Сварочный аэрозоль класс опасности

Обновлено: 07.05.2024

Зерновая пыль не менее вредна для организма человека и окружающей среды, чем другие виды пыли. При этом, из-за её пожаровзрывоопасности при переработке и хранении зерна следует использовать специальные взрывозащищённые фильтры.

Зерно в лидерах по массе произведённой в России продукции

Русская пословица гласит: курочка по зёрнышку клюёт, да к вечеру сыта бывает. Народная мудрость подтверждается экономикой Российской Федерации.

Зерно по массе произведённой в России продукции стоит на третьем месте после нефти и угля и становится стратегическим экспортным продуктом нашей страны. По данным пресс-службы Министерства сельского хозяйства РФ по состоянию на конец 2020 года с площади 45,3 млн гектаров собрано и намолочено 131,2 млн тонн зерна.

Зерно собирается с полей в виде зерновой массы, которая является сырьём для зерноперерабатывающей промышленности. На предприятиях зерноперерабатывающей промышленности зерно очищается от сорных примесей, сушится, сортируется, хранится и отпускается потребителям.

Масса отходов, содержащих пыль, достигает 26 % массы сырья. При всех процессах обработки зерна постоянно присутствуют два вида зерновой пыли: осевшая (порошки) и витающая (аэрозоль).

Зерновая пыль вредна для здоровья…

Зерновая пыль вариабельна и сложна по составу. Она содержит минеральную пыль (почва), разрушенное зерно и части растений, семена сорняков, мицелии и споры грибков, микробов, насекомых и клещей. Предельно допустимая концентрация (ПДК) зерновой пыли в воздухе рабочих мест составляет 4 мг/м 3 воздуха. Максимально разовая концентрация зерновой пыли в атмосферном воздухе городских и сельских поселений (ПДК) равна 0,5 мг/м 3 . Среднесуточная — 0,15 мг/м 3 .

Исследование осаждённой зерновой пыли показали, что 5 % её массы приходится на частицы размером меньше 4 мкм.

Зерновая пыль и споры грибков опасны для здоровья работающих и населения прилегающих к предприятиям селитебных территорий. В современной литературе подробно описаны так называемая «зерновая лихорадка», хронические поражения лёгких («лёгкие фермеров») и другие системные поражения внутренних органов при воздействии зерновой пыли.

Таблица 1. Заболевания, вызываемые воздействием зерновой пыли

Виды биологически активной пылиЗаболевания
Пыльца злаковых растений, грибковые антигены в зерновой пыли и на растениях, клещи, органо-фосфорные инсектицидыАстма и риниты
Отдельные части растений, эндотоксины, микотоксиныВоспаление слизистой оболочки и кожи
Грибные споры или термофильные актиномицеты, выделяемые заплесневелым зерном или сеном, антигены диаметром менее 5 мкмАллергический пневмонит
Насекомые: зараженная пшеницаБолезнь пшеничного долгоносика
Остатки растений, гранулы крахмала, плесень, эндотоксины, микотоксины, споры, грибки, грамоотрицательные бактерии, ферменты, аллергены, частицы насекомых, частицы грунта, химический осадокТоксичный синдром органической пыли
Пыль хранящегося зернаЗерновая лихорадка

Пыль зерноперерабатывающих предприятий влияет на здоровье населения, проживающего в районах, где расположены предприятия по хранению и переработке зерна. Уровень заболеваний органов дыхания в этих районах достоверно выше, чем в других. При массовых выбросах пыли, которые возможны при аварийных ситуациях возможно острое воздействие пыли на рядом проживающих людей, которое выражается в остром раздражении дыхательных путей и глаз.

… и взрывоопасна. Класс взрывоопасности зерновой пыли.

Зерновая пыль относится к третьему классу опасности по токсичности и пожаровзрывоопасности. Из-за этого производственные подразделения, где осуществляется хранение и переработка зерна, контролируются Гостехнадзором РФ. Работа предприятий регламентируется Правилами безопасности взрывопожароопасных производственных объектов хранения и переработки растительного сырья, утверждённых Приказом Ростехнадзора от 15 ноября 2016 года № 475.

Нижний концентрационный порог взрываемости (НКПВ) для зерновой пыли зависит от размера частиц пыли и влажности. В связи с этим концентрации по разным источникам различны и варьируются для зерновой пыли от 40 до 20 г/м 3 . Для дроблёной пшеницы НКПВ равен 33 г/м 3 , для муки — 28,8 г/м 3 . В вентиляционной практике для безопасного применения систем вентиляции в расчётах используют 10 % НКПВ. Потому при концентрациях зерновой пыли в системах вентиляции выше 2 г/м 3 следует применять системы пожаровзрывобезопасности.

Источники зерновой пыли на предприятиях

Все стационарные источники загрязнения атмосферного воздуха предприятий должны проходить инвентаризацию, а предприятия должны иметь разрешения на выбросы загрязняющих веществ в атмосферу. Процесс инвентаризации выбросов для предприятий и проектантов достаточно сложен из-за ограниченности и устаревшей информации.

Для определения количества валовых и удельных выбросов в атмосферу в настоящее время пользуются Методикой определения валовых и удельных выбросов в атмосферу для зерноперерабатывающих предприятий и элеваторов.

Таблица 2. Среднее количество пыли от различного аспирируемого оборудования элеваторов

Наименование оборудования, процессКонцентрация пыли отходящей от оборудования, г/м 3
Приемка зерна с железной дороги (завальная яма, лотки, и пр.)1,3
Башмаки норий2,0
Насыпные лотки подсилосных транспортеров0,6
Насыпные лотки надсилосных транспортеров1,5
Сбрасывающие коробки подсилосных транспортеров2,0
Автоматические весы, подвесовой и надвесовой бункера, головки норий 1,2
Поворотные круги, надсепараторные бункера 0,6
Насыпные лотки, надсилосных транспортеров1,5
Поворотные круги, надсепаратные бункера0,6
Сбрасывающие тележки 0,7
Цепные транспортеры0,8
Пневмотранспорт отходов3,0

Пыление при выгрузке зерна

Рисунок 1. Пыление при выгрузке зерна

Как очищают воздух при переработке зерна

При подготовке зерна к хранению зерновая масса перемещается от приёмных устройств к оборудованию для очистки, сушки, сортировки. Очищенное зерно обрабатывается на этом оборудовании и отправляется на хранение. Перемещение зерна и его обработка сопровождается аспирацией пыли.

Воздух, отсасываемый аспирационными установками из оборудования и ёмкостей, перед выбросом в атмосферу очищается от пыли в целях защиты окружающей среды и использования его для рециркуляции. Улавливание пыли в аспирационных установках выделяет пригодные для использования в животноводстве зерновые отходы, снижает пожарную и экологическую опасность зерноперерабатывающих предприятий.

Улавливание пыли производится циклонами или рукавными фильтрами. В таблице 3 представлены типы пылеуловителей, применяемых на отечественных элеваторах.

Пылеулавливающее оборудование отечественных предприятий

Источники загрязнения атмосферного воздуха Применяемое оборудование
Приемка, очистка, сушка и освежение (продувка воздухом слоя зерна при активном вентилировании и сушке) отпуск. Заполнение и выпуск зерна из объемного технологического оборудования (силосы, бункера)
зерна.
Циклоны сухие
Рукавные/карманные фильтры
Перемещение зерна транспортными механизмами, самотеком по точкам, в системах пневмотранспорта. Циклоны сухие
Рукавные/карманные фильтры
Очистка зерна на сепараторахЦиклоны сухие
Рукавные/карманные фильтры
Осаждение пыли в оборудовании и на конструкциях элеватора. Вторичное пылениеВакуумная уборка пыли

Циклоны, используемые на российских предприятиях, разработаны более 50 лет назад. Эффективность улавливания по паспортным данным для крупной зерновой пыли составляет 90 %. Батарейные циклоны при концентрации пыли зерна на входе от 1 до 3 г/м 3 выдают на выходе 50–80 мг/м 3 не уловленной зерновой пыли. Пыль дисперсностью менее 10 мкм практически не улавливается.

Рукавные (карманные) фильтры используются для более эффективной очистки воздуха от зерновой пыли. Они имеют различные типоразмеры — от локальных (не имеющих бункеров) до многомодульных фильтров разной производительности. Данные установки работают на концентрациях пыли в потоках до 80 г/м3. Остаточная запылённость на выходе зависит от применяемого фильтрующего материала и скорости фильтрации и варьируется в пределах 5–20 мг/м 3 .

Фильтровальные установки должны иметь взрывозащищённое исполнение:

  • корпус фильтра должен быть усиленным на взрывное давление;
  • на корпусе фильтра должны быть установлены такие элементы взрывозащиты как разрывные мембраны или пламегасители для снятия давления в результате возможного возникновения взрыва;
  • на впускном воздуховоде необходима установка обратного клапана, предназначенного для предотвращения распространения взрывной волны обратно в цех к аспирируемым точкам.

Как очищают воздух при хранении зерна

Очищенное и высушенное зерно хранится в ангарах, складах и в силосах. По сравнению с напольным хранением, хранение зерна в вертикальных силосах является наиболее эффективным. Сохранение температуры и влажности зерна обеспечиваются аэрацией. Схемы аэрации силосов представлены ниже.

Рисунок 4. Аэрации силоса с плоским дном Рисунок 5. Подача воздуха в конический силос

Исследованиями Всероссийского Научно-Исследовательского Института Зерна и продуктов его переработки (ВНИИЗ) установлено, что для хранения зерна в силосах требуется подача воздуха не менее 10 м 3 /ч на тонну заложенного в силос зерна.

Подача воздуха в силосы требует компенсации притока, которая осуществляется различными способами, в том числе с применением силосных фильтров.

Подача воздуха в конический силос

Рисунок 6. Силосный фильтр (подробнее >>)

Как очищают помещения от осевшей зерновой пыли

Для качественной и быстрой очистки помещений от уже осевшей зерновой пыли с исключением вторичного пыления применяются системы вакуумной пылеуборки разной производительности.

Данные системы позволяют значительно сократить время уборки, при необходимости вернуть собранный материал в цикл производства и ощутимо снизить нагрузку на привлечённый к уборке персонал.

Система вакуумной пылеуборки

Рисунок 7. Система вакуумной пылеуборки (подробнее >>)

Резюме

В заключение давайте резюмируем основные тезисы, которые следует помнить всем, кто связан с работой с зерном:

  • Хранение и переработка зерна являются важными государственными задачами нашей страны.
  • Вентиляция (аспирация и нагнетание с выбросом воздуха в атмосферу или рециркуляцией в различных комбинациях) является технологическим процессом обработки и хранения зерна.
  • Улавливание пыли в аспирационных установках выделяет пригодные для использования в животноводстве зерновые отходы, снижает пожарную и экологическую опасность зерноперерабатывающих предприятий.
  • Ужесточение санитарных требований к чистоте атмосферного воздуха населённых мест по микрочастицам и нормирование содержания спор грибков ставит неотложную задачу финишной очистки всех аспирационных выбросов и выбросов при вентилировании силосов предприятий современными воздушными фильтрами не ниже F9 класса очистки.
  • Применение современных систем аспирации на предприятиях переработки зерна позволит значительно сократить потери зерна и повысит безопасность в агропромышленном комплексе.

Таким образом, пословицу про курочку и зёрнышко можно привязать и к аспирации воздуха: здесь сделал процесс безопаснее, здесь сэкономил тёплый воздух, здесь вернул материал в производственный процесс… А в итоге получается рациональный, надёжный и социально-ответственный бизнес, работающий как на благо каждого сотрудника, так и государства в целом.

Источники:

Данная запись создана на основе статьи заслуженного эколога Российской Федерации, Юрия Степановича Корюкаева, написанной специально для АО «СовПлим».

Сварочный аэрозоль класс опасности

2.2.5. ХИМИЧЕСКИЕ ФАКТОРЫ ПРОИЗВОДСТВЕННОЙ СРЕДЫ

Организация лабораторного контроля содержания вредных веществ в воздухе рабочей зоны предприятий основных отраслей экономики

Дата введения: с момента утверждения

1. Указания разработаны ФГУН Уфимский научно-исследовательский институт медицины труда и экологии человека Роспотребнадзора (д-р мед. наук Л.К.Каримова, канд. биол. наук Т.К.Ларионова, канд. хим. наук Н.А.Бейгул, канд. хим. наук З.Ф.Шарафисламова, Т.М.Зотова, Л.Н.Маврина, И.Р.Шагидуллина, Г.Р.Аллаярова, Г.Ф.Гарифуллина, Р.Р.Яхина, А.Б.Бакиров, Е.С.Почтарева, Л.В.Колесникова, А.М.Магасумов, З.Ф.Гафурова, Г.Р.Аллаярова, Г.Ф.Адиева, Э.Т.Валеева, С.К.Иванова, Н.С.Кондрова, Н.А.Гареева, С.Р.Мингазова, Е.В.Лозовая); Управлением санитарного надзора Роспотребнадзора (Е.С.Почтарева); ФГУ Федеральный центр гигиены и эпидемиологии Роспотребнадзора (С.А.Степанов); Управлением Федеральной службы в сфере защиты прав потребителей и благополучия человека по Республике Башкортостан (канд. мед. наук Н.С.Кондрова); ФГУЗ "Центр гигиены и эпидемиологии в Республике Башкортостан" (д-р мед. наук Г.Д.Минин, С.К.Иванова, Н.А.Гареева, Н.В.Мурагимова).

2. УТВЕРЖДЕНЫ и введены в действие Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г.Онищенко 28 декабря 2010 г.

3. ВВЕДЕНЫ ВПЕРВЫЕ.

Введение

На протяжении ряда лет на предприятиях различных отраслей экономики остается стабильно высоким уровень загрязнения воздуха рабочей зоны вредными химическими веществами, в том числе 1-го и 2-го классов опасности, а также аэрозолями преимущественно фиброгенного действия. Повышенные концентрации вредных химических веществ в воздухе предприятий могут вызвать не только отклонения в состоянии здоровья, но и профессиональные заболевания. Проблема организации производственного контроля состояния воздушной среды весьма актуальна, во-первых, в связи с внедрением новых современных технологий, во-вторых, с износом имеющегося технологического оборудования.

В методических указаниях изложены основные принципы организации производственного контроля содержания вредных веществ в воздухе рабочей зоны. В приложении представлен перечень веществ, подлежащих контролю на предприятиях горнорудной, химической промышленности, в машиностроении и металлообработке, на предприятиях легкой промышленности, рекомендуемое для лабораторного контроля загрязнения воздуха аналитическое оборудование, особенности действия на организм.

Методические указания "Организация лабораторного контроля содержания вредных веществ в воздухе рабочей зоны предприятий основных отраслей промышленности" предназначены для специалистов организаций Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, научно-исследовательских институтов, служб охраны труда и санитарных лабораторий предприятий, осуществляющих надзор за загрязнением воздуха рабочей зоны и оценку его неблагоприятного воздействия на здоровье работающих.

В методических указаниях изложены основные принципы организации производственного контроля содержания вредных веществ в воздухе рабочей зоны. В приложении представлены наименования вредных веществ, величины ПДК, агрегатные состояния, классы опасности, действия на организм, НД на метод исследования, наименование методов, необходимые средства измерений.

Методические указания отличаются от существующих нормативно-методических документов конкретным перечнем вредных веществ, подлежащих лабораторному контролю содержания в воздухе рабочей зоны предприятий основных отраслей промышленности, учетом стадии технологического процесса, выбором гигиенически обоснованного способа отбора проб, точной ссылкой на метод определения загрязнителя, нормативный документ и необходимое оборудование.

Рекомендации по применению

Методические указания используются:

1) при проведении производственного контроля за соблюдением санитарных правил и норм на рабочем месте;

2) при проведении социально-гигиенического мониторинга;

3) при аттестации рабочих мест по условиям труда на предприятии.

Контроль содержания вредных веществ в воздухе рабочей зоны должен осуществляться аккредитованными (аттестованными) лабораториями, имеющими необходимое аналитическое оборудование, внесенное в государственный реестр и поверенное в установленном порядке.

Содержание метода

1. Краткие данные о состоянии условий труда и профессиональной заболеваемости работников основных отраслей экономики

В производствах различных отраслей промышленности используются разнообразные по физико-химическим свойствам и уровню токсического воздействия химические вещества. Химический фактор является ведущим производственным фактором в химической промышленности. Новые технологические процессы, основанные на использовании химических веществ, находят применение практически во всех отраслях промышленности: в современной металлургии и машиностроении, радиоэлектронике и многих других.

Идентифицировать химический фактор на современных предприятиях достаточно сложно из-за многокомпонентного состава газовыделений. В современных условиях на фоне уменьшения токсического эффекта в большей мере проявляется аллергическое действие вредных веществ. К химическим аллергенам, широко распространенным в промышленности, относятся металлы (хром, кобальт, никель, марганец, бериллий, платина и др.), формальдегид, фталевый и малеиновый ангидриды, эпихлоргидрин, изоцианаты, фурановые соединения, хлорированные нафталины, каптакс, тиурамы, неозон Д, триэтаноламин, парафенилендиамин, антибиотики, многие лекарственные препараты и др.

На протяжении ряда лет на предприятиях различных отраслей экономики остается стабильно высоким уровень загрязнения воздуха рабочей зоны вредными веществами, в т.ч. 1-го и 2-го классов опасности, а также аэрозолями преимущественно фиброгенного действия. Повышенные концентрации вредных веществ в воздухе предприятий могут вызвать не только отклонения в состоянии здоровья, а при определенной длительности и интенсивности воздействия привести к развитию профессиональных заболеваний (интоксикаций) и увеличению профессионально обусловленной заболеваемости. Строение химических веществ, их физико-химические свойства обусловливают поведение ядов в организме и основные проявления их действия на организм.

В 2005 г. заболевания (интоксикации), вызванные воздействием химического фактора, составили по Российской Федерации 8,1% от суммы всех профзаболеваний (отравлений), с утратой трудоспособности - 45,2% (ФГУЗ ФЦГиЭ Роспотребнадзора, 2006). Наибольший удельный вес заболеваний от воздействия химического фактора отмечался в 2005 г. на предприятиях цветной металлургии (21,6%), на предприятиях химической промышленности (11,6%), жилищно-коммунального хозяйства (5,1%), на объектах сельского хозяйства (4,7%), на предприятиях черной металлургии (2,9%). На первом месте по удельному весу накопленных профессиональных заболеваний находится цветная металлургия и химическая отрасль, далее следуют авиационная промышленность, сельское хозяйство, строительство, нефтепереработка, черная металлургия, нефтедобыча, здравоохранение. Заболевания (отравления), вызванные воздействием химических факторов, регистрировались в основном у работников следующих профессий: электрогазосварщик ручной сварки (5,7%), электрогазосварщик (5,0%), маляр (4,8%), медицинская сестра (3,9%). Острые отравления (интоксикации) составили 11,8%, хронические отравления (интоксикации) - 6,2%.

Среди хронических заболеваний от воздействия химического фактора 37,6% составила легочная патология, которая была представлена следующими диагнозами: хронический токсический, токсико-пылевой бронхит. Профессиональные заболевания кожи химической этиологии составили 6,9%, флюороз - 4,8%, токсическое поражение глаз - 3,6%.

Среди острых и хронических отравлений (интоксикаций) наиболее значимыми были интоксикации (отравления) от воздействия соединений фтора - 5,9%, марганца - 3,6%, свинца -3,0%, газообразного хлора - 1,7% и окиси углерода - 1,5%.

Аэрозоли преимущественно фиброгенного действия при определенных условиях могут представлять опасность для здоровья работающих. Поэтому широкое распространение технологических процессов, связанных с пылеобразованием, и привлечение больших контингентов трудящихся к выполнению работ, сопровождающихся контактом с производственной пылью, выдвигает проблему предупреждения ее неблагоприятного фактора в число важнейших задач гигиены труда. Аэрозоли дезинтеграции образуются в результате механического измельчения твердых веществ и представляют собой основную массу аэродисперсных систем, встречающихся в производственных условиях. Они возникают при дроблении, помоле, бурении, взрывных работах, при изготовлении формовочной земли, выбивке, обрубке, очистке, зачистке литья, шлифовке или полировке изделий, а также при пересыпании, грохочении, погрузке или транспортировании сухих сыпучих материалов. В металлургической промышленности большое значение имеет особая группа аэрозолей дезинтеграции, представляющая собой саморассыпающиеся шлаки, которые в процессе остывания превращаются в мелкодисперсный порошок. В текстильных, комвольных и асбестотекстильных предприятиях пыль выделяется при подготовке и переработке сырья - трепании, очистке, сортировке, рыхлении, изготовлении ровницы и пряжи из хлопка, льна, шерсти, асбеста, при очистке чесальных и кордочесальных машин. Кроме аэрозолей дезинтеграции, воздух рабочей зоны может быть загрязнен аэрозолями конденсации, образующимися в процессе конденсации перенасыщенных паров. Типичным примером образования таких аэрозолей является так называемый сварочный аэрозоль. Металл; входящий в состав стержня сварочного электрода, а также компоненты обмазки электрода и флюса в значительной мере испаряются при температуре электрической дуги и затем конденсируются в виде мельчайших частиц окислов железа и других элементов.

Подтверждением неблагоприятного воздействия аэрозолей преимущественно фиброгенного действия на организм служит регистрация таких профессиональных заболеваний, как пневмокониозы, в т.ч. силикозы, и пылевые бронхиты.

В структуре заболеваний от воздействия промышленных аэрозолей основными заболеваниями являлись: пневмокониоз (силикоз), вызванный пылью, содержащей кремний диоксид, - 23,5%, хронический пылевой бронхит - 16,2%, пневмокониоз угольщика (антракоз) - 8,2%, пневмокониоз, вызванный конкретной неорганической пылью (пневмокониоз наждачников, от цементной пыли, сажевый, сварщиков), - 6,7%.

Наибольший удельный вес силикоза (24,1%) регистрировался на предприятиях черной металлургии (слесарь-ремонтник, огнеупорщик и машинист крана металлургического производства), на предприятиях угольной промышленности - 11,5% случаев (проходчик, горнорабочий очистного забоя и машинист электровоза, на предприятиях тракторного и сельскохозяйственного машиностроения - в 10,7% (обрубщик, стерженщик машинной формовки, выбивальщик отливок, машинист крана (крановщик), на предприятиях цветной металлургии - в 10,5% случаев (проходчик, горнорабочий очистного забоя, плавильщик).

Пневмокониоз угольщика (антракоз) отмечался в основном на предприятиях угольной промышленности - 89,6% случаев (у горнорабочего очистного забоя - 24,4%, у подземного горнорабочего - 12,8% и проходчика - 11,0%).

Хронический пылевой бронхит, занимающий второе ранговое место в данной группе болезней, регистрировался в основном в угольной отрасли - в 64,9% случаев, на предприятиях автомобильной промышленности %* случаев, цветной - 7,0% и черной металлургии - 6,7%.

_______________
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

В гигиенических исследованиях для характеристики запыленности производственной атмосферы, оценки эффективности противопылевых мероприятий необходимо с достаточной точностью провести определение содержания аэрозоля в воздухе.

Внедрение эффективной системы контроля за состоянием воздушной среды на предприятиях позволит создать предпосылки для улучшения условий труда во всех сферах производственной деятельности населения.

Ориентировочный перечень подлежащих контролю вредных веществ, присутствующих в воздухе рабочей зоны промышленных предприятий, представлен в прилож.1 к методическим указаниям.

Перечень вредных веществ, подлежащих контролю содержания в воздухе рабочей зоны промышленных предприятий, подлежит дальнейшему уточнению по мере накопления новых данных.

2. Гигиеническое нормирование вредных веществ

В современных промышленных производствах используется большое количество веществ, которые в виде газов, паров или пыли попадают в воздух рабочей зоны и могут представлять опасность для здоровья работающих. При внедрении в хозяйственную деятельность они должны подлежать обязательной токсикологической оценке и гигиеническому нормированию. Специальная комиссия на основе материалов по изучению токсичности химического вещества устанавливает в законодательном порядке предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны, которые корректируются или дополняются по мере поступления новых результатов экспериментальных исследований. Решения о необходимости обоснования ПДК и ОБУВ (ОДУ) в воздухе рабочей зоны, атмосферном воздухе населенных мест принимаются на основе гигиенических критериев.

Гигиеническое нормирование вредных веществ состоит из 4 этапов. На первом этапе устанавливается целесообразность проведения исследований по гигиеническому нормированию посредством сбора и наработки информации, необходимой и достаточной для решения этого вопроса. Необходимы сведения о физико-химических свойствах рассматриваемого вещества, степени токсичности и опасности, масштабах производства, числе контактирующих с ним людей, распространенности в объектах окружающей среды, а также ряде других показателей, имеющих значение для оценки возможности влияния вещества на здоровье человека. На втором этапе на основании анализа информации определяются вещества, не нуждающиеся в разработке гигиенических нормативов в соответствии с предложенными критериями. На третьем этапе устанавливаются последовательность и объем исследований, необходимых для ускоренного обоснования гигиенических нормативов (ОБУВ, ОДУ, ПДК). На четвертом этапе принимается решение о разработке гигиенического норматива на основе проведения принятых токсиколого-гигиенических исследований в соответствии с методическими указаниями.

Перечень вредных веществ с указанием ПДК в воздухе рабочей зоны, агрегатных состояний, особенностей действия на организм представлены в гигиенических нормативах ГН 2.2.5.1313-03 "Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны" (с изменениями). Наиболее часто профессиональные отравления происходят в результате поступления вредных веществ в организм человека в виде газов, паров, туманов, аэрозолей через органы дыхания. Этому способствует большая поверхность легочной ткани, быстрота проникновения в кровь и отсутствие дополнительных барьеров на пути яда из вдыхаемого воздуха в различные органы и системы организма. Дополнительную роль играет повышенная легочная вентиляция и усиление кровотока в легких при физической работе и в условиях нагревающего микроклимата. На быстроту поступления токсических веществ из воздуха в кровь влияет их растворимость в воде, близкая к растворимости в крови.

3. Классификация вредных веществ

Согласно ГОСТ 12.1.007-76 ССБТ "Вредные вещества. Классификация и общие требования безопасности" (с изменениями) по степени воздействия на организм человека вредные вещества подразделяют на четыре класса: I - вещества чрезвычайно опасные; II - вещества высокоопасные; III - вещества умеренно опасные; IV - вещества малоопасные.

Каждое конкретное вредное вещество относится к классу опасности по показателю, значение которого соответствует наиболее высокому классу опасности. Класс опасности вредных веществ устанавливают в зависимости от норм и показателей, указанных в табл.1.

Классификация опасности веществ по степени воздействия на организм (по ГОСТ 12.1.007-76)

Огненная дуга. Воздействие сварочного аэрозоля на организм электросварщика (ручная дуговая сварка). Рекомендации по измерению. И. А. Борскивер (№2, 2011)


Известно, что повышенная запыленность и загазованность воздуха рабочей зоны относятся к одним из вредных производственных факторов сварочного производства.

ВЫСОКАЯ ТЕМПЕРАТУРА СВАРОЧНОЙ ДУГИ СПОСОБСТВУЕТ интенсивному окислению и испарению металла, флюса, защитного газа, легирующих элементов. Окисляясь кислородом воздуха, эти пары образуют мелкодисперсную пыль, а возникающие при сварке и тепловой резке конвективные потоки уносят газы и пыль вверх, приводя к большой запыленности и загазованности производственных помещений.

Мелкодисперсная пыль, или же твердая составляющая сварочного аэрозоля (далее - ТССА) состоит из мельчайших частиц перенасыщенных паров металлов и других веществ, входящих в состав сварочных, присадочных, напыляемых материалов и основного металла, которые конденсируются за пределами зоны высокотемпературного нагрева.

Скорость витания частиц ГССА — не более 0,08 м/с, оседает она незначительно, поэтому распределение ее по высоте помещения в большинстве случаев равномерно, что чрезвычайно затрудняет борьбу с ней.

Основными компонентами пыли при сварке и резке сталей являются окислы железа, марганца и кремния (около 41, 18 и 6% соответственно). В пыли могут содержаться другие соединения легирующих элементов. Токсичные включения, входящие в состав сварочного аэрозоля, и вредные газы при их попадании в организм человека через дыхательные пути могут оказывать на него неблагоприятное воздействие и вызывать ряд профзаболеваний. Мелкие частицы пыли от 0,4 до 5 мкм (микрометр 1/1000 часть миллиметра), проникающие глубоко в дыхательные пути, представляют наибольшую опасность для здоровья, пылинки размером до 10 мкм и более задерживаются в бронхах, также вызывая их заболевания.

К наиболее вредным пылевым выделениям относятся окислы марганца.

Марганец забивает канальцы нервных клеток. Снижается проводимость нервного импульса, как следствие повышается утомляемость, сонливость, снижается быстрота реакции, работоспособность, появляются головокружение, депрессивные, подавленные состояния.

Марганец почти невозможно вывести из организма; очень тяжело диагностировать отравление марганцем, т.к. симптомы очень общие и присущи многим заболеваниям, чаще же всего человек просто не обращает на них внимания.

Двуокись кремния при длительном вдыхании может вызвать профессиональное заболевание легких - Силикоз (silicosis, от лат. silex кремень)— это болезнь, при которой в легких образуется инородная ткань, которая снижает способность легких перерабатывать кислород, наиболее распространенный и тяжело протекающий вид пневмокониоза. Характеризуется диффузным разрастанием в легких соединительной ткани и образованием характерных узелков. Силикоз вызывает риск заболеваний туберкулезом, бронхитом и эмфиземой легких.

Соединения хрома способны накапливаться в организме, вызывая головные боли, заболевания пищеварительных органов, малокровие.

Окись титана вызывает заболевания легких.

Кроме того, на организм неблагоприятно воздействуют соединения алюминия, вольфрама, железа, ванадия, цинка, меди, никеля и других элементов.

Биологические свойства электросварочной пыли анализируются в три основных гигиенических показателя вредности пыли: растворимость, задержка при дыхании легочной тканью и фагоцитоз.

Газовая составляющая сварочного аэрозоля (ГССА) представляет собой смесь газов, образующихся при термической диссоциации (распад молекул на несколько более простых частиц) газошлакообразующих компонентов этих материалов (СО, СО2, HF и др.) или же за счет фотохимического действия ультрафиолетового излучения дугового разряда (плазмы) на молекулы газов воздуха (NO, NO2, О3).

Газы ГССА способны адсорбироваться на поверхности твердых частиц, захватываться внутрь их скоплений. При этом локальные концентрации газов, адсорбированных на частицах ТССА, могут существенно превышать их концентрации непосредственно в ГССА

Вредные газообразные вещества, попадая в организм через дыхательные пути и пищеварительный тракт, вызывают иногда тяжелые поражения всего организма.

К наиболее вредным газам, выделяющимся при сварке и резке, относятся окислы азота (особенно азота диоксид).

Азота диоксид воздействует в основном на дыхательные пути и легкие, он раздражает дыхательные пути, в больших концентрациях вызывает отёк лёгких, а также вызывает изменения состава крови, в частности, уменьшает содержание в крови гемоглобина.

Углерод оксид (угарный газ) — бесцветный газ, имеет кисловатый вкус и запах; будучи тяжелее воздуха в 1,5 раза, уходит вниз из зоны дыхания, однако, накапливаясь в помещении, вытесняет кислород и при концентрации свыше 1 % приводит к раздражению дыхательных путей, вызывает сильную головную боль, слабость, головокружение, туман перед глазами, тошноту и рвоту, мышечную слабость, потерю сознания.

Озон — газ, токсичный при вдыхании. Он раздражает слизистую оболочку глаз и дыхательных путей. Патологоанатомические исследования показали характерную картину отравления озоном: кровь не свертывается, легкие пронизаны множеством сливных кровоизлияний.

Фтористый водород (гидрофторид) обладает резким запахом, дымит на воздухе (вследствие образования с парами воды мелких капелек раствора) и сильно разъедает стенки дыхательных путей.

Вещество оказывает разъедающее действие на глаза, кожу и дыхательные пути. Вдыхание этого газа вызвает отек легких. Вещество может оказывать действие на повышенный уровень кальция в крови, вызывая гипокальцемию, приводя к сердечной и почечной недостаточности.

Содержание вредных веществ сварочного аэрозоля в воздухе рабочей зоны на рабочих местах не должно превышать ПДК, указанной в ГН 2.2.5.1313-03 "Предельно допустимые концентрации(ПДК) вредных веществ в воздухе рабочей зоны", а наиболее вероятные вредные вещества, которые входят в состав сварочного аэрозоля в виде твердой (ТССА) и газовой (ГССА) составляющей сварочного аэрозоля приведены в МУ 4945-88 «Методические указания по определению вредных веществ в сварочном аэрозоле (твердая фаза и газы)»

Количество и состав сварочных аэрозолей зависят от вида сварки, химического состава сварочных материалов и свариваемых металлов, защитных покрытий, режимов сварки, состава защитных газов и газовых смесей.

В таблице использованы следующие обозначения: п - пары и/или газы; а - аэрозоль;

*в числителе – максимально разовая, в знаменателе – среднесменная ПДК, прочерк в числителе означает, что Норматив установлен в виде средней сменной ПДК. Если приведен один Норматив, то это означает, что он установлен как максимальная разовая ПДК.

** При длительности работы в атмосфере, содержащей оксид углерода, не более 1 ч предельно допустимая концентрация оксида углерода может быть повышена до 50 мг/м3, при длительности работы не более 30 мин - до 100 мг/м3, при длительности работы не более 15 мин - 200 мг/м3. Повторные работы при условиях повышенного содержания оксида углерода в воздухе рабочей зоны могут проводиться с перерывом не менее, чем в 2 ч.

***1 класс - чрезвычайно опасные, 2 класс – высокоопасные, 3 класс – опасные, 4 класс - умеренно опасные

**** О - вещества с остронаправленным механизмом действия, требующие автоматического контроля за их содержанием в воздухе,

А - вещества, способные вызывать аллергические заболевания в производственных условиях,

К - канцерогены,

Ф - аэрозоли преимущественно фиброгенного действия

В практике наиболее часто встречается сварка углеродистых и низколегированных конструкционных сталей общего назначения, для этого применяют электроды с различными видами покрытий:

  • рутиловыми, основу покрытия таких электродов составляют рутиловый концентрат (природный диоксид титана), к ним можно отнести такие марки электродов, как АНО-1, АНО-4, АНО-18, ОЗС-4, ОЗС-6, ОЗС-12, МР-3, РБК-5 и др.;
  • ильменитовыми, название это покрытие получило от минерала ильменита (FeO-Ti02), к ним можно отнести такие марки электродов как АНО-6, АНО-17, ОЗС-21, ОЗС 23 и др.;
  • кислыми, основу этого вида покрытия составляют оксиды железа, марганца и кремния, к ним можно отнести такие марки электродов как ОММ-5, СМ-5, ЦМ-7, МЭЗ-4 и др.;
  • целлюлозными, создаются на основе органических соединений (до 50%) – целлюлозы, муки, крахмала, обеспечивающих газовую защиту. Для шлаковой защиты в небольшом количестве применяются рутиловый концентрат, мрамор, карбонаты, алюмосиликаты и другие. К ним можно отнести такие марки электродов, как ОЗС-3, ОЗС-4, ОЗС-12, ОЗС-21, ВЦС-4 и др.;
  • основными (фтористо-кальцевыми), шлаковую основу составляют минералы — в основном карбонаты кальция и магния (мрамор, магнезит, доломит), а также плавиковый шпат (CaF2). Поэтому они получили название фтористо-кальциевых покрытий. К ним можно отнести такие марки электродов как УОНИ-13, УОНИ-13/45, УОНИ-13/55, УОНИ-65 АНО-9, АНО-10.

При выполнении сварочных работ с применением электродов с перечисленными видами покрытий, в сварочном аэрозоле выделяются такие вредные вещества, как: марганец, диЖелезо триоксид, двуокись кремния, титана диоксид, углерод оксид, азота диоксид, озон, фтористый водород.

Для сварки легированных, высоколегированных, перлитных, атмосферокоррозионностойких и др. сталей, чугуна, бронзы, меди, латуни, никеля, применяются другие марки электродов, при этом выделяются элементы и соединения перечисленные в таблице 1. Подробней об этом приведено в приложении 6 МУ 4945-88.

Измерение вредных веществ сварочного аэрозоля производят в целях проведения аттестации рабочих мест по условиям труда, производственного или санитарного контроля. Измерения производят испытательные (измерительные) лаборатории, аккредитованные в установленном порядке, причем, измеряемые вредные вещества должны быть внесены в область аккредитации лаборатории.

Для ПДК некоторых веществ установлены две нормативные величины: максимально разовая и среднесменная предельно допустимые концентрации. Величина последней более точно отражает состояние воздушной среды на рабочем месте.

Максимально разовая концентрация - это содержание вещества в зоне дыхания работника, усредненное периодом кратковременного отбора проб.

Длительность отбора одной пробы воздуха определяется методом анализа, зависит от концентрации вещества в воздухе рабочей зоны, но не должна превышать 15 мин, а для АПФД - 30 мин. Фактически - это характеристика безопасности вещества для данного момента с учетом установленного метода отбора проб и его длительности.

Определение среднесменной концентрации вредного вещества предполагает, что в условиях воздействия данного вещества с установленной концентрацией его содержания в воздухе рабочей зоны работник находится 100% времени рабочей смены, при этом учитывается и время воздействия на организм сварочного аэрозоля (время пребывания).

При определении среднесменной концентрации вредных веществ сварочного аэрозоля расчетным методом часто вызывает затруднение в определение времени выполнения сварочных работ (длительность этапа производственного процесса). Это обусловлено тем, что сварочные работы на многих предприятиях не носят стабильный характер, а операции не повторяются в течение рабочей смены ежедневно. В качестве примера к таким работам можно отнести электросварщиков в ремонтных подразделениях предприятии, бригадах трудоемких процессов сельхозпредприятий, в строительстве и т. п.

Время пребывания устанавливается приблизительно, приходится беседовать с сварщиком, бригадиром, мастером. При этом многие считают

(в том числе и некоторые специалисты ПФ РФ), что это время можно применять при оформлении на льготную пенсию, поэтому просят, а иногда и требуют ставить время пребывания – не менее 80% .

Это ошибочное мнение, поскольку в данном случае не учитывается время на выполнение подготовительных, вспомогательных, текущих ремонтных работ, а также работ вне своего рабочего места в целях обеспечения выполнения своих трудовых функций.

Подготовительно-заключительные операции – это подбор металла, правка и резка его, заготовки шаблонов, разметка; операции по обработке деталей - наметки, резки, образования отверстий, операции по сборке и прихватке конструкций из заготовленных деталей, обработки кромок шва. Подготовительно-заключительные операции могут составлять до 30% от общего времени изготовления изделия (времени пребывания).

Вспомогательные и работы по обслуживанию рабочего места – это текущий ремонт и обслуживание оборудования и приспособлений, поддержание рабочего места в санитарно гигиеническом, противопожарном и травмобезопасном состоянии, уход за инструментом и др. Такие работы могут составлять до 10% от рабочего времени.

Как определить время пребывания (время воздействия сварочного аэрозоля на организм сварщика)?

Есть мнение, что опытный сварщик расходует в час один килограмм электродов. В этом случае можно разделить общее количество электродов в килограммах на количество рабочих дней. Но данное мнение, на мой взгляд не подходит для проведения измерений и оформления протоколов, поскольку расход электродов может зависеть от видов и способов сварки, диаметра и марки электродов, толщины свариваемых материалов, видов сварных соединений и швов и т.д.

Можно рассчитать расход электродов и время горения сварочной дуги расчетным способом. Для этого необходимо взять для расчетов наиболее часто применяемые электроды, свариваемые материалы, способы и режимы сварки:

  • углеродистые и низколегированные конструкционные стали общего назначения толщиной S, 4-6 мм.
  • электроды: АОН-4, АНО-6, УОНИ-13, диаметр электродов зависит от толщины свариваемого металла = S/2+1= 3-4 мм.
  • Сварочный ток I=(20+6d)dk где d – диаметр электрода, а k – коэфициент учитывающий положение сварного шва в пространстве: 1-нижний шов, 0,9-вертикальный, 0,8 потолочный (чаще всего применяется нижний). I= (20+6х4)4х1= 176А
  • допускаемая плотность тока(А/мм) = 11,5-16,0
  • коэффициента наплавки: коэффициент, выраженный массой металла, наплавленной за единицу времени горения дуги, отнесённой к единице сварочного тока

где αн — коэффициент наплавки; Gн — масса наплавленного за время t металла, г (с учетом потерь).

Коэффициент наплавки зависит от рода и полярности тока, типа покрытия и состава проволоки, а также от пространственного положения, в котором выполняют сварку.

Коэффициент наплавки является одним из показателей характеристик электродов. Для электродов марки АОН-4, АНО-6, УОНИ-13 αн = 9-11 г/Ач Возьмем среднее значение 10

Основное время, to – время горения дуги можно вычислить по формуле:

где F – площадь поперечного сечения наплавленного метала в см 2 ;

l – длина шва в см.;

γ – удельный вес наплавленного металла в г/см 3 , его принимают равным удельному весу основного металла = 7,85 г/см 3 ;

I – сварочный ток в а;

αн – коэффициент наплавки в г/а . ч

Площадь поперечного сечения, F, которая существенно зависит от сварного соединения, определяется геометрическим расчетом по ГОСТу 2564-80, как сумма площадей треугольников.


В большинстве случаев, площадь поперечного сечения валика можно принять равной 0,3÷ 0,7 см 2 .

Так, при одностороннем сварном соединении металла S = 4мм без скоса кромок, площадь поперечного сечения наплавленного метала будет равна 0,32 см 2 , а при одностороннем сварном соединении металла S = 6мм со скосом кромок, площадь поперечного сечения наплавленного метала будет равна 0,78 см 2. Среднее значение возьмем 0,55 см 2 .

Длину шва, l для приведения к единице веса электродов необходимо вычислить из расчета расхода одного килограмма электродов.

Вес электродов на 1 погонный метр шва зависит в основном от двух параметров:
веса наплавленного металла и потерь. Первый параметр определить довольно просто, определить площадь сечения шва ,умножить на длину и на удельный вес стали. Второй параметр зависит кроме прочего от марки электрода. Информация о том и другом есть в справочной литературе.
Нас устроят приближенные данные, (а они в любом случае такие, только степень точности разная) можно поступить так :
0,55*100 = 55.0 куб.см - это объем одного метра наплавленного металла
55*0.00785 =0.4318 кг - вес наплавленного металла
0.4318*1.5 = 0.65 кг электродов /м шва
1.5 -коэф.потерь , обмазка , огарки , разбрызгивание, разгильдяйство и пр.

На 1 кг. электродов: 1: 0,65 = 1.54 м. = 154 см. шва

Произведем расчет: to = 0,55*154*7,85: (176*10) = 0,378 час

Так как, длину шва приняли из расчета на 1 килограмм электродов, получается, что за 0,378 часа, в среднем, электросварщик расходует 1 кг электродов,

или за 1 час – 2,6 килограмм.

Время воздействия сварочного аэрозоля на организм сварщика в течении рабочего дня теперь можно вычислить по формуле:

Где: Pэл – количество электродов израсходованных электросварщиком в месяц

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ОПРЕДЕЛЕНИЮ ВРЕДНЫХ ВЕЩЕСТВ В СВАРОЧНОМ АЭРОЗОЛЕ
(твердая фаза и газы)

УТВЕРЖДЕНЫ Заместителем Главного государственного санитарного врача СССР А.И.Заиченко 22 декабря 1988 г. N 4945-88.

Внедрение новых технологий сварочных и плазменных процессов, усложнение композиций свариваемых материалов выдвигают задачу совершенствования методов санитарно-химического контроля воздуха рабочей зоны с применением современной аппаратуры.

В настоящее время получили развитие методы переменно-токовой полярографии, атомно-абсорбционной спектрофотометрии, потенциометрии с ионоселективными электродами, позволяющие значительно повысить чувствительность, селективность, точность определения и увеличить оперативность получения результатов.

Анализ оснащенности санитарно-химических лабораторий СЭС, промышленных предприятий показал, что они располагают полярографами, атомно-абсорбционными спектрофотометрами, ионоселективными электродами и др. Однако отсутствие систематизированного сборника МУ, включающего утвержденные физико-химические методы, сдерживает эксплуатацию этих приборов.

Предлагаемый документ позволяет восполнить этот пробел. В документ включено 12 новых методик взамен устаревших, остальные методики апробированы, откорректированы в соответствии с ГОСТ 12.1.016-79 и МУ N 3936-85.

Настоящие методические указания предназначены для санитарных лабораторий промышленных предприятий и учреждений санитарно-эпидемиологической службы, осуществляющих контроль за содержанием вредных веществ в воздухе рабочей зоны, а также организаций и специалистов, проводящих работы по гигиенической оценке сварочных материалов и способов сварки, наплавки и термической резки металлов, являющихся источником выделения сварочных аэрозолей (СА), с целью проведения оздоровительных мероприятий и оценки их эффективности.

Методические указания подготовлены Киевским институтом гигиены труда и профзаболеваний (Горбань Л.Н.); Ленинградским научно-исследовательским институтом охраны труда (Буренко Т.С.); Ленинградским научно-исследовательским институтом гигиены труда и профзаболеваний (Якимова В.И.); Ордена Трудового Красного Знамени научно-исследовательским институтом гигиены труда и профзаболеваний Российской АМН (Муравьева С.И., Бабина М.Д.); Центральным научно-исследовательским институтом охраны труда (Прохорова Е.К., Зайцева З.В.).

1. ОБЩАЯ ХАРАКТЕРИСТИКА СВАРОЧНЫХ АЭРОЗОЛЕЙ

1.1. СА представляют собой сложные газо-аэрозольные смеси химических веществ, выделяющихся при дуговых, плазменных и других высокотемпературных газопламенных способах сварки, наплавки, резки и напыления металлов.

Дисперсная фаза или же твердая составляющая СА (ТССА) состоит из мельчайших частиц перенасыщенных паров металлов и других веществ, входящих в состав сварочных, присадочных, напыляемых материалов и основного металла, которые конденсируются за пределами зоны высокотемпературного нагрева.

Газовая составляющая СА (ГССА) представляет собой смесь газов, образующихся при термической диссоциации газо-шлакообразующих компонентов этих материалов (СО, CO, HF и др.) или же за счет фотохимического действия ультрафиолетового излучения дугового разряда (плазмы) на молекулы газов воздуха (NO, NO, О).

1.2. Химический состав СА зависит от состава сварочных, присадочных, напыляемых материалов (электроды, проволоки, ленты, флюсы, порошки и др.), состава основного (свариваемого, направляемого либо разрезаемого) металла, режимов сварки, наплавки, резки, напыления, состава защитных газов и газовых смесей. По данным современных физико-химических исследований (рентгеноструктурного, спектрального и др. методов анализа) ТССА представляет собой сложную смесь металлов, простых и сложных оксидов металлов и шпинелей , ( *, , , , ,

* Формула соответствует оригиналу. - Примечание "КОДЕКС".

1.3. Частицы ТССА - полидисперсны, имеют размеры от тысячных долей мкм до 0,4-0,6 мкм и более, неоднородное морфологическое строение (многослойны, многоядерны). Газы ГССА способны адсорбироваться на поверхности твердых частиц, захватываться внутрь их скоплений. При этом локальные концентрации газов, адсорбированных на частицах ТССА, могут существенно превышать их концентрации непосредственно в ГССА.

1.4. Независимо от способа высокотемпературной обработки металлов, СА могут иметь близкий химический состав и соотношение отдельных веществ - ингредиентов ТССА и ГССА. В связи с этим их целесообразно группировать в укрупненные классы газо-аэрозольных смесей относительно постоянного состава, контроль за содержанием которых в воздухе рабочей зоны допускается проводить по наиболее опасным и характерным компонентам ТССА и ГССА.

В тех случаях, когда состав известен не полностью, необходима предварительная его расшифровка для определения ведущих ингредиентов, по которым целесообразно и оправдано осуществление контроля за состоянием воздушной среды. В тех случаях, когда величина ПДК вредного вещества зависит от его процентного содержания в СА (Приложение 2, п.12, 15), необходимо предварительно определить навеску СА на фильтре, которая должна быть не менее 5 мг.

2. ОСНОВНЫЕ ТРЕБОВАНИЯ К ОТБОРУ ПРОБ ВОЗДУХА

2.1. Отбор проб воздуха для определения уровня загрязнения воздушной среды при сварочных, наплавочных работах, резке и напылении металлов следует проводить в зоне дыхания работающих под наголовным или ручным щитом.

При измерении концентраций вредных веществ в зоне дыхания рабочих, занятых автоматическими способами сварки, наплавки и резки (контактной, под флюсом, электрошлаковой и др.) и не пользующихся защитными щитками, зоной дыхания следует считать пространство, ограниченное радиусом 50-60 см вокруг головы работающего.

2.2. Для характеристики общего фона загрязнения воздуха производственного помещения, где проводятся сварочные, наплавочные работы, резка и напыление металлов, отбор проб воздуха следует осуществлять в рабочей зоне на расстоянии не менее 2 м от рабочего места.

2.3. Отбор проб должен производиться при характерных производственных условиях. Любые нарушения технологического процесса (превышение либо занижение силы сварочного тока, напряжения, применение "нетипичных" сварочных и наплавочных материалов и др.) или неправильная эксплуатация оборудования и всех предусмотренных средств предотвращения загрязнения воздуха вредными веществами (устройств местной вентиляции, общеобменной вентиляции, укрытий и др.) подлежат устранению до начала проведения измерений.

2.4. Разовое определение концентраций вредных веществ должно производиться при непрерывном или последовательном отборе проб ТССА и ГССА в течение 15-минутного стандартного отрезка времени. Если чувствительность методов анализа позволяет в течение 15 минут отобрать не одну, а несколько последовательных проб, то для сопоставления с величинами Для вредных веществ, метод определения которых не позволяет обнаружить 0,5

Допустимая объемная скорость отбора проб воздуха на фильтры АФА из подручного или наголового щитка составляет 10 л/мин.

2.5. Отбор проб ТССА осуществляется на аналитические аэрозольные фильтры АФА-ХП, АФА-ВП или АФА-ХА с объемным расходом 10-15 л/мин. Тип фильтра, применяемого для концентрирования компонентов ТССА, определяется ходом последующего химического анализа и должен строго соблюдаться. В случаях, когда материал фильтра на ход анализа не влияет, в соответствующих разделах методик тип фильтра не указывается.

Отбор проб ГССА проводится с концентрированием в жидкостные поглотительные приборы, сорбционные трубки либо без концентрирования в медицинские шприцы или пипетки.

2.6. Если стадия технологического процесса (операции) непродолжительна и не позволяет отобрать пробу воздуха за один цикл (расплавление одного электрода, "прихватка" деталей и т.д.), отбор пробы воздуха на этот же фильтр или в один и тот же поглотитель необходимо продолжить при повторении операции.

2.7. Для получения достоверных результатов при санитарно-гигиенических исследованиях воздушной среды на каждом обследуемом рабочем месте сварщика, наплавщика, резчика металлов, операторов установок напыления порошков металлов должно быть последовательно отобрано не менее 5 проб воздуха для определения концентраций ведущего токсического ингредиента ТССА и не менее 5 проб наиболее характерного токсического ингредиента ГССА.

Средние величины из результатов выполненных измерений и их доверительный интервал следует находить с учетом требований методических указаний "Контроль содержания вредных веществ в воздухе рабочей зоны" N 3936-85 Минздрава СССР.

2.8. Периодичность санитарного контроля за соблюдением гигиенических требований к качеству воздушной среды при выполнении сварочных, наплавочных и газорезательных работ определяется по согласованию с территориальными учреждениями санитарно-эпидемиологической службы с учетом методических указаний "Контроль содержания вредных веществ в воздухе рабочей зоны" N 3936-85 Минздрава СССР и результатов предшествующих измерений.

2.9. Санитарный контроль воздуха рабочей зоны при сварочных, наплавочных работах, а также резке и напылении металлов, сопровождающихся выделением вредных веществ, относящихся к I и II классам опасности, следует осуществлять с помощью физико-химических методов анализа. Гравиметрический метод контроля воздуха рабочей зоны допускается в случаях загрязнения его ТССА, состоящей из веществ, относящихся к lll и IV классам опасности (, окислы железа и др.), а также при оперативном контроле эффективности работы средств вентиляции по согласованию с учреждениями санитарно-эпидемиологической службы.

2.10. Для наиболее опасных и характерных вредных веществ - ингредиентов ТССА и ГССА, которые имеют соответствующую среднесменную ПДК (ПДК с.с.), допускается осуществлять контроль путем измерения среднесменных концентраций.

Для характеристики уровня среднесменных концентраций, воздействующих на рабочих-сварщиков, наплавщиков, резчиков металлов, а также обслуживающих установки для напыления металлов, занятых однотипными производственными операциями (с использованием одних и тех же электродов, проволок одного и того же диаметра, флюсов и др.; при сварке, наплавке и резке одних и тех же металлов и пр.), необходимо проводить обследование не менее 5 человеко-смен. Расчет среднесменных концентраций производится в соответствии с методическими указаниями "Контроль содержания вредных веществ в воздухе рабочей зоны" N 3936-85 Минздрава СССР.

3. МЕТОДЫ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ


3.1. ФОТОМЕТРИЧЕСКИЕ МЕТОДЫ

РАЗДЕЛЬНОЕ ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ЖЕЛЕЗА, НИКЕЛЯ, МАРГАНЦА,
ТИТАНА И ОКСИДОВ ХРОМА (III И VI)

Определение основано на колориметрических реакциях отдельных металлов с органическими реагентами.

Отбор проб воздуха проводится с концентрированием на фильтр.

Основные метрологические характеристики методик измерения концентраций приведены при описании определения каждого металла.

Определение отдельных металлов проводят в аликвотных частях раствора плава.

Время подготовки проб к определению 5-6 часов, включая отбор проб 20 минут. Время самого определения указано в каждой методике отдельно.

Приборы, аппаратура, посуда

Фотоэлектроколориметр марки ФЭК-56 М или другой системы, ГОСТ 15150-74, 1-й класс.

Фильтродержатель, ТУ 95.72.05-77.

Печь муфельная МП-2УМ.

Тигли фарфоровые, ГОСТ 9147-80Е.

Ступка фарфоровая, ГОСТ 9147-80Е.

Колбы мерные, ГОСТ 1770-74Е, вместимостью 25, 50, 500, 1000 мл.

Цилиндры мерные, ГОСТ 1770-74Е, вместимостью 25 и 50 мл.

Пипетки, ГОСТ 20292-74Е, вместимостью 0,2, 1, 2,5 и 10 мл.

Пробирки колориметрические с пришлифованными пробками, ГОСТ 10515-75.

Реактивы, растворы, материалы

Натрий углекислый (карбонат натрия), ГОСТ 83-79, хч.

Калий азотнокислый (нитрат калия), ГОСТ 4217-77, хч.

Кислота серная, ГОСТ 4204-77, хч, 10% раствор (по объему).

Плавень: Смешивают две части карбоната натрия и одну часть нитрата калия. Смесь растирают в фарфоровой ступке. Плавень хранят в банке с притертой пробкой.

Фильтры АФА-ХП, АФА-ВП или АФА-ХА, ТУ 95.743-80.

Фильтры обеззоленные "синяя лента", ГОСТ 12026-76.

Отбор пробы воздуха

Воздух с объемным расходом 5-15 л/мин аспирируют через фильтр АФА. Пробы не следует хранить из-за возможных потерь шестивалентного хрома. Для определения перечисленных металлов на уровне 1/2 ПДК следует отобрать 200 л воздуха.

Читайте также: