Как проверить термодатчик сварочного инвертора

Обновлено: 02.05.2024

Здравствуйте! Проконсультируйте пожалуйста в ремонте FORWARD 161 IGBT
http://s013.radikal.ru/i323/1703/b4/789971123840.png схема инвертора один в один, только на моём не установлены транзисторы VT1 и VT3.
Перестал работать инвертор, сгорел токограничивающий резистор R1, силовые ключи VT2 и VT4. Остальное прозванивается нормально. Поставил новые транзисторы 80А, стояли 45А. Поставил новый резистор R1. Разрезал дорожку после конденсаторов С4,С5 и в разрыв включил лампу 100 вт. Резистор "Ток сварки" выкрутил в минимум. Включил в сеть. Инвертор запустился, включилось реле, на микросхемах появилось питание 10,5 в, на сварочных клеммах напряжение 50 в. Лампа включенная в разрыв дорожки светится в полнакала, на ней 124 вольта. На затворах транзисторов импульсы 15 вольт. Но как описывается в литературе, лампа должна при включении моргнуть и погаснуть. Получается на х.х. инвертор потребляет большой ток. А если резистор "Ток сварки" начать крутить в сторону увеличения тока, тогда аппарат переходит в режим самопроизвольного перезапуска вкл-выкл, а если лампу 100 вт заменить на 150 вт, то такого не происходит. Но лампа светиться вполнакала всё равно. На сварочных клеммах нет пробитых диодов. На х.х. греются не сильно радиаторы силовых транзисторов, сильно греются резисторы R3, R4. Без лампы включать опасаюсь.

Попробуйте воспользоваться гугл поиском. По "секрету" , первая ссылка в поисковике выдала это

З.Ы. Удачи в ремонте.

их на схеме по две штуки - в RC-цепочках на транзисторах и на выходных диодах
конденсаторы в этих цепочках живые?

ЗЫ схема вызывает смущение: на выходе указаны пятиамперные диоды. там точно не какие-нибудь 150EBU02 ?

"это" - какое-то "гэ". интеллектуальной ценности не представляет

их на схеме по две штуки - в RC-цепочках на транзисторах и на выходных диодах
конденсаторы в этих цепочках живые?
ЗЫ схема вызывает смущение: на выходе указаны пятиамперные диоды. там точно не какие-нибудь 150EBU02 ?

R3,R4 те что стоят в обвязке силовых ключей. Они по виду наверное десятиваттные.
На выходе какие стоят диоды не знаю, до них просто так не добраться.
Наверное не 5 а. Пробитых диодов там похоже нет, силовой выход прозванивается как диод. Кроме всего, если нормально замкнутый датчик перегрева разомкнуть на работающем инверторе, то на панели загорается светодиод "Перегрев", но сам инвертор остаётся в работе, а по инструкции должен отключаться. Так же измерил напряжения на Q6. База 1,4в; Коллектор 5в; Эмиттер 0-1в стоит прикоснуться щупом к эмиттеру, как инвертор начинает самопроизвольно вкл.-выкл. , поэтому напряжение скачет на нём.

ну они и должны греться, потому и стоят таки большие, да еще и под вентилятором, поди ))
но на всякий случай проверьте конденсаторы, стоящие последовательно с этими резисторами

значит, живы, ага

Кроме всего, если нормально замкнутый датчик перегрева разомкнуть на работающем инверторе, то на панели загорается светодиод "Перегрев", но сам инвертор остаётся в работе, а по инструкции должен отключаться.

не знаю насчет инструкции, но по схеме видно, что при обрыве датчика температуры выход первого компаратора должен упасть в ноль и подтянуть к земле через 910 Ом и D14 выход усилителя ошибки ШИМ-контроллера, что оставит на первой ноге ШИМ-контроллера примерно 0,45 В + падение на D14 = 1,2 В
внутри ШИМ-контроллера это не пробьется через смещающие диоды, поэтому инвертор должен молчать.
кстати, инвертор должен выключиться и при выкрученном в ноль регуляторе тока - цепь воздействия та же

если при обрыве термодатчика инвертор не затыкается, стОит проверить D14 и замерить напряжение на первой ноге компаратора - у меня есть подозрение, что компаратор выбран разработчиками не совсем корректно и не додавливает выход усилителя ошибки ШИМ-контроллера: в даташите указано максимальное напряжение насыщения выхода компаратора до 700 мВ, которых в сумме с D14 и R25 вполне хватит, чтоб ШИМ-контроллер не отключался при обрыве датчика температуры

Так же измерил напряжения на Q6. База 1,4в; Коллектор 5в; Эмиттер 0-1в стоит прикоснуться щупом к эмиттеру, как инвертор начинает самопроизвольно вкл.-выкл. , поэтому напряжение скачет на нём.

а вот на базу и эмиттер этого транзистора надо вставать с большой осторожностью:
база подключена к времязадающей емкости генератора ШИМ-контроллера. щупами тестера легко можно нарушить его тонкую душевную организацию, отчего он расстроится и убьет силовые транзисторы. безжалостно. пока лампочка спасает, надо полагать ))
судя по схеме, этот транзистор включен как эмиттерный повторитель, чтоб через R19 добавить пилу генератора к сигналу обратной связи по току в первичке сварочного трансформатора (Тр.тока ТТ - BAV99 - R15-R17). кстати, не наблюдаю в схеме небольшого конденсатора, который сожрал бы коммутационные выбросы и звенящие некрасивости.
в общем, это подмешивание пилы нужно для более четкого срабатывания ОСТ ШИМ-контроллера при ограничении тока в каждом такте инвертора. попутно решена еще одна задача - ВАХ источника задан наклон, как и положено ММА-сварочнику. на невыключение инвертора по обрыву датчика температуры этот транзистор не влияет - он тоже стремится выключить инвертор

если у вас есть под рукой осциллограф, гальванически отвяжите его от сети и посмотрите, что происходит на компараторах. также я бы порекомендовал посмотреть сигнал с трансформатора тока на предмет характерного загиба сигнала при насыщении сварочного трансформатора, если он имеется. но лампочку нужно будет воткнуть помощнее - ватт на пятьсот

о! только обратил внимание на второй компаратор. я так понимаю, интегратор на R24-C20 следит за импульсами ШИМ и когда они станут короткими, т.е. нагрузка приблизится к КЗ, второй компаратор все через ту же первую ногу ШИМ-контроллера должен выключить инвертор. антистик, так сказать. только я пока не возьму в толк, как этот второй компаратор должен встать на место и разрешить работу.

в общем, схема довольно простая. надо лишь убедиться, что частота генератора не уплыла и проконтролировать, не насыщается ли сварочный транс. ну и проверить, корректна ли замена транзисторов на более мощные - оно не всегда получается так, как хочется, здесь же основные потери не статические, а на переключении

Как проверить термодатчик сварочного инвертора



Часовой пояс: UTC + 3 часа

Не варит сварочный инвертор

Привет всем! Нужна помощь. Перестал работать сварочный инвертор после включения на морозе. Марка PSWI-200A. Китаец. Может кто сталкивался с подобным?

После включателя резистор прозвони, он мощьный примерно 47 ом (работает как предохранитель), и полевики прозвони

_________________
Хватит жить как получается- надо жить как хочется

Спасибо что отозвался) Резистора там не, хотя на схеме нарисован. Пропайка дорожки напрямую. Один провод с выключателя идёт на релюшку, а другой на общую плату.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Вот ещё для наглядности сфоткал. На первой фото большая плата туда и напряжение и вентилятор и "+" сварки из неё.
От неё 2 шлейфа на малую(второе фото). Выделил красным непонравившиеся места. Детали проверять как? выпаивать?
На одной плате: вентилятор работает, лампочка (зелёная) нормальной работы- горит, лампочка (красная) термоперегрузки - не горит, подключаю вторую плату, сначала большим шлейфом.. красная лампа загорается и всё выключается. если включить один маленький шлейф к той же плате, то что- то на большой плате пищит и появляется запах горелого, сразу выключаю.
Подскажите что к чему неопытному).

Компэл стал дистрибьютором компании POWER FLASH, производящей широкий спектр популярных батареек. POWER FLASH производит солевые и щелочные (алкалиновые) цилиндрические батарейки, а также серию литий-диоксидмарганцевых батареек. POWER FLASH выступает OEM-производителем для крупных японских и европейских производителей батареек. Батарейки POWER FLASH предназначены для самого широкого спектра применений – от бытового до промышленного.

Молодец что сфотографировал подозрительные места , только размер и ракурс дает мало информации о конструкции. Подозреваю что наступил пробой в выходных каскадах инвертора + в термозащите. Если есть переключатель переменка-постоянка попробуйте включить на переменке. Так проверите выпрямитель , если не хотите их прозванивать. А он вышел из строя на морозе или после пребывания на морозе?

_________________
Не мешайте мешать!
С." Ну почему Господь так долго не протянет нам руку помощи? И самое страшное: может быть он протягивает, но мы всё дольше и дольше этого не замечаем?"

Высокое качество при конкурентной стоимости позволяет DC/DC-преобразователям MORNSUN конкурировать с аналогами ведущих мировых производителей. Продукция данного бренда, такая как семейство UWTH1D, может с успехом применяться в железнодорожных приложениях. Для телекоммуникационного оборудования подходят DC/DC-преобразователи семейств VCB и VCF, для систем распределенного электропитания – малогабаритные импульсные PoL-стабилизаторы напряжения семейства K78, а для автоматизированных системах производства и робототехники, незаменима серия KUB. Есть и уникальные решения, например, миниатюрный DC/DC-конвертер B0505ST16-W5 в корпусе микросхемы, предназначенный для медицинских приборов.

Вот сфоткал всборе. ну почти. Прибор вышел из строя на морозе т.е. он был в гараже(-12) там же включил для сварки. При сварке на электроде были только искорки как от пьезо - зажигалки потом загорелась красная лампа и всё выключилось. Занёс в дом выдержал 3 часа и попробовал.. результат нулевой. переключателя постоянка - переменка нет. как проверить выходной каскад и термозащиту ( и ещё где они там?) И где выпрямитель весь? как его проверить? Заранее спасибо.

Подозрительные сопротивления нужно проверить и , при необходимости , заменить . Также проследить цепи этих резисторов , может еще что вышло из строя ? Они сами по себе не горят . Не совсем то. Сами платы , вид сверху и снизу (желательно). Выпрямители должны находиться под радиаторами. Проследить цепочку от Выходной клеммы до дросселя (если он есть) и через диоды , выходную обмотку трансформатора до другой клеммы.Проводники толстые , их легко узнать.

Датчик термозащиты должен быть прикреплен к радиатору выпрямителей . Подозреваю это все на маленькой плате. Ага. Красный и черный проводки , наращеные белыми , очень похожи на датчик температуры.

ну вот вроде так.
да, всё так. Это термодатчик, он же есть и на большой плате на большом радиаторе(а как его проверить?)
кроме маленького жёлтого трансформатора на большой плате я ничего не увидел. Попробовал прозвонить транзисторы на малой плате, мультиметр пищит во всех направлениях. может я что не так делаю? И как я писал, большая плата при выключенной малой включает вентилятор и горит зелёная лампочка. Работает долго без нарушений и запаха пока не подключишь малую.


1- дроссель, проблем быть не должно , разве обрыв( маловероятно). 2- судить трудно ( очень маленькое фото) , похоже что-то моточное , может какой-то импульсный трансформатор?. 3- ( может датчик тока).


Датчик температуры , если это термосопротивление , должен показать какое-то сопротивление ( при изменении температуры меняется). На малой плате похоже диодные сборки. Они не должны звенеть во все стороны. Крайние выводы вообще должны показывать обрыв между собой. Судя по симптомам им "кирдык". Нужно снять радиатор , вытереть термопасту и смотреть надписи на них.

вот снял радиатор, под ним по - моему транзисторы, звонятся во все стороны значит битые? (они полярные?)
снял термодатчик его маркировка BR - B2D 75гр цс- к DESHENG (coc) не звонится вообще никак и сопротивление никакого не показывает. С большой платы такой же датчик, та же фигня. Нагрел до 50 тоже никакого результата.

Сварочный инвертор ММА 200Р

Привет Всем. Подарили не живой сварочник. ММА-200Р, трудился он не долго умер тоже быстро. корпус новый не затасканый. валялся на выброс. Вскрыл корпус внимательно изучил внутренности. обнаружился прогоревший насквозь одинокий мощный транзистор Тошиба2ks3878 ?? (не очень точно видно корпус разрушен) поблизости от него небольшой навесной вертикальный модуль с обгоревшими деталюхами аккуратно всё выпаял теперь думаю где достать на этот чудо аппарат хоть какое описание хоть на уровне блок схемы или саму схемку. вдруг у кого есть что то похожее. надеюсь его оживить и наконец то переварить выхлопную трубу в машине.


Баба Гутя на-двое сказала, что замена транзистора поможет. Точнее помогает, но 50/50. В остальных случаях горит трансформатор и/или плата управления опорным источником.
Если случилось все же бОльшее, чем транзистор, то отписывайтесь, у меня есть несколько решений.

__________________
"Словом можно убить, словом можно спасти, Словом можно полки за собой повести." (с) Шефнер Вадим

не получается раздобыть такой транзистор. ищу. схемы на эту версию ММА-200Р также не нашлась. люди рассказали что в природе есть три версии такого сварочника. подскажите где лежат схемы на них

Фото платы управления. на которую разыскивается схема. В сети оч много всего. но найти нужное дня не хватает.

на нижнем фото выпаян транзистор и навесной модуль с прогоревшими резисторами.

Спасибо. Вы оказались правы. вместе с силовым полевиком уничтожились диоды. стабилитроны и транзистор, оптопара - под вопросом. (диод не звонится) благодарю за совет. Переделку ? а стоит. для гаражно дачных дел его хватит. три минуты работать год лежать в углу . как профинструмент его использовать вряд ли придётся. всё таки надеюсь его оживить.

Оживляйте. Только советую все же вместо заводского демпфера (или параллельно ему) установить супрессор 1.5KE350CA, иначе намаетесь. Эти блоки питания горят частенько по причине пробоя транзистора "иголками" от ЭДС самоиндукции первичной обмотки трансформатора.

после замены всего что обуглилось пробежался цешкой по уцелевшим элементам. стабилитроны проверил (отдельно на коленке через блочёк питания) всё что нашел заменил. при включении питания 220, клиент подАл признаки жизни стал вращать вентилятором. появились 25 вольт. на выходных клеммах + -, нет напряжения.нет ХХ
отыскалась в ин-ете схемка оч похожая на моего.. тема сврочных инверторов для меня ещё не освоенная, бегло просмотрел схему ничего ни читал. что то понятно чтото невникал там из 25 вольт "делается 12v"и запитывается управление кажется так?

это питание для мс 3140 -регулятор тока? и мс 3525 генератор для силовых ключей на полевых тр-рах.? надо смотреть назначение и функционал этих мс

не успел просмотреть что там по пост току в схеме творится. внешне выглядит так. - включается, крутится на вых 0.. после выключ сети не происходит быстрой остановки вентилятора .. минуту крутится от конденсаторной батареи кроме как крутить вентилятор он пока ни чего не может..кажется так?
копаем дальше ..

параллельно копаем вот это

100КВат Дизель электростанция без опознавательных знаков. старая сгнившия электроавтоматика без схем. дизель пыхтит. генератор -проблема? ищу монтажную и электрическую схемы .

Как работает сварочный инвертор?

Устройство сварочного инвертора

Продолжаем изучение сварочного инвертора «Telwin». В первой части было рассказано о силовой части схемы аппарата. Пришло время разобраться в управляющей части схемы.

Вот принципиальная схема управляющей части и драйвера (control and driver).

Кликните по картинке. Рисунок схемы откроется в новом окне. Так будет удобнее более детально изучить схему.

Схема управления и драйвера Telwin Tecnica 144-164

Схема управления и драйвер.

Мозгом устройства можно считать микросхему ШИМ-контроллера. Именно она управляет работой мощных транзисторов и, так сказать, задаёт темп работы преобразователя. В зависимости от модели аппарата могут использоваться микросхемы ШИМ-контроллера типа UC3845AD (Tecnica 144-164) или VIPer20A (Tecnica 141-161, 150, 152, 170, 168GE). Микросхему ШИМ-контроллера легко найти на принципиальной схеме. Ну, а что в железе?

Далее на фото показана часть платы инвертора Telwin Force 165.

Элементы схемы управления

Обратимся к схеме.

По схеме микросхема ШИМ-контроллера U1 управляет работой полевого N-канального MOSFET-транзистора IRFD110 (Q4). Корпус у этого полевого транзистора довольно нестандартный (HEXDIP) – внешне похож на оптопару.

Внешний вид транзистора IRFD110

С вывода стока (D) транзистора Q4 на первичную обмотку разделителного трансформатора T1 поступают прямоугольные импульсы частотой около 65 кГц. У трансформатора T1 имеется 2 вторичные обмотки (3-4 и 5-6), с которых снимаются сигналы для управления мощными ключевыми транзисторами Q5, Q8 (см. схему силовой части).

Схема на транзисторах Q6, Q7 и "обвязка" этих транзисторов нужна для правильной работы ключевых транзисторов Q5, Q8. Транзисторы Q6, Q7 в основном помогают транзисторам Q5, Q8 закрываться. Как мы уже знаем из первой части, в качестве транзисторов Q5, Q8 используются либо IGBT-транзисторы, либо MOSFET. А это накладывает некоторые требования на процесс управления ими.

Стабилитроны D16, D17, D29, D30 (на 18V) защищают IGBT-транзисторы от превышения допустимого напряжения между затвором (G) и эмиттером (E).

Цепи регулировки и контроля.

На печатной плате сварочного инвертора «TELWIN Force 165» можно обнаружить занятную деталь – трансформатор тока T2.

Трансформатор тока

Эта деталь участвует в работе анализатора-ограничителя тока. По принципиальной схеме видно, что трансформатор тока включен в цепь первичной обмотки трансформатора T3. За счёт индукции электромагнитного поля в трансформаторе тока T2 наводится переменное напряжение. Далее это напряжение выпрямляется и ограничивается схемой на элементах D2, D4, R49, R25,R15, R9, R3, R20, R10. За счёт этой схемы контролируется сила тока в первичной обмотке трансформатора T3, а сигналы, полученные от неё, участвуют в работе «задатчика» сварочного тока и генератора импульсов на микросхеме U1.

Схема контроля напряжения сети и выходного напряжения.

Для контроля напряжения в электросети, а также выходного напряжения (OUT+, OUT-) сварочного аппарата используется схема, состоящая из элементов операционного усилителя (ОУ) на микросхеме LM324: U2A и U2B.

Элементы делителя R1, R5, R14, R19, R24, R29, R36 и R38 подключены к входному сетевому выпрямителю и служат для обнаружения завышенного или заниженного напряжения в электросети.

На элементе U2C операционного усилителя LM324 выполнен суммирующий блок. Он складывает сигналы защиты по напряжению и току. Результирующий сигнал подаётся на задающий генератор импульсов – ШИМ контроллер (UC3845AD). При аварии, схема защиты и контроля подаёт сигнал на суммирующий блок. Он в свою очередь блокирует работу генератора, а, следовательно, и всей схемы.

Микросхемы узла контроля и управления

Выходное напряжение снимается с выходов «OUT+», «OUT-» и через элемент гальванической развязки – оптрон ISO1 (H11817B), поступает в схему контроля (U2A, U2B). Так осуществляется отслеживание параметров выходного напряжения.

Оптрон обратной связи и выходные разъёмы

В случае если напряжение в электросети завышено или занижено, сработает компаратор на элементе U2A и подаст сигнал на транзистор Q1 (BC807) через делитель на резисторах R12, R11. Транзистор Q1 откроется и закоротит на корпус (общий провод) вход 10 элемента U2C. Это приведёт к блокировке работы микросхемы U1 – генератора задающих импульсов. Схема выключится.

Одновременно с этим, за счёт подачи напряжения с выхода 1 компаратора U2A засветится жёлтый светодиод D12 (Giallo – "жёлтый"), указывающий на то, что в схеме неисправность или есть проблемы с сетевым питанием. Светодиод D12 показан на силовой части схемы и подключен к CN1-1. Таким же образом сработает схема, если на выходе выпрямителя (OUT+, OUT-) параметры выйдут за рамки установленных. Такое может произойти, например, при неисправностях выпрямительных диодов или если выйдут из строя детали узла контроля – оптрон ISO1 или элементы его «обвязки», полупроводниковый диод D25, стабилитрон D15, резисторы R57, R52, R51, R50 и электролитический конденсатор C29.

О других элементах схемы.

Биполярный транзистор Q9 подаёт напряжение питания на микросхему ШИМ-контроллера U1 (UC3845AD). Этот транзистор управляется элементом операционного усилителя U2B. На вывод 6 U2B подаётся напряжение с делителя на резисторах R64, R39 (см. схему силовой части). Если напряжение с делителя поступает, то U2B подаёт сигнал на транзистор Q9, который открывается и подаёт напряжение на микросхему U1.

Можно сказать, что эта схема участвует в запуске мощного инвертора, так как именно она подаёт питание на управляющий инвертором ШИМ-контроллер.

Ручная установка сварочного тока осуществляется переменным резистором R23.

Переменный резистор ручной регулировки сварочного тока

Ручка резистора выводится на панель управления аппарата.

Ручка задачи сварочного тока на панели сварочного инвертора

Также в цепи регулировки задействованы резисторы R73, R74, R21, R66, R68, R13 и конденсатор C14. Напряжение с цепи ручной регулировки поступает на 10 вывод элемента U2C суммирующего блока.

Как уже говорилось, сварочный инвертор имеет в своём составе множество регулирующих, контролирующих и защитных цепей. Все они нужны для штатной работы аппарата, а также защищают силовые элементы инвертора в случае аварийного режима.

Теперь, когда мы разобрались в работе сварочного инвертора пора рассказать о реальном примере ремонта сварочного инвертора «TELWIN Force 165». Об этом читайте здесь.

Устройство сварочного инвертора

Сварочный инверторный аппарат Telwin

В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.

Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.

Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.

В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.

Дальше будет много букв – наберитесь терпения .

Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.

Основные этапы преобразования энергии в инверторном сварочном аппарате:

1. Выпрямление переменного напряжения электросети 220V;

2. Преобразование постоянного напряжения в переменное высокой частоты;

3. Понижение высокочастотного напряжения;

4. Выпрямление пониженного высокочастотного напряжения.

Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.

Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.

Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.

Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.

Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.

Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.

Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.

Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к "мясу", а точнее к реальному железу и тому, как оно устроено.

Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.

Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.

Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.

Внешний вид платы Telwin Force 165 с обозначением элементов схемы

Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.

Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).

Схема силовой части сварочного аппарата Telwin Tecnica 144-164

Сетевой выпрямитель.

Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.

Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.

На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С°. Это элемент защиты.

В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) - 35А, обратное напряжение (VR) - 800V.

Термопредохранитель на радиаторе диодной сборки

После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.

Помеховый фильтр.

Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.

Фильтр ЭМС

Инвертор.

Схема инвертора собрана по схеме так называемого "косого моста". В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.

Полевой MOSFET транзистор на плате инвертора

Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.

Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.

Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.

Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.

За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.

Размеры этого самого трансформатора невелики.

Импульсный понижающий трансформатор

Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер!

Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.

Выходной выпрямитель.

Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).

Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.

В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.

Диоды выходного выпрямителя

Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).

Схема запуска и реализация «мягкого пуска».

Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.

Интегральный стабилизатор LM7815

Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.

Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».

Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – "Зелёный"). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.

Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.

В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.

Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.

После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.

На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).

Элементы схемы мягкого запуска

Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?

Читайте также: