Сварочная смесь ar co2

Обновлено: 19.05.2024

Сварочные газовые смеси на основе аргона и углекислоты.
Для высокого качества электросварочных работ в среде защитных газов компания «Криогенсервис» предлагает широкий ассортимент сварочных смесей на основе аргона, а также заправку баллонов сварочными смесями любого объема!

ПОЛЕЗНАЯ ИНФОРМАЦИЯ:

Возможно ли сократить расходы на сварку и улучшить ее качество одновременно?

ДА! ДА, и еще раз ДА!

Технология сварки в защитной среде с применением сварочных газовых смесей значительно повышает качество работ и эффективность производства сварочных работ. Новым уровнем в улучшении сварочных процессов стало применение газовых смесей на основе аргона!

Преимущества использования газовых сварочных смесей на основе аргона по сравнению с углекислотой:
Увеличение количества наплавляемого металла за единицу времени, а также снижение потерь электродного металла на разбрызгивание.
Снижение количества прилипания брызг (набрызгивания) в районе сварного соединения и как следствие уменьшение до 95% трудоемкости по их удалению.
Повышение плотности и пластичности металла шва.
Повышение прочности сварного соединения.
Процесс сварки стабилен даже при некоторой неравномерности подачи сварочной проволоки, а также наличия на её поверхности следов технологической смазки и ржавчины.
Гигиенические условия труда на рабочем месте сварщика улучшаются за счет значительного уменьшения количества выделений сварочных аэрозолей и дымов.

Лучшее качество:

Уменьшает количество оксидных включений и измельчает зерно, улучшая микроструктуру металла.
Увеличивает глубину провара шва, повышает его плотность, что в конечном итоге увеличивает прочность свариваемых конструкций.
Высокая усталостная прочность, лучший внешний вид изделий — весомые аргументы в пользу сварочных смесей при сварке.

Более высокая производительность:

Скорость сварки по сравнению с традиционной (в защитной среде CO2) увеличивается в два раза. Это происходит из-за меньшего поверхностного натяжения расплавленного металла, вследствие чего на 70%-80% снижается разбрызгивание и набрызгивание электродного металла.
Незначительное количество брызг и поверхностного шлака во многих случаях исключает работы по зачистке свариваемых элементов.

Экономия средств:

Уменьшает расход электроэнергии и сварочной проволоки на 10-15%.
Позволяет значительно сократить затраты на работы, связанные с зачисткой, и подготовку сварных швов перед покраской или оцинкованием.
Увеличивает срок службы сварочных насадок, стекол масок и спецодежды, вследствие чего сокращаются затраты на их замену.

Лучшие условия труда:

Значительно меньше количества дыма, сварочных аэрозолей и вредных газов сохраняют здоровье сварщика и позволяют ему длительное время работать с большим вниманием.
Уменьшается риск возникновения профессиональной болезни сварщиков — силикоза легких.

Уже наступило время использовать прогрессивные технологии и новые продукты, позволяющие производителям обеспечивать высокое качество работ и эффективность производства, улучшить и обезопасить условия труда своих рабочих.

Компания «Криогенсервис» осуществляет поставку сварочных газовых смесей, наполнение баллонов и оперативную доставку специализированным транспортом.

Поставляется: в стальных баллонах под давлением 150 кгс/см2; в моноблоках БМКБ — под давлением 200 кгс/см2.

Сварочная газовая смесь поставляется: в стальных баллонах под давлением 150 кгс/см2; в моноблоках БМКБ — под давлением 200 кгс/см2.

Пара слов о сварочных смесях (Ar+CO2) + генератор углекислоты своими руками от сварщиков-экспериментаторов

smes-1

Про сварку в газовых смесях ходят легенды. Вот, например, если варить в смеси Ar-75%+CO2-25%, то и брызги исчезают совсем и электродного присадочного материала расходуется меньше: писаки на разношерстных сайтах о сварке утверждают со знанием дела о 3-5% экономии! Если варить много, приличная, однако, экономия получается. Плюс ко всему вместо мелкокапельного металлопереноса образуется фактически струйный перенос металла с электродной проволоки в сварочную ванну, что делает шов плотнее и, очевидно, прочнее. При больших объемах сварки с СО2 обмерзает редуктор и не работает, так что приходится использовать всякие дополнительные приспособления – подогреватели углекислого газа. Так же при сварке в углекислоте наблюдается сильно разбрызгивание. А со смесью этого не происходит. И баллон приходится менять реже.

В общем, смесь «рулит», не смотря на то, что СО2 дешевле и не так чувствительна к подготовке сварочных кромок.

В связи с чем вопрос: действительно ли использование сварочных смесей на основе Ar так эффективно или все-таки лучше варить СО2?

Лично мне очевидно, что процентное соотношение Ar + СО2 газовой смеси выбирают в зависимости от толщины металла, количества легирующих элементов в нем и с учетом требований по механической прочности шва. В целом, играясь этим соотношением можно улучшить или ухудшить свойства сварного соединения.

Конечно, сколько сварщиков, столько мнений, а истина находится где-то посередине. Первое, что, очевидно, нужно учитывать, это тип вашего полуавтомата. Если он рассчитан только на MAG –сварку в активном газе – углекислоте, то использование смеси с высоким содержанием в ней аргона приведет к возникновению проблем с клапаном. Поэтому для сварки в смесях логично выбирать инвертор MIG.

Теперь по сути проблемы…

Может показаться, что смесь применять вообще не стоит, так как есть здесь определенный маркетиноговый ход, позволяющий накрутить цену за счет манипуляций с процентным соотношением разностоимостных газов в баллоне. В итоге получается, что за суррогат аргона и углекислоты нужно платить так же, как за первосортный аргон. Здесь дело обстоит примерно как с бензином. Был 76-й и 92-й бензин. В итоге придумали нечто среднее между этими двумя марками 80-й. В итоге сами знаете, что получилось.

С другой стороны профессиональные сварщики знают, что действительно смесь эффективна при сварке коррозионостойких сталей, оцинкованного металла, хотя по всем теоретическим канонам сварка в чистом аргоне этих же марок и покрытий качество швов должна только улучшить. Но на практике все происходит иначе.. В промышленности готовят смесь Ar-95-98%+CO2-2-5%. Но очевидно, что на характер плавления влияют все факторы процесса:

  • марка стали ( сварка нержавеющей стали 20Х13 может отличаться от ст. 12Х18Н10Т и т.д.)
  • марка присадочной проволоки
  • режимы сварки.

Исходя из этого становится понятно, почему смесь, которая одному сварщику подходит идеально, для другого дает неудовлетворительный результат. С нашей точки зрения, однозначного ответа в какой пропорции лучше варить здесь нет. Ее надо подбирать индивидуально в каждом конкретном случае в зависимости от исходных данных.

Аргон применяют при сварке легированных/высоколегированных и жаропрочных сталей, алюминия, титана.

Если же вы занимаетесь кузовным ремонтом, другими словами сваркой низкоуглеродистых сталей, которые применяют в автопроме – здесь однозначно нужно применять углекислоту. Хотя, если будете варить «чернягу» аргоном разницы не почувствуете (разве что в цене за баллон?). Почему так, прояснит следующая статья.

Генератор углекислоты для сварки своими руками

Но немного отвлечемся от серьезной темы…

В каждой шутке есть доля шутки, а остальное правда…

cocacola5pb3

Оказывается, приличный шов, ничем не уступающий по качеству шву, сваренному в смеси аргона с углекислотой, можно получить при сварке на Кока-Коле (Coca Cola). Вспоминаем, что только не делали с этой самой Кока-Колой: и пили, и ели ее, и как средство от ржавчины использовали, ведь «богатый» состав этого чудо-напитка содержит много чего, даже немножко ортофосфорной кислоты. Ее добавляют как усилитель вкуса, или «Третий вкус», изобретенный японцами в «стране восходящего солнца» – этот самый «вкус» более интенсивно всасывается и ощущается вкусовыми рецепторами. Не забываем при этом, что ортофосфорная кислота применяется еще много где в химической промышленности и, в частности, в ваннах электрополировки вместе с хлористым ангидридом и прочими хим. веществами. Электрополировка, напомним, в промышленности служит для придания изделиям из нержавейки товарного вида .

Так вот, оказалось, что у Кока-Колы обнаружился еще один «талант»: ее можно применять в качестве защитной среды при сварке полуавтоматом низкоуглеродистых и низколегированных сталей проволокой св.08Г2С.

Рецепт приготовления защитной среды прост:

  • Кока-Кола – 0,5 л
  • Уксус -1,25 мл
  • Сода пищевая – 100 г
  • Лимонная кислота – 20г.

Получается вот такая смесь в предложенных пропорциях и генератор диоксида углерода по совместительству.

А далее, как в сказке: чем дальше, тем страшней…

Берем мерную кружку, засыпаем в нее лимонную кислоту, затем соду, перемешиваем. Предварительно подготавливаем два куска газетной бумаги и высыпаем содержимое нашей кружки аккуратной дорожкой на них. Аккуратно сворачиваем газеты в трубочки так, чтобы содержимое осталось внутри, и скручиваем торцы трубочек так, чтобы содержимое никуда не высыпалось.

Берем пластиковую бутылку и наливаем в нее 0,5 л Кока-Колы, добавляем уксус и пару подготовленных трубочек. Накручиваем трубку для подачи газа в сварочную горелку на бутылку – и вуаля, газовая защитная атмосфера своими руками готова к применению. Проверка шва, выполненного на кока-коле, дала положительный результат.

Вывод: если у вас кончился баллон с газом посреди ночи и варить все-равно надо, а в хозяйстве есть Кола и то, что на кухне у жены под рукой должно всегда найтись – вы будете спасены, сможете закончить работу до утра и при этом не оставите разочарованными ваших заказчиков.

Сварочные смеси на основе аргона. Какие бывают и как влияют на процесс полуавтоматической сварки низколегированных и углеродистых сталей

Исследования сварки в среде различных смесей на основе аргона (далее Ar) берут свое начало с 70-х годов прошлого столетия, однако наибольшее практическое распространение сварочные смеси получили в 90-х годах, особенно в европейских государствах, таких как Германия, Великобритания, Франция, Швеция. На сегодняшний день применение смесей Ar в вышеперечисленных государствах занимает не менее 95% рынка.

Многие отечественные предприятия, напротив, до сих пор применяют СО2 для низколегированных и углеродистых сталей, несмотря на неоспоримые преимущества использования смесей на основе Ar.

Атмосфера, защищающая ванну, играет важнейшую роль в MAG-процессе. Ее воздействие сказывается на свойствах сварного шва, скорости сварки, загрязнении атмосферы рабочего поста.

Переход на смеси на основе Ar вместо СО2 позволяет оптимизировать сварку, в том числе сделать ее более экономичной. Смеси Ar пришли на смену углекислому газу и теперь используются в Европе при работе с черными сталями ( или со сталями с небольшим количеством легирующих добавок). При сварке черных сталей в чистом Ar в шве образуются поры, поэтому используют смеси с добавочными газами — кислородом и/или углекислотой, нормализующие электродугу и улучшающие весь процесс в целом. Добавление к Ar кислорода практически не меняет поведение дуги и ее влияние на ванну и каплю. Также в качестве добавки может выступать гелий, особенно, когда требуется повышенная скорость сварки. Количество добавочного газа зависит от толщин, требуемой скорости, метода: ручной, автоматизированный либо роботизированный.

Выбор газа, прежде всего, оказывает воздействие на следующие ключевые параметры MAG-сварки:

  1. Поджиг дуги и ее управляемость.
  2. Производительность и, как следствие, затраты на производство.
  3. Вид металлопереноса и размер капли.
  4. Защита от газов, содержащихся в воздухе.
  5. Возникновение окалины и количество брызг.
  6. Мех.характеристики шва.
  7. Геометрия шва и глубина проплава.
  8. Количество и состав выделяющихся аэрозолей.

Преимущества смеси на основе Ar.

Помимо нарушений режимов сварки, состав защитной среды является наиболее важным фактором, влияющим на возникновение брызг. Использование чистого СО2 приводит к повышенному «брызгообразованию» , как результат к нестабильности электродуги. Чем больше СО2 в смеси с Ar, тем большее брызг образуется в процессе полуавтоматической сварки. Чем больше их размер, тем интенсивнее выделение теплоты. Опыты показали, что капли-брызги металла с диаметром более 0,8 мм содержат такое количество теплоты, что привариваются к рабочей плоскости. В большинстве случаев это влечет за собой последующую зачистку или подрезку резцом.

На рис. 1 проиллюстрировано, как доля брызг размером более 0,8 мм. увеличивается с ростом процента СО2 в смеси с Ar.

Диаграмма 1

Шлак, покрывающий шов, состоит из оксидов и выглядит как коричневые стеклообразные «островки». Чем больше окислительных элементов содержится в смеси (СО2 или О2), тем больше оксидов будет образовываться. Они должны быть удалены перед покраской или другой операцией.

Мех.свойства сварного соединения также очень подвержены влиянию состава защитного газа. Чем ниже содержание СО2, тем «чище» металл шва, тем меньше оксидных включений он содержит. Также микроструктура становится более мелкозернистой, что благоприятно сказывается на ударной вязкости металла шва (рис. 2).

диграмма1

Усталостная прочность шва также в некоторой степени зависит от защитного газа. Сварка в смесях на основе Ar позволяет получить более плавный переход между швом и основным металлом, чем при использовании чистого СО2 (рис. 3). К сварным соединениям, подвергающимся динамическим нагрузкам, предъявляются повышенные требования к усталостной прочности. Если переход недостаточно плавный, впоследствии потребуется дорогостоящая мех.обработка.

катет

подпись2

Скорость сварки. При ее увеличении в чистом СО2 профиль сварного шва становится более выпуклым, а также ухудшается перенос металла, что ограничивает скорость по сравнению со сваркой в смесях на основе Ar (рис. 3, 4). В данном примере были использованы три различных газа в процессе MAG-сварки стали с небольшим количеством легирующих добавок. Скорость подачи проволоки сохранялась неизменной, напряжение было установлено на наиболее подходящем уровне для каждого защитного газа. Скорость сварки увеличивалась до тех пор, пока шов не становился слишком выпуклым. В результате при снижении процента содержания СО2 в защитной смеси скорость могла быть увеличена (рис. 4).

Как уже упоминалось, различные защитные газы позволяют получить разнообразную геометрию сварного шва. При работе в смесях на основе Ar металл в сварочной ванне более жидкий, что делает профиль шва более сопряженным с основным металлом, невыпуклым. Сварка же в чистом СО2 делает его сильно выпуклым, переходы — неплавные. Кроме того, это приводит к низкой усталостной прочности, что также влечет за собой перерасход присадочной проволоки при сварке в СО2 для получения необходимого катета шва (рис.5).

Рис.5

Задание режимов. При использовании аргоновых смесей гораздо легче настроить наиболее подходящие сварочные режимы, чем при работе с чистым СО2. Диапазон токов, в которых дуга остается стабильной, гораздо шире в смесях Ar. Чтобы избежать дефектов в шве очень важно выполнить правильную настройку аппарата.

Риск прожога. Напряжение в составах на основе Ar на несколько вольт ниже, чем при сварке в СО2 при той же скорости движения сварочной проволоки. Это означает, что в сварочную ванну передается меньше тепловой энергии и риск прожога тонких пластин значительно снижается. Итак, выгоды, получаемые при переходе с чистого СО2 на смеси Ar и СО2, следующие:
● снижение потерь металла вследствие разбрызгивания;
● небольшое количество шлака, всплывающего на поверхность шва;
• улучшение мех. свойств шва (пластичные свойства, вязкость, усталостная прочность);
● меньшее выгорание легирующих добавок, что означает более высокое значение предела текучести и прочности при растяжении;
● плоский сварной шов с отсутствием резких «скачков» при переходе к основному металлу;
● более высокие скорость и эффективность.
● более простая установка оптимальных сварочных режимов , расширенный диапазон, в котором дуга стабильна — малый риск получения дефектов в шве;
● меньший риск проплавления, особенно, если речь идет о тонких листах за счет пониженного количества передаваемого тепла.

Виды некоторых смесей, которые можно найти сейчас на рынке сварочных материалов перечислены ниже.

● 92% Ar, 8% СО2. Используется в роли защитной атмосферы для различных сталей в режиме струйного переноса металла. Количество брызг, вылетающих из-под проволоки, минимизируется, что делает данную смесь идеальной для применения в цехе, где требуется экономия времени на зачистку (экономия средств).
Практически отсутствует окисление шва, что отлично для процессов с последующей окраской. Используется в различных отраслях производства, от выпуска грузовых автомобилей до судостроения. Очень хорошо подходит для тех.процессов, включающих порошковую покраску.

● 93% Ar, 5% СО2, 2% O2. Эта трехсоставная смесь приготовлена в основном для тонких сталей. Низкие уровни СО2 и О2 сильно снижают риск прожога и, как следствие, возникновения дефектов в виде пор и свищей. Обеспечивает устойчивость горения электрической дуги, что, в свою очередь, снижает уровень брызг, позволяет экономить проволочный материал и снижает затраты на мех.обработку.
Большая скорость выполнения проходов и небольшое тепловложение позволяют уменьшить температурные деформации.

● 82% Ar и 18%СО2. Здесь достигается хорошая глубина провара, особенно, если сталкиваться приходится с толстолистовым материалом. Позволяет избежать дефектов в шве. Достаточно высокое содержание СО2 делает возможным более продуктивную сварку стали, запачканной маслом, влагой, коррозией, снижая таким образом себестоимость изготовления. Самая популярная смесь, применяемая при сварке полуавтоматом. В сравнении с чистым СО2 позволяет увеличить скорость до 10% и достичь экономии сварочной проволоки до 15%.

● 86% Ar, 12% СО2, 2% О2. Предназначена для достижения maх производительности. Позволяет варить в большом диапазоне по току и напряжению, облегчая сварщику их выбор и достижение хороших результатов без дефектов. Отлично подходит как для полуавтоматической, так и для автоматической и роботизированной сварки. Обеспечивает низкий уровень образования брызг наряду с хорошей глубиной провара. Позволяет получить гладкие сварные швы, сократить расход проволоки. Обеспечивает плавный переход между основным металлом и швом, что позволяет избежать возникновения концентраторов напряжения. Высокая скорость сварки приводит к снижению термических деформаций в конструкциях.

● 60% Ar, 10% СО2, 30% Не. Данная смесь, содержащая гелий, была специально разработана для роботизированной сварки, где может быть полностью использован ее потенциал в части скорости. Значительно возрастает производительность, а также заметно снижаются температурные коробления.
Высокая устойчивость дуги наряду с увеличением теплопроводности, благодаря наличию Не создает жидкую, долго остывающую ванну, что позволяет избежать таких дефектов, как поры при остывании.

Газовые смеси Ar+CO2


Преимущества использования газовых сварочных смесей на основе аргона по сравнению с углекислотой:
Увеличение количества наплавляемого металла за единицу времени, а также снижение потерь электродного металла на разбрызгивание.
Снижение количества прилипания брызг (набрызгивания) в районе сварного соединения и как следствие уменьшение до 95% трудоемкости по их удалению. Повышение плотности и пластичности металла шва. Повышение прочности сварного соединения. Процесс сварки стабилен даже при некоторой неравномерности подачи сварочной проволоки, а также наличия на её поверхности следов технологической смазки и ржавчины. Гигиенические условия труда на рабочем месте сварщика улучшаются за счет значительного уменьшения количества выделений сварочных аэрозолей и дымов.

Уменьшает количество оксидных включений и измельчает зерно, улучшая микроструктуру металла. Увеличивает глубину провара шва, повышает его плотность, что в конечном итоге увеличивает прочность свариваемых конструкций.
Высокая усталостная прочность, лучший внешний вид изделий — весомые аргументы в пользу сварочных смесей при сварке.

Скорость сварки по сравнению с традиционной (в защитной среде CO2) увеличивается в два раза. Это происходит из-за меньшего поверхностного натяжения расплавленного металла, вследствие чего на 70%-80% снижается разбрызгивание и набрызгивание электродного металла. Незначительное количество брызг и поверхностного шлака во многих случаях исключает работы по зачистке свариваемых элементов.

Уменьшает расход электроэнергии и сварочной проволоки на 10-15%. Позволяет значительно сократить затраты на работы, связанные с зачисткой, и подготовку сварных швов перед покраской или оцинкованием. Увеличивает срок службы сварочных насадок, стекол масок и спецодежды, вследствие чего сокращаются затраты на их замену.

Значительно меньше количества дыма, сварочных аэрозолей и вредных газов сохраняют здоровье сварщика и позволяют ему длительное время работать с большим вниманием. Уменьшается риск возникновения профессиональной болезни сварщиков — силикоза легких.

Сравнительные таблица для выбора состава сварочной смеси

Компания «Криогенсервис» производит снабжение предприятий (различного профиля) техническими газами: азот, аргон, ацетилен, газовые смеси, гелий марки «А» и гелий марки «Б», технический кислород, пропан, а также углекислота. Кроме поставок технических газов, компания специализируется на торговле газовыми баллонами, произведёнными по ГОСТ 949-73 и ГОСТ 15860-84 (для пропана). Среди дополнительных услуг компании, можно отметить услуги по ремонту, аренде, покупке и переосвидетельствованию (аттестации) газовых баллонов.

Технические газы для электродуговой сварки: баллоны, регуляторы


Паришься с баллоном под углекислоту/аргон/сварочную смесь Ar+CO2 для сварки? мечтаешь о струйном переносе, но все ищешь смесители и 10 литровые баллоны? Все ответы здесь.

Итак, электродуговая сварка в среде защитных газов знает три типа основных газов, которые можно найти почти во всех крупных столичных городах:
— углекислота (CO2);
— аргон (Ar);
— сварочная смесь Ar+CO2
Все остальное или очень специфично, или тупо дорого (гелий He).

Применяемость газов хорошо описана в Интернете, но если проще — варить заборы из чернухи => углекислота. Варить в своем гараже: для TIG — аргон, для полуавтомата — сварочная смесь.

Тем самым, если Вы хотите стационарно работать с аргоном или сварочной смесью => Ваш выбор однозначно 40 л баллон. Если Вы хотите быть мобильным и наличие аргона/сварочной смеси не критично, то уточняйте у местных пожарных имеется ли возможность заправлять углекислотные баллоны 10 л., а если ответ положительный, то покупайте 10 л. с плоским дном.

Что нужно знать при покупке и обмене баллонов
Не буду повторяться, есть отличное видео —


Также, есть нормативное регулирование срока службы баллона.
Согласно п. 485 Федеральных норм и правил в области промышленной безопасности "Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением":

Срок службы баллонов определяет организация-изготовитель. При отсутствии таких сведений срок службы баллона устанавливают 20 лет. Экспертизу промышленной безопасности в целях продления срока службы баллонов массового применения, объем которых менее 50 л, не производят, их эксплуатация за пределами назначенного срока службы не допускается, за исключением баллонов специального назначения, конструкция которых определена индивидуальным проектом и не отвечает типовым конструкциям баллонов и экспертизу (техническое диагностирование) которых проводят по истечении срока службы, а также в случаях, установленных руководством (инструкцией) по эксплуатации оборудования, в составе которого они используются.

На основании разъяснений разрешается использовать баллоны с истекшим сроком службы, но с действующей аттестацией.
Таким образом, покупая баллон, Вы должны выбрать максимально более свежий по году выпуска. Баллоны старше 95 года без действующей аттестации могут не принимать на станциях обслуживания.

АПДЕЙТ 2020 г: появилась позиция, что срок службы баллонов, изготовленных по ГОСТ 949-73 и по ГОСТ 15860-84 до 22.12.2014г. установлен не более 40 лет в соответствии с ПБ 03-576 03, МТО 14-3Р-001-2002 и МТО 14-3Р-004-2002, в том числе баллоны, находящиеся в эксплуатации для наполнения газами, вызывающими разрушение и физико-химическое превращение материала (коррозия и т.п.) со скоростью:
— не более 0,1 мм/год 40 лет
— более 0,1 мм/год 20 лет
Газы, вызывающие коррозию металла баллона со скоростью:
— не более 0,1 мм/год — азот, аргон, водород, воздух, гелий, кислород, углекислота и другие;
— более 0,1 мм/год — хлор, фосген, сероводород, сернистый ангидрид, хлористый водород, хлористый метил и другие.

Тем самым распространенные баллоны под сварочные газы в виде аргона, углекислоты, гелия по указанной методике служат 40 лет.


Далее, на рынке есть три типа разного рода регуляторов/редукторов:
— регулятор с ротаметром
— стрелочный регулятор
— редуктор.

Отличие редуктора от регулятора понятно: редуктор на выходе выдает просто определенное давление, а регулятор на выходе регулирует поток газа. Редуктор Вам не нужен вообще :)

регулятор с ротаметром или стрелочный регулятор?
Возникает еще один вопрос, на рынке есть два основных типа регуляторов



Какой из них выбрать — дело вкуса. На мой взгляд, стрелочный более продвинутый в плане экономии газа, поскольку фактически это редуктор с калиброванным жиклером и он всегда поддерживает заданное давление. Исходя из известного диаметра жиклера и давления производитель нанес метки расхода на шкалу прибора… тем самым, при начале работы не происходит характерного сброса давления, как это бывает на дешевых регуляторах с ротаметром.
Дешевые регуляторы с ротаметром работают исключительно за счет снижения давления до определенной величины, условно до 6 атм, а также последующего истечения газа через изменяемое гайкой отверстие… иными словами, на начальном этапе работы во всем сварочном рукаве образуется максимальное давление и как только сварщик давит триггер, то избыточное давление сбрасывается, это влечет повышенный расход газа.
Так что по общему правилу — стрелочный подешевле будет в итоге, но есть одно исключение.
Если вы варите нержавейку, то Вам иногда требуется поддув с обратной стороны шва… для этого есть регуляторы с двумя ротаметрами:

Читайте также: