех перечисленных групп.

Инструмент для монтажных работ

Монтажный инструмент широко используется на производстве и в быту. Степень твердости определяет интенсивность износа и прочностные характеристики продукции.

Для каждого типа изделий определен рекомендованный уровень твердости:

  • гаечные ключи с зевом до 36 мм – от 45,5 до 51,5 единиц;
  • гаечные ключи с зевом более 36 мм – от 40,5 до 46,5 единиц;
  • отвертки – от 47 до 52 единиц;
  • зажимной инструмент, представленный плоскогубцами, пассатижами и щипцами – от 44 до 50 единиц.

Твердость 52 HRC оптимальна для большинства изделий. Продукция с подобным показателем обладает длительным сроком службы и достаточной прочностью.

Металлорежущий инструмент

Высокая твердость – обязательное условие для качественного металлорежущего инструмента. Она позволит сохранить остроту кромок, снизит периодичность заточки и прочих сервисных процедур.

Для каждой группы инструмента рекомендованы соответствующие значения по шкале HRC:

  • отрезной инструмент в виде кусачек и бокорезов – от 56 до 61 единицы;
  • зенкеры и зенковки – от 61 до 65 единиц;
  • метчики и плашки – от 61 до 64 единиц;
  • сверла для работы с металлом – от 63 до 69 единиц;
  • фрезы, при производстве которых используется сталь HSS – от 62 до 66 единиц.

Для сверл с покрытием из нитрида титана твердость лезвия HRC должна составлять свыше 80 единиц. Требования обусловлены высокой нагрузкой на инструмент в процессе эксплуатации.

Крепежи

При определении надежности крепежей учитывается не только твердость, но и класс прочности. Данные параметры тесно связаны между собой.

Взаимосвязь класса прочности и твердости HRC для болтов, винтов, гаек и шайб

Таблица №1. Взаимосвязь класса прочности и твердости HRC для болтов, винтов, гаек и шайб

Для прочих крепежей существуют диапазоны рекомендованных показателей прочности.

Рекомендованные значения прочности для прочих крепежных элементов

Таблица №2. Рекомендованные значения прочности для прочих крепежных элементов

Способы определение твердости

Для определения твердости методом Роквелла используются стационарные и портативные твердомеры. При ограниченном бюджете применяются специальные напильники.

Стационарные твердомеры

К стационарным твердомерам относятся высокоточные измерительные приборы. Устройства устанавливаются в лабораториях, обеспечивают оптимальные условия для проведения экспериментов.

Наиболее прогрессивные твердомеры имеют программное управление, позволяют детально настроить параметры процедуры. Оборудование регулярно проходит поверку, адаптировано к интенсивной эксплуатации.

Стационарный твердомер

Рис. 2 Стационарный твердомер

Портативные твердомеры

Портативные измерительные приборы предназначены для выездных замеров. Они имеют малые габариты, сохраняют функционал в различных пространственных положениях. Большинство устройств имеет жидкокристаллические дисплеи, поддерживает функцию запоминания и сравнения значений.

ВАЖНО ! К приобретению рекомендуются поверенные твердомеры, сопровождающиеся документацией от производителя. Такие устройства позволяют проводить измерения методом Роквелла по ГОСТ 9013.

Портативный твердомер

Рис. 3 Портативный твердомер

Напильники

Использование специальных напильников – наиболее доступный способ измерения твердости. Инструмент поставляется в наборах. Они содержат несколько напильников, каждый из которых ориентирован на определенную твердость (соответствующее обозначение есть на рукояти инструмента).

Набор напильников для определения твердости

Рис. 4 Набор напильников для определения твердости

Испытания проводятся в определенной последовательности.

  • Заготовка зажимается в тисках либо фиксируется иным надежным способом.
  • На тестируемую поверхность поочередно воздействуют напильниками. Мастер начинает с инструмента, имеющего наименьшую твердость. Если он не оставляет царапин, применяется следующий напильник из линейки.
  • Как только на заготовке появляются следы, смена напильников прекращается. Мастер сравнивает твердость последнего и предшествующего инструмента. Промежуточное значение является показателем HRC для испытываемой детали.

Напильники не используются при проведении лабораторных исследований ввиду низкой точности измерения. Они предназначены для бытового использования и рядовых производственных операций.

Схемы работы с напильником

Рис. 5 Схемы работы с напильником

Сравнительная таблица твердости

Для определения твердости применяется не только алгоритм Роквелла, возможно использование способов Бринелля и Виккерса. Каждый метод предполагает получение цифровых значений, сопоставимых между собой.

Для лучшей интерпретации результатов измерений предусмотрена специальная таблица.

Соответствие результатов измерений, полученных методом Виккерса, Бринелля и Роквелла

Таблица №3 Соответствие результатов измерений, полученных методом Виккерса, Бринелля и Роквелла

Соответствие результатов измерений, полученных методом Виккерса, Бринелля и Роквелла (часть 2)

Таблица №4 Соответствие результатов измерений, полученных методом Виккерса, Бринелля и Роквелла (часть 2)

Наглядно сравнить твердость изделий в соответствии со шкалами измерений поможет следующая схема.

Сравнение твердости изделий применительно к системам измерения Роквелла и Бринелля

Рис. 6 Сравнение твердости изделий применительно к системам измерения Роквелла и Бринелля

При покупке инструмента стоит уточнить степень его твердости. Соответствующие сведения могут содержаться в паспорте качества, сертификатах соответствия и прочей сопроводительной документации.

Купить сверла по металлу, а также метчики и плашки с высокими показателями твердости поможет магазин РИНКОМ. Здесь представлена качественная продукция отечественного, европейского и китайского производства. Изделия соответствуют требованиям отраслевых нормативов, подходят для бытового и промышленного использования. Для ознакомления с полным спектром представленных товаров рекомендуется воспользоваться каталогом.


Инструментальные стали – особая категория сплавов, используемых при изготовлении штампов, деталей машин, режущих и измерительных инструментов. Продукция отличается повышенными прочностными характеристиками, устойчивостью к динамическому и термическому воздействию.


Легированные стали – это особая категория сплавов, усиленных легирующими добавками. Последние повышают эксплуатационные свойства материала, обеспечивая устойчивость к коррозии, нагреву, ударному и абразивному воздействию. Возможно придание прочих качеств, востребованных при эксплуатации конечного продукта.


Инструментальные стали представлены группой сплавов повышенной прочности с содержанием углерода от 0,7%. Материал получил широкое распространение в промышленности, востребован при изготовлении штампов, измерительных приборов и режущего инструмента.


Токарный станок – это стационарное оборудование для обработки деталей резанием и точением. Техника востребована при производстве валов, втулок, переходников и прочей продукции. С ее помощью изготавливаются изделия бытового, хозяйственного и производственного назначения.


Сталь – сплав железа с углеродом, используемый в промышленности и строительстве. Нередко материал усиливается присадками, увеличивающими прочность, коррозионную стойкость, ударную вязкость и прочие параметры. Такие стали называют легированными.

Твердость – главный показатель качества инструмента

Читайте также: