Uc3842bn в сварочном инверторе

Обновлено: 28.09.2024

Микросхема ШИМ-контроллера UC3842 является самой распространенной при построении блоков питания мониторов. Кроме того, эти микросхемы применяются для построения импульсных регуляторов напряжения в блоках строчной развертки мониторов, которые являются и стабилизаторами высоких напряжений и схемами коррекции растра. Микросхема UC3842 часто используется для управления ключевым транзистором в системных блоках питания (однотактных) и в блоках питания печатающих устройств. Одним словом, эта статья будет интересна абсолютно всем специалистам, так или иначе связанным с источниками питания.

Выход из строя микросхемы UC 3842 на практике происходит довольно часто. Причем, как показывает статистика таких отказов, причиной неисправности микросхемы становится пробой мощного полевого транзистора, которым управляет данная микросхема. Поэтому при замене силового транзистора блока питания в случае его неисправности, настоятельно рекомендуется проводить проверку управляющей микросхемы UC 3842.

Существует несколько методик проверки и диагностики микросхемы, но наиболее эффективными и простыми для применения на практике в условиях слабо оснащенной мастерской являются проверка выходного сопротивления и моделирование работы микросхемы с применением внешнего источника питания.

Для этой работы потребуются следующие приборы:

Можно выделить два основных способа проверки исправности микросхемы:

Функциональная схема приводится на рис.1, а расположение и назначение контактов на рис.2.

Проверка выходного сопротивления микросхемы

Очень точную информацию об исправности микросхемы дает ее выходное сопротивление, так как при пробоях силового транзистора высоковольтный импульс напряжения прикладывается именно к выходному каскаду микросхемы, что в итоге и служит причиной ее выхода из строя.

Выходное сопротивление микросхемы должно быть бесконечно большим, так как ее выходной каскад представляет собой квазикомплиментарный усилитель.

Проверить выходное сопротивление можно омметром между контактами 5 (GND) и 6 (OUT) микросхемы (рис.3), причем полярность подключения измерительного прибора не имеет значения. Такое измерение лучше производить при выпаянной микросхеме. В случае пробоя микросхемы это сопротивление становится равным нескольким Ом.

Если же измерять выходное сопротивление, не выпаивая микросхему, то необходимо предварительно выпаять неисправный транзистор, так как в этом случае может «звониться» его пробитый переход «затвор-исток». Кроме того, при этом следует учесть, что обычно в схеме имеется согласующий резистор, включаемый между выходом микросхемы и «корпусом». Поэтому у исправной микросхемы при проверке может появиться выходное сопротивление. Хотя, оно обычно не бывает меньше 1 кОм.

Таким образом, если выходное сопротивление микросхемы очень мало или имеет значение близкое к нулю, то ее можно считать неисправной.

Моделирование работы микросхемы

Такая проверка проводится без выпаивания микросхемы из блока питания. Блок питания перед проведением диагностики необходимо выключить!

Суть проверки заключается в подаче питания на микросхему от внешнего источника и анализе ее характерных сигналов (амплитуды и формы) с помощью осциллографа и вольтметра.

Порядок работы включает в себя следующие шаги:

    1) Отключить монитор от сети переменного тока (отсоединить сетевой кабель).
    2) От внешнего стабилизированного источника тока подать на контакт 7 микросхемы питающее напряжение более 16В (например, 17-18 В). При этом микросхема должна запуститься. Если питающее напряжение будет менее 16 В, то микросхема не запустится.
    3) С помощью вольтметра (или осциллографа) измерить напряжение на контакте 8 (VREF) микросхемы. Там должно быть опорное стабилизированное напряжение +5 В постоянного тока.
    4) Изменяя выходное напряжение внешнего источника тока, убедиться в стабильности напряжения на контакте 8. (Напряжение источника тока можно изменять от 11 В до 30 В, при дальнейшем уменьшении или увеличении напряжения микросхема будет отключаться, и напряжение на контакте 8 будет пропадать).
    5) Осциллографом проверить сигнал на контакте 4 (CR). В случае исправной микросхемы и ее внешних цепей на этом контакте будет линейно изменяющееся напряжение (пилообразной формы).
    6) Изменяя выходное напряжение внешнего источника тока, убедитесь в стабильности амплитуды и частоты пилообразного напряжения на контакте 4.
    7) Осциллографом проверить наличие импульсов прямоугольной формы на контакте 6 (OUT) микросхемы (выходные управляющие импульсы).

Если все указанные сигналы присутствуют и ведут себя в соответствии с вышеприведенными правилами, то можно сделать вывод об исправности микросхемы и ее правильном функционировании.

В заключение хочется отметить, что на практике стоит проверить исправность не только микросхемы, но и элементов ее выходных цепей (рис.3). В первую очередь это резисторы R1 и R2, диод D1, стабилитрон ZD1, резисторы R3и R4, которые формируют сигнал токовой защиты. Эти элементы часто оказываются неисправными при пробоях

Всем привет. На днях в ремонт приносили сварочный инвертор, возможно моя заметка об этом ремонте кому то будет полезной.

Это уже не первый сварочный аппарат который пришлось делать, но если в одном случае неисправность проявилась так: Включил инвертор в сеть… и бабах, выбило автоматы защиты в электро щитке. Как показало вскрытие в сварочнике пробило выходные транзисторы, после замены всё заработало.

Но в этом случае всё было несколько иначе, со слов хозяина аппарат временами переставал варить хотя индикатор включения светился. Эти ребята сами вскрыли корпус — пытались определить неисправность и заметили, что инвертор реагировал на изгибание платы т.е. при её изгибе мог заработать. Но когда сварочный инвертор попал ко мне, он уже не включался вообще, даже индикатор включения не светился.

Сварочный инвертор не включается

«Титан — БИС — 2300»- именно эта модель инвертора поступила в ремонт, схемотехника повторяет сварочный аппарат аналогичной мощности «Ресанта» и как я предполагаю ещё многие другие инверторы. Посмотреть и скачать схему можно здесь.

В этом сварочном аппарате для питания низковольтных цепей применяется импульсный блок питания, как раз он и был неисправен. ИБП выполнен на ШИМ контролере UC 3842BN. Аналоги — отечественный 1114ЕУ7, Импортные UC3842AN отличается от BN только меньшим потребляемым током, и КА3842BN (AN). Схема ИБП ниже. (Кликните по ней для увеличения) Красным отмечены напряжения которые выдавал уже рабочий ИБП. Обратите внимание на то, что измерять напряжения 25V нужно не относительно общего минуса, а именно с точек V1+,V1- и также V2+,V2- они не связанны с общей шиной.

Ключ ИБП выполнен на транзисторе, полевик 4N90C. В моём случае транзистор остался целым, а вот микросхема потребовала замены. Также был в обрыве резистор R 010 — 22 Om/1Wt. После этого блок питания заработал.

Однако радоваться было рано, замерив напряжение на выходе сварочника, оказалось что его нет, а в режиме холостого хода должно быть примерно 85 вольт. Попробовал пошевелить плату, помните со слов хозяина это влияло, но ничего.

Дальнейшие поиски выявили отсутствие одного из напряжений 25 вольт в точках V2-,V2+. Причина, обрыв в трансформаторе обмотки 1-2. Пришлось выпаивать транс, использовал медицинскую иглу для освобождения выводов.

В трансформаторе один из концов обмотки был оборван от вывода.

Аккуратно восстанавливаем соединение используя подходящий проводок, восстановленное соединение не будет лишним зафиксировать капелькой клея или герметика. У меня под руками оказался полиуретановый клей им и воспользовался, делаем ревизию других выводов, если необходимо пропаиваем.

Перед установкой трансформатора следует подготовить плату, чтобы он без усилий вошёл в своё место. Для этого нужно очистить от остатков припоя отверстия, сделать это можно так же иглой от шприца подходящего диаметра.

После установки трансформатора сварочный инвертор заработал.

Как проверить микросхему

Как проверить микросхему не выпаивая её из платы и на что ещё обратить внимание.

Частично проверить микросхему можно при наличии вольтметра и регулируемого стабилизированного источника постоянного напряжения. Для полной проверки нужны генератор сигналов и осциллограф.

Поговорим о том, что проще. Перед проверкой обязательно выключите инвертор от сети питания. Далее — от внешнего регулируемого блока питания на вывод 7 микросхемы подаём напряжение 16 — 17 вольт, это напряжение запуска МС. При этом на выводе 8 должно быть 5 В. это опорное напряжение от внутреннего стабилизатора микросхемы.

Оно должно оставаться стабильным при изменении напряжения на 7 выводе. Если это не так МС неисправна.

Изменяя напряжение на микросхеме имейте в виду, что ниже 10 В микросхема отключается, и включится при 15-17 вольт. Не следует повышать напряжение питания МС выше 34 В Внутри микросхемы стоит защитный стабилитрон и при сильно завышенном напряжении его просто пробьёт.

Ниже приведена структурная схема UC3842.

Дополнение к этой статье: Через некоторое время принесли ещё один аппарат. Вышел из строя из за падения на бок. Это произошло потому, что за время работы винты скрепляющие корпус разболтались, а некоторые просто потерялись, поэтому при падении плата сыграла и коснулась корпуса монтажной стороной В результате замыкания вышли из строя все 4 выходных транзистора K 30N60HS Аналоги G30N60A4D, G40N60UFD. После замены всё заработало.

Ремонт блока питания D-Link (UC3843B)


Блок питания свитчей и роутеров D-Link является слабым местом, а при выходе из строя, блок питания довольно сложно подменить. Для справки, блок питания JTA0302D-E выдает 5В*2А (JTA0302E-E 5В*2,5А, а JTA0302F-E 5В*3А). Ремонтировать или нет, дело личное, если есть возможность выбора всегда покупайте новый, однако на практике не всегда удается быстро и оперативно найти новый блок питания. Поэтому вопрос с ремонтом остается актуальным.


Рис.1 Схема блока питания D-Link

Схема блока питания - это импульсный однотактный блок питания, в котором управлением служит ШИМ-контроллер UC3843B, подключенный по почти стандартной схеме.

Я против всяких любительских доработок схем. Схемы в своем большинстве, разработаны целой группой специалистов и подтвержденны расчетами, а вмешательство в отлаженный механизм, который, кстати сказать работает на грани своих возможностей не всегда есть правильный ход. Но в данном случае желательно сразу обратить на принципиальные вещи которые лично мне режут глаза. С6 (47мкФ*25В) желательная замена на 47мкФ*50В. Можно сослаться на документацию, напряжение включения UC3843 8,4В, и там постоянно вертится около 9Вольт, однако на практике минимальное рабочее напряжение для конденсатора в этой цепи 50В. Или на ZD1(BZX55C20) включенном параллельно конденсатору, рассчитанный на 20 В, то есть фактически на этом конденсаторе не может оказаться более 20В. Но привычка - вторая натура, в этой цепи привычнее видеть 47мкФ*50В

Вторым тонким моментом следует отметить С9(1000мкФ*10В), тут налицо явная экономия, и опять тонкая грань предела возможностей конденсатора С9(1000мкФ*10В). Ставить конденсатор такого рабочего напряжения в первом плече LC фильтра и надеяться на FR(это такая маленькая ферритовая бусинка) диода D6 – мягко говоря неразумно. Судя по расчетам здесь должен стоять LOWESR конденсатор, однако как показывает практика, здесь стоит обыкновенный конденсатор. Сюда желательно поставить конденсатор с золотистой или серебряной полоской и на рабочее напряжение не менее 16В.


Выпрямитель выполнен по стандартной схеме. Предохранитель на 2А, терморезистор TR (08SP005), дроссель L1, диодный мост DB1…DB4 (1N4007) и конденсатор C1 (22мкФ*400В). В случае выхода этих элементов, с вероятностью 90% на вход блок питания подали повышенное напряжение. Судя по выпрямителю, а именно С1 (22мкФ*400В), блок питания может выдать честных 13-17 Вт, что при 5В эквивалентно 2-3А. На выходе выпрямителя должно быть около 300В.

С цепью питания поработаем более внимательнее, именно в этой цепи кроется большинство неисправностей блока питания.

Обязательным условием работы ШИМ- контроллера серии UC384X— порог напряжения питания. Порог напряжения зависит от модели примененной микросхемы семейства. Например, для UC3843B минимальное пороговое напряжение (off)— 7,6В (UC3843B перестает работать), а максимальное пороговое (on)— 8,4В (UC3843B включается). Благодаря гистерезисной петле (0,8В) добиваются стабильность работе ШИМ-контроллера при небольших пульсациях на входе, исключая ложные срабатывания.


Рис.3 Цепь запуска при включении, блок питания D-Link

Первичный пуск осуществляется по цепи R4(300к) C6 (47 мкФ*25В). При включении через резистор R4(300к) напряжение подастся на вывод питания 7 микросхемы и конденсатор C6 (47 мкФ*25В), после чего он начнёт медленно заряжаться до некоторого напряжения (8,4В), далее произойдёт включение микросхемы, и она начнёт генерацию импульсов. Так как энергии запасённой в конденсаторе достаточно только для старта микросхемы, и если по какой-то причине напряжение упадёт ниже 7,6В вольт, микросхема отключится. Поэтому, с началом генерации импульсов, начинают поступать силовые импульсы тока от обмотки питания трансформатора, через выпрямительный диод D2 и R9(5,1), тем самым восполняя заряд конденсатора C6 (47 мкФ*25В).

При замыканиях в цепях вторичных обмоток, резко возрастают потери энергии в импульсном трансформаторе. В результате напряжения, получаемого с обмотки трансформатора, недостаточно для поддержания нормальной работы ШИМ-контроллера. Внутренний генератор отключается, на выходе ШИМ-контроллера появляется напряжение низкого уровня, переводящее ключевой транзистор в закрытое состояние, и микросхема оказывается вновь в режиме низкого потребления энергии. Через некоторое время через резистор R4(300к) зарядится конденсатор C6 (47 мкФ*25В) - напряжение питания возрастает до уровня, достаточного для запуска внутреннего генератора, и процесс повторится. Из трансформатора в этом случае слышны характерные щелчки (цыканье), период повторения которых определяется номиналами резистора R4(300к) и конденсатора C6 (47 мкФ*25В).

При высыхании конденсатора C6 (47 мкФ*25В) происходят многократные попытки запуска ( при этом раздается харатерные щелчки (цыканье), период повторения которых определяется номиналами конденсатора C6 (47 мкФ*25В) и резистора R4(300к)) напряжение питания ШИМ-контроллера падает ниже 7,6В (то есть ШИМ выключается), потом зарядка C6 (47 мкФ*25В) через R4(300к) и так по циклу. В результате конденсаторы С9(1000мкФ*10В) и С11 (220мкФ*16В) циклически заряжаются-разряжаются большим током, что приводит к их нагреву, кипению электролита и высыханию. С C6 (47 мкФ*25В) происходит то же самое. Поскольку ёмкость С9(1000мкФ*10В) и С11 (220мкФ*16В) уменьшается, то схема обратной связи реагирует на пики несглаженного напряжения, в результате чего действующее напряжение на выходе блока УМЕНЬШАЕТСЯ. А вот несглаженные выбросы напряжения в цепи питания микросхемы как раз и гасятся на стабилитроне ZD1(BZX55C20), что и приводит к его нагреву, а потом и к пробою.

Рис.5 Структурная схема UC3843

Следует отметить, что в ШИМ UC384X по питанию (7 нога) есть встроенный стабилитрон на 34В, что отображено на структурной схеме.


Рис.6 Цепь обратной связи, блок питания D-Link.

Тут чистая классика без всяких изысков. На вход COMP подается напряжение обратной связи с оптрона PC817 (L0403), обеспечивающего развязку первичной цепи с выходом блока питания. При отсутствии напряжения обратной связи на выходе оптрона ШИМ контроллер не запустится, так срабатывет условие блокировки микросхемы ШИМ контроллера.
Обратная связь здесь выполнена на оптопаре. В момент завышения напряжения, на выходе, выше 5 вольт, происходит открытие транзистора оптопары, вызванного свечением светодиода, в этот момент падает напряжение на первом выводе микросхемы, это вызывает сокращение длительности импульсов и как следствие уменьшение мощности трансформации. Этот механизм обратной связи, не даст напряжению вырости выше 5 вольт и упасть ниже 5 вольт, то есть получается стабилизатор напряжения.

Частота переключения и соответственно длина рабочего цикла зависят от соотношения R11(3к)/C5(0,01мкФ). Данные элементы очень редко (практически никогда) выходят из строя.

.

Фото с внешним видом блока питания бывают необходимы при ремонте.



Рис.7 Блок питания D-Link JTA0302D-E, вид со стороны деталей (конденсатор входного выпрямителя поднят для удообства) Рис.8 Блок питания D-Link JTA0302D-E, вид со стороны печатной платы


Рис.9 Схема блока питания маршрутизатора D-Link, JTA0302E-E. (5В*2,5А).

На схеме, в отличии от схемы в начале статьи, более наглядно выделены все цепи. Внимание в статье все номиналы и обозначения элементов даны для схемы в начале статьи, приведенная здесь схема имеет незначительные отличия, как по номиналам так и по обозначениям элементов.

Ремонт желательно начинать с ознакомления с datasheet ШИМ UC3843B (скачать).

Расположение плюса и минуса на штекере блока питания D-Link. Плюс расположен внутри минус с наружи штекера. В случае необходимости замены штекера, менять надо на аналогичный, "ноутбучного" типа. "Бытовой" штекер настоятельно не рекомендуется для замены. Ток выдаваемый блоком питания D-Link это ток 2-3А, а "бытовой" штекер расчитан на 1,5А максимум. Установка такого штекера ведет к перегреву разъема на устройстве и последующего его (разъема) выхода из строя.


Рис.10 Рекомендуемая замена штекера питания.

Слева штекер расчитанный на ток более 2-3А, справа на ток не более 1,5А. Наличие усиков-контактов на одном и гладкая поверхность внутри другого.

Как разобрать блок питания D-Link. Блок питания клееный поэтому открывать придется при помощи тисков.


Рис.11 Внешний вид блока питания D-Link


Рис.12 Зажимаем в тиски блок питания, область приложения отмечена красным.


Рис.13 Расположение швов на блоке питания D-Link.

Для начала зажимаем блок питания в тиски через картон или тряпку, см. рисунок и сдавливаем до небольшого хруста, картон или тряпка нужны для того что бы не поцарапать корпус блока питания. Далее широким плоским предметом, лично я затупленной стамеской, несильно начинаем простукивать видимую часть шва, ставим стамеску на шов и не сильно бьем по стамеске молотком, и так с обоих сторон. Клееный заводской шов лопнет при помощи таких действий, а вот клееный уже повторно в мастерской шов лопнет только в том случае если его склеивали с расчетом повторной разборки, если не открывается, придется резать.

Нет напряжения на выходе выпрямителя около 300В, то есть на конденсаторе С1(22мкФ*400в). Проверить на входе F1, TR, диодный мост на предмет пробоя. В случае если диоды DB1…DB4 (1N4007) грелись, вплоть до обугливаниятекстолита под ними, конденсатор С1 подлежит замене. Особое внимание обратить на дроссель L1, так как при внешних воздействиях (падениях) он имеет свойство обрываться.

Выходное напряжение меньше, проваливается, не стабильно; БП запускается не всегда, БП запускается, но с большой задержкой, БП не запускается под нагрузкой, но в холостую включается и при подключении нагрузки начинает стабильно работать. Поменять все электролиты (С1, С6, С9, С10, С11).

Не включается блок питания, на 7 ноге UC3843B нет напряжения достаточного для включения микросхемы, стабилитрон ZD1(20В) и конденсатор C6 (47мкФ*25В) заменены на заведомо исправные. Несколько нестандартная неисправность, однако имело место быть. Резистор R4 (300к 1вт) в цепи питания микросхемы для запуска ШИМ от 300В - при проверке показывал 300К однако под напряжением уходил в обрыв. При включении в сеть 220В на 7 ноге ШИМ напряжение не появлялось. При запуске от внешнего блока питания ШИМ работал нормально. После замены R4, блок питания запустился.


Не включается блок питания, сгорел ключ (полевой транзистор). При замене ключа рекомендуется не надеятся на случай, а сразу менять ШИМ контроллер. Так же особое внимание следует уделить токоограничивающему резистору R5(150) и датчику тока R2(1,8), на предмет их возможного обрыва и изменения номинала. Увеличение номинала R2 даже на 10% может привести к нестабильности работы блока питания и ложному срабатыванию токовой защиты БП. Уменьшение номинала R2 приводит к увеличению тока через ключевой транзистор в случае перегрузки и как результат выход из строя ключевого транзистора и ШИМ-контроллера.

Блок питания глючит, точнее не блок питания, а устройство к которому подключен блок питания. При подключении на автомобильную лампу (12В) - блок питания уходит в защиту. Неисправны конденсаторы фильтра выходного выпрямителя. Требуется замена, при замене рекомендуется ставить конденсаторы на рабочее напряжение не ниже 16В и с низким ESR (LOW ESR), еще их называют компьютерными, по внешнему виду они отличаются от обычных наличием золотистой (серебристой) полоской. Особое внимание следует обратить внимание на С9. Увеличение емкости этого конденсатора снизит амплитуду выходных пульсаций, но затруднит старт блока и заставит увеличивать емкость на питании ШИМ – контроллера, конденсатор должен обладать достаточно малым эквивалентным последовательным сопротивлением (ESR) для безболезненного пропускания большого импульсного тока.

Из блока питания слышно характерное цыканье импульсного трансформатора. Вообще цыкание трансформатора происходит по причине недостаточного питания микросхемы ШИМ -контроллера. Тут возможно два варианта - вышли из строя вторичные цепи например пробой конденсаторов С9(1000мкФ*10В), С11 (220мкФ*16В), диода D6 или же вышли из строя элементы питания ШИМ контроллера первичной цепи - C6 (47мкФ*25В), D2. Третьей причиной (довольно редкий случай) цыкания может быть выход из строя цепи подавления выброса от индуктивности рассеяния (D (на схеме не обозначен), R1(39к), C2 (4700)). На диод в этой цепи хотелось бы обратить особое внимание, использование дешевых и распространенных диодов в этой цепи категорически не рекомендуется, здесь должен стоять ВЧ диод, с минимальным восстановления. При замене диод лучше всего снять с аналогичной цепи любого импульсного блока питания. Так же стоит обратить внимание на С1(22мкФ*400в).

Можно ли поменять UC3843B на UC3843A? На практике приходилось сталкиваться с заводскими блоками питания в которых установлена, и UC3843B, и UC3843A. Особой разницы в работе не замечено - меняйте.

Практический ремонт блока питания D Link, замена пускового конденсатора. Посмотреть.

Практический ремонт блока питания D Link, нестандартный ремонт. Посмотреть.

UC3842 описание, принцип работы, схема включения


ШИМ UC3842AN

UC3842 представляет собой схему ШИМ–контроллера с обратной связью по току и напряжению для управления ключевым каскадом на n-канальном МОП транзисторе, обеспечивая разряд его входной емкости форсированным током величиной до 0.7А. Микросхема SMPS контроллер состоит в серии микросхем UC384X (UC3843, UC3844, UC3845) ШИМ-контроллеров. Ядро UC3842 специально разработано для долговременной работы с минимальным количеством внешних дискретных компонентов. ШИМ-контроллер UC3842 отличается точным управлением рабочего цикла, температурной компенсацией и имеет невысокую стоимость. Особенностью UC3842 является способность работать в пределах 100% рабочего цикла (для примера UC3844 работает с коэффициентом заполнения до 50%.). Отечественным аналогом UC3842 является 1114ЕУ7. Блоки питания выполненные на микросхеме UC3842 отличаются повышенной надежностью и простотой исполнения.


Рис. Таблица типономиналов

Данная таблица дает полное представление в различиях микросхем UC3842, UC3843, UC3844, UC3845 между собой.

Общее описание

Для желающих более глубоко ознакомится с ШИМ-контроллерами серии UC384X, рекомендуется следующий материал.

  • Datasheet UC3842B (скачать)
  • Datasheet 1114ЕУ7 отечественный аналог микросхемы UC3842А (скачать).
  • Статья "Обратноходовой преобразователь", Дмитрия Макашева (скачать).
  • Описание работы ШИМ-контроллеров серии UCX84X (скачать).
  • Статья "Эволюция обратноходовых импульсных источников питания", С. Косенко (скачать). Статья опубликована в журнале "Радио" №7-9 за 2002г.

Различие микросхем UC3842A и UC3842B, A потребляет меньший ток до момента запуска.

UC3842 имеет два варианта исполнения корпуса 8pin и 14pin. Расположение выводов этих исполнений существенно отличаются . Далее будет рассматриваться только вариант исполнения корпуса 8pin.

Упрощенная структурная схема, необходима для понимания принципа работы ШИМ-контроллера.


Рис. Структурная схема UC3842

Структурная схема в более подробном варианте, необходима для диагностики и проверки работоспособности микросхемы. Так как рассматриваем вариант исполнения 8pin, то Vc-это 7pin, PGND-это 5pin.

Рис. Структурная схема UC3842 (подробный вариант)


Рис. Расположение выводов (pinout) UC3842

Здесь должен быть материал по назначению выводов, однако гораздо удобнее читать и смотреть на практическую схему включения ШИМ-контроллера UC3842. Схема нарисована настолько удачно, что намного упрощает понимание назначение выводов микросхемы.


Рис. Схема включения UC3842 на примере блока питания для TV

1. Comp:(рус. Коррекция) выход усилителя ошибки. Для нормальной работы ШИМ–контроллера необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС. Если на этом выводе напряжение занизить ниже 1 вольта, то на выходе 6 микросхемы будет уменьшаться длительность импульсов, тем самым уменьшая мощность данного ШИМ–контроллера.
2. Vfb: (рус. Напряжение обратной связи) вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ШИМ–контроллера UC3842. Результат сравнения модулирует скважность выходных импульсов, в результате выходное напряжение блока питания стабилизируется. Формально второй вывод служит для сокращения длительности импульсов на выходе, если на него подать выше +2,5 вольта, то импульсы сократятся и микросхема снизит выдаваемую мощность.
3. C/S: (второе обозначение I sense) (рус. Токовая обратная связь) сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора . В момент перегрузки МОП транзистора напряжение на сопротивлении увеличивается и при достижении определённого порога UC3842A прекращает свою работу, закрывая выходной транзистор. Проще говоря, вывод служит для отключения импульса на выходе, при подаче на него напряжения выше 1 вольта.
4. Rt/Ct: (рус. Задание частоты) подключение времязадающей RC-цепочки, необходимой для установки частота внутреннего генератора. R подключается к Vref - опорное напряжение, а С к общему проводу (обычно выбирается несколько десятков nF). Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием ключевого транзистора, а снизу - мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц, но иногда источник питания вполне нормально работает и при значительно большей или значительно меньшей частоте.
Для времязадающей RC-цепочки лучше отказаться от керамических конденсаторов.
5. Gnd: (рус. Общий) общий вывод. Общий вывод не должен быть соединён с корпусом схемы. Это земля "горячая" соединяется с корпусом устройства через пару конденсаторов.
6. Out: (рус. Выход) выход ШИМ–контроллера, подключается к затвору ключевому транзистору через резистор или параллельно соединенные резистор и диод (анодом к затвору).
7. Vcc: (рус. Питание) вход питания ШИМ-контроллера, на этот вывод микросхемы подаётся напряжение питания в диапазоне от 16 вольт до 34, обратите внимание, что данная микросхема имеет встроенный триггер Шмидта(UVLO), который включает микросхему, если напряжение питания превышает 16 вольт, если-же напряжение по каким-либо причинам станет ниже 10 вольт (для других микросхем серии UC384X значения ON/OFF могут отличатся см. Таблицу Типономиналов ), произойдёт её отключение от питающего напряжения. Микросхема также обладает защитой от перенапряжения: если напряжение питания на ней превысит 34 вольта, микросхема отключится.
8. Vref: выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В. Подключается к одному из плеч делителя служит для оперативной регулировки Uвыхода всего блока питания.

Немного теории

Схема отключения при понижении входного напряжения


Рис. Схема отключения при понижении входного напряжения

Схема отключения при понижении входного напряжения или UVLO-схема(по-английски отключение при понижении напряжения – Under-Voltage LockOut) гарантирует, что напряжение Vcc равно напряжению, делающему микросхему UC384x полностью работоспособной для включения выходного каскада. На Рис. показано, что UVLO-схема имеет пороговые напряжения включения и выключения, значения которых равны 16 и 10, соответственно. Гистерезис , равный 6В, предотвращает беспорядочные включения и выключения напряжения во время подачи питания.

Генератор


Рис. Генератор UC3842

Частотозадающий конденсатор Ct заряжается от Vref(5В) через частотозадающий резистор Rt, а разряжается внутренним источником тока.

Микросхемы UC3844 и UС3845 имеют встроенный счетный триггер, который служит для получения максимального рабочего цикла генератора, равного 50%. Поэтому генераторы этих микросхем нужно установить на частоту переключения вдвое выше желаемой. Генераторы микросхем UC3842 и UC3843 устанавливается на желаемую частоту переключения. Максимальная рабочая частота генераторов семейства UC3842/3/4/5 может достигать 500 кГц.

Считывание и ограничение тока

Преобразование ток-напряжение выполнено на внешнем резисторе Rs, связанном с землей. RC фильтр для подавления выбросов выходного ключа. Инвертирующий вход токочувствительного компаратора UC3842 внутренне смещен на 1 Вольт. Ограничение тока происходит, если напряжение на выводе 3 достигает этого порогового значения.

Усилитель сигнала ошибки


Рис. Структурная схема усилителя сигнала ошибки

Неинвертирующий вход сигнала ошибки не имеет отдельного вывода и внутренне смещен на 2,5 вольт. Выход усилителя сигнала ошибки соединен с выводом 1 для подсоединении внешней компенсирующей цепи, позволяя пользователю управлять частотной характеристикой замкнутой петли обратной связи конвертора.


Рис. Схема компенсирующей цепи

Схема компенсирующей цепи, подходящая для стабилизации любой схемы преобразователя с дополнительной обратной связью по току, кроме обратноходовых и повышающих конвертеров, работающих с током катушки индуктивности.

Способы блокировки

Возможны два способа блокировки микросхемы UC3842:
повышение напряжения на выводе 3 выше уровня 1 вольт,
либо подтягивание напряжения на выводе 1 до уровня не превышающего падения напряжения на двух диодах, относительно потенциала земли.
Каждый из этих способов приводит к установке ВЫСОКОГО логического уровня напряжения на выходе ШИМ-копаратора (структурная схема). Поскольку основным (по умолчанию) состоянием ШИМ-фиксатора является состояние сброса, на выходе ШИМ-компаратора будет удерживаться НИЗКИЙ логический уровень до тех пор, пока не изменится состояние на выводах 1 и/или 3 в следующем тактовом периоде (периоде, который следует за рассматриваемым тактовым периодом, когда возникла ситуация, требующая блокировки микросхемы).

Схема подключения

Простейшая схема подключения ШИМ-контроллера UC3842, имеет чисто академический характер. Схема является простейшим генератором. Несмотря на простоту данная схема рабочая.

Рис. Простейшая схема включения 384x

Как видно из схемы, для работы ШИМ-контроллера UC3842 необходима только RC цепочка и питание.

Схема включения ШИМ контроллера ШИМ-контроллера UC3842A, на примере блока питания телевизора.


Рис. Схема блока питания на UC3842A

Схема дает наглядное и простое представление использования UC3842A в простейшем блоке питания. Схема для упрощения чтения, несколько изменена. Полный вариант схемы можно найти в PDF документе "Блоки питания 106 схем" Товарницкий Н.И.

Схема включения ШИМ контроллера ШИМ-контроллера UC3843, на примере блока питания маршрутизатора D-Link, JTA0302E-E.


Рис. Схема блока питания на UC3843

Схема хоть и выполнена по стандартному включению для UC384X, однако R4(300к) и R5 (150) выводят из стандартов. Однако удачно, а главное, логично выделенные цепи, помогают понять принцип работы блока питания.

Блок питания на ШИМ-контроллере UC3842. Схема не предназначена для повторения, а преследует только ознакомительные цели.


Рис. Стандартная схема включения из datasheet-a (схема несколько изменена, для более простого понимания)

Ремонт блока питания на основе ШИМ UC384X

Проверка при помощи внешнего блока питания

Рис. Моделирование работы ШИМ контроллера

Проверка работы проводится без выпаивания микросхемы из блока питания. Блок питания перед проведением диагностики необходимо выключить из сети 220В!

От внешнего стабилизированного блока питания подать напряжение на контакт 7(Vcc) микросхемы напряжение более напряжения включение UVLO, в общем случае более 17В. При этом ШИМ-контроллер UC384X должен заработать. Если питающее напряжение будет менее напряжения включения UVLO (16В/8.4В), то микросхема не запустится. Подробнее про UVLO можно почитать здесь.

Проверка внутреннего источника опорного напряжения

Проверка UVLO

UC3842 и UC3844 напряжение включения 16В, напряжение выключения 10В

UC3843 и UC3845 напряжение включения 8,4В, напряжение выключения 7,6В

Подавать напряжение 34В и выше на контакт 7(Vcc) не рекомендуется. Возможно наличие в цепи питания ШИМ-контроллера UC384X защитного стабилитрона, тогда выше рабочего напряжения этого стабилитрона подавать не рекомендуется.

Проверка работы генератора и внешних цепей генератора.

Для проверки потребуется осциллограф. На контакте 4(Rt/Ct) должна быть стабильная «пила».

Проверка выходного управляющего сигнала.

Для проверки потребуется осциллограф. В идеале на контакте 6(Out) должны быть импульсы прямоугольной формы. Однако исследуемая схема может отличаться от приведенной и тогда потребуется отключить внешние цепи обратной связи. Общий принцип показан на рис. – при таком включении ШИМ-контроллер UC384X гарантированно запустится.

Рис. Работа UC384x с отключенными цепями обратной связи

Если БП с управляющим ШИМ-контроллером типа UC384x не включается или включается с большой задержкой, то проверьте заменой электролитический конденсатор, который фильтрует питание (7 вывод) этой м/с. Также необходимо проверить элементы цепи начального запуска (обычно два последовательно включенных резистора 33-100kOhm).

При замене силового (полевого) транзистора в БП с управляющей м/с 384x следует обязательно проверять резистор, выполняющий функцию датчика тока (стоит в истоке полевика). Изменение его сопротивления при номинале в доли Ома очень сложно обнаружить обычным тестером! Увеличение сопротивления этого резистора ведет к ложному срабатыванию токовой защиты БП. При этом можно очень долго искать причины перегрузки БП во вторичных цепях, хотя их там вовсе и нет.

Ремонт сварочного инвертора Ресанта

Восстанавливаем работу сварочного инвертора Ресанта САИ-250ПН


Как-то раз в мои руки попал сварочный инвертор Ресанта САИ 250ПН. Аппарат, без сомнения, внушает уважение.

Те, кто знаком с устройством сварочных инверторов, оценят всю мощь по внешнему виду электронной начинки.

Устройство сварочного инвертора Ресанта САИ-250ПН

Как уже говорилось, начинка сварочного инвертора рассчитана на большую мощность. Это видно по силовой части устройства.

Во входном выпрямителе два мощных диодных моста на радиаторе, четыре электролитических конденсатора в фильтре. Выходной выпрямитель также укомплектован по полной: 6 сдвоенных диодов, массивный дроссель на выходе выпрямителя.

Выходной дроссель

три ( ! ) реле мягкого пуска. Их контакты соединены параллельно, чтобы выдержать большой скачок тока при запуске сварки.

Реле мягкого пуска

Если сравнить эту Ресанту (Ресанта САИ-250ПН) и TELWIN Force 165, то Ресанта даст ему лихую фору.

Начинка сварочного инвертора Ресанта САИ-250ПН

Но, даже у этого монстра есть ахиллесова пята.

Аппарат не включается;

Охлаждающий кулер не работает;

Нет индикации на панели управления.

После беглого осмотра выяснилось, что входной выпрямитель (диодные мосты) оказались исправны, на выходе было около 310 вольт. Стало быть, проблема не в силовой части, а в цепях управления.

Внешний осмотр выявил три перегоревших SMD-резистора. Один в цепи затвора полевого транзистора 4N90C на 47 Ом (маркировка – 470), и два на 2,4 Ом (2R4) – включенных параллельно – в цепи истока того же транзистора.

Сгоревшие smd-резисторы на печатной плате сварочного аппарата

Транзистор 4N90C (FQP4N90C) управляется микросхемой UC3842BN. Эта микросхема – сердце импульсного блока питания, который запитывает реле плавного пуска и интегральный стабилизатор на +15V. Он в свою очередь питает всю схему, которая и управляет ключевыми транзисторами в инверторе. Вот кусочек схемы Ресанта САИ-250ПН.

Часть принципиальной схемы сварочного инвертора РЕСАНТА САИ-250ПН

Также обнаружилось, что в обрыве ещё и резистор в цепи питания ШИ-контроллера UC3842BN (U1). На схеме он обозначен, как R010 (22 Ом, 2Вт). На печатной плате имеет позиционное обозначение R041. Предупрежу сразу, что обнаружить обрыв данного резистора при внешнем осмотре довольно трудно.

Трещина и характерные подгары могут быть на той стороне резистора, что обращена к плате. Так было в моём случае.

Резистор в обрыве

Судя по всему, причиной неисправности послужил выход из строя ШИ-контроллера UC3842BN (U1). Это в свою очередь привело к увеличению потребляемого тока, и резистор R010 сгорел от резкой перегрузки. SMD-резисторы в цепях MOSFET-транзистора FQP4N90C сыграли роль плавкого предохранителя и, скорее всего, благодаря им транзистор остался цел.

Как видим, вышел из строя целый импульсный блок питания на UC3842BN (U1). А он питает все основные блоки сварочного инвертора. В том числе и реле плавного пуска. Поэтому сварка и не подавала никаких "признаков жизни".

В итоге имеем кучу "мелочёвки", которую нужно заменить, дабы оживить агрегат.

После замены указанных элементов, сварочный инвертор включился, на дисплее показалось значение установленного тока, защумел охлаждающий кулер.

Аппарат после ремонта

Тем, кто захочет самостоятельно изучить устройство сварочного инвертора – полная принципиальная схема "Ресанта САИ-250ПН".

Uc3842bn в сварочном инверторе


То, что в инверторах Ресанта часто выходит из строя импульсный питатель факт довольно известный, сей инвертор был тому подтверждением - ИБП слабое звено этих аппаратов, хотя в целом Ресанта неплохие сварочники и вполне ремонтопригодны.

Ремонт блока питания инвертора Ресанта 250

Но, как говорится, повторенье мать. чего-то там. поэтому пробежимся легким галопом по похожему дефекту.

Итак: инвертор Ресанта САИ 250 не запускается.


Первое, что делаем в этом случае осматриваем все, что находится в районе ТПИ. Если никаких подозрительных изменений не видно тогда начинаем производить измерения. Но здесь эти подозрительные следы были очень хорошо видны.



Под резистором R010 виден нагар, скорее всего он сгорел. Резистор R013 явно прогорел. Все это говорит о том, что импульсный блок питания вышел из строя.

Теперь проверяем.
Резистор R010 22 Ом 2 Вт - через него подается питание на первичную обмотку ТПИ - оборван.
Резистор R013 1.2 Ом - стоит в истоке транзистора Q02 4N90C - оборван.
Резистор R011 22 Ом - стоит в затворе того же транзистора - оборван.
Стабилитрон D012 18 вольт - цел.
Транзистор Q02 4N90C - цел.

Есть шанс, что все обойдется заменой этих трех резисторов.


На видео слышен гул из-за поломанного вентилятора. Но с вентилятором потом разберемся, а сейчас главное, что все включилось. Это уже радует.

Теперь меняем все убитые резисторы. Стоит сказать, что вместо R010 22 Ом 2 Вт в этих аппаратах, экономные братья из страны Поднебесной, обычно ставят одноваттный резистор на 22 Ома.



Очень часто выходит из строя только он один, поэтому поставим вместо него 22 Ом 10 Вт, в данном случае хуже не будет, да и меньшей мощности под рукой не оказалось.




SMD резисторы заменяем парами. Вместо R013 1.2 Ом поставим 2 по 2.2 Ом, а R011 22 Ом заменим двумя по 47 Ом.


Так будет надежнее. Проверяем инвертор еще раз.

Видео: сварочный инвертор Ресанта САИ 250 после ремонта.

Как видим из этого видео, каламбурчик:), все прекрасно запускается. Чего мы и добивались.

И "на посошок" режим работы микросхемы UC3842B, на всякий случай, если все вышеописанные операции не приведут к желаемому результату.


Таблица 1 Режим работы микросхемы UC3842BN в ИБП инвертора Ресанта серии GP

Все режимы сняты при питании инвертора от 220 В.

Внимание!
Предсказать все нюансы возникающие при ремонте сварочных инверторов НЕВОЗМОЖНО. Если есть сомнения лучше обратиться к специалисту.

Ремонт сварочных инверторов Ресанта и других производителей.

Можете поделиться с другими пользователями интернета информацией про этот сварочный инвертор, а отзывы о нем оставьте в комментариях.


1. alicas (31.10.2014 16:48) Привет! вот уменя на ресанте плата GP 126, дак там R010 номиналом 1 Ом, R011 - 47 Oм, а R013 стоит между R 022 и R 051 в рядочек так аккуратно и у всех номинал RDM 340, дак вот выгорело все это дело, схему бы мне если есту кого на GP 126, а то очень смущает R 010 со своим 1 Ом)))


2. diggerweb (31.10.2014 23:08) Ого уже GP126. С номиналами китайцы чудят, такое впечатление чего у них больше то и ставят, а потом под все это специалисты на форумах научную базу подводят. Затворный 47 Ом в некоторых моделях и раньше встречался. Ну а с остальным я не думаю что схема очень сильно отличается. 1 Ом или 22 Ома? Работала же она раньше с другими номиналами. Поэкспериментируйте.


3. loveradio (28.12.2014 19:32) Доброе время суток.Подскажите вчём проблема? Пинесли Ресанту САИ250 сгоревшим резистором R43 12w51om, транзисторы FGH60N60. Всё заменил напряжение ХХ 75в. а тока сварочного нет,электрод еле искрит.


5. gerpis (06.01.2016 16:33) Доброго времени суток!
Cитуация у моего подопечного следующая:
после замены всех элементов вышеуказанных элементов и транзистора блок выдает 21V аосле выпрямителя, а после LM317 18.6V. Не могу определить причину данного поведения. Очень прошу посощи.

6. diggerweb (06.01.2016 23:48) LM317 это регулируемый стабилизатор напряжения и тока с выходным напряжением от 1,2 до 37 В. То, что на входе 21 вольт это нормально, а вот на выходе должно быть 15 вольт. Проверьте всю обвязку LM317 ну и сам стабилизатор. Почти 19 вольт это все таки многовато.

Вот еще ссылочка в помощь.


7. gerpis (08.01.2016 16:35) Спасибо, diggerweb, ссылочку.
Резисторы и диод целые, микросхему поменял, но c если читать даташит R43 должен быть 2.6К подстроечником получил номинал 2.5К при стоящем на плате 3.3K. Как быть менять резистор или дело в чем-то другом?

8. diggerweb (09.01.2016 09:57) Ваша задача обеспечить нормальную работу платы управления и драйверов, (у вас ведь аппарат с ТГР?), которые питаются напряжением 15 вольт со стабилизатора LM317.

Конкретно с таким дефектом я не сталкивался и тут уж вам решать как быть и что и на что менять, экспериментируйте, только аккуратно.

Силовые транзисторы на время экспериментов лучше выпаять, сначала запустить стабилизатор, проверить работу управления и драйверов и уж потом их впаивать, и то можно не сразу а сначала вот так.


9. gerpis (14.01.2016 10:25) Спасибо, после замены резисторов с другими номиналами все заработало ОК.


10. ANKor1666 (27.01.2016 15:57) Здрдравствуйте. Подскажите в чёмпроблема. Аппарат Ресанта 250 , вздулся конденсатор CD294 400v 470-mf 30-60мм. Подойдёт ли на сантиметр пониже.


11. diggerweb (28.01.2016 09:08) Ну это кому как нравится, кому повыше и потоньше, кому пониже и потолще.
Если остальные параметры совпадают, 400 вольт 470 микрофарад, то конечно подойдет.


12. ddbi (24.02.2016 19:59) Доброго времени суток. прошу помощи(( на свой аппарат саи 250 соорудил добавку полуавтомат, но для его корректной работы необходимо отключить быстрый старт и анти залипание. эти функции не дают нормально варить проволокой. подскажите что необходимо сделать что бы в режиме полуавтомата данные опции были выключены. Заранее спасибо


13. taks23 (27.03.2016 16:11) Сварочный аппарат Ресанта САИ 250 плата GP67. Принесли, не включается. Заменил резисторы RO15, RO51, RO11, RO34, транзистор 4N90C. Теперь постоянно моргают светодиоды оба, и пытаются запуститься вентиляторы. На 6 ноге UC3842BN показывает 0. Смотреть QO6, QO7?


15. diggerweb (28.03.2016 12:39) А вы их еще не посмотрели?
Смотреть надо все. Первички, вторички.
Про трансформатор ничего сказать не могу.
Там не сопротивление надо мерить а индуктивность, может у вас межвитковое замыкание.


16. mokhovm (22.05.2016 11:31) Добрый день. Помогите с проблемой: Включаю аппарат, светодиоды оба светятся, охлаждение работает, на сварочных контактах в покое 30В, а дуги нет. С чего начать поиск неисправности?


17. diggerweb (22.05.2016 12:15) 30 вольт на холостом ходу для Ресанты 250 это мало. Должно быть около 80-ти.
Поиск начинать вот с этого: Ремонт инверторов РЕСАНТА серий GP и SH


18. ilm1987ir (15.12.2016 17:01) Здравствуйте подскажите пжлс. Ресанта САИ 250А при рабое резко потеряла мощность, далее при повторном включении взорвался белый резистор что на входе стоит рядом с реле пуска на 22ватта, поменял, снова взорвался, в чем может быть дело?

19. diggerweb (17.12.2016 00:24) ilm1987ir

Скорее всего вышла из строя силовая часть, проверять все.


20. night_shadow (18.04.2018 10:23) Спам Приветствую, аппарата Sturm AW97122N, по внутрянке та же ресанта 250GP. Не включается, Резисторы были выгоревшие, заменил, снова выгорают. 4N90C заменил, ШИМ заменил. При включении где то 5 сек пытается запуститься, после выгорают резисторы. Куда копать дальше?


21. diggerweb (18.04.2018 12:47) Какие резисторы? Их там много разных. Лучше на форуме тему создайте, больше шансов что кто ни будь подскажет, да и не удобно в комментариях это обсуждать.


22. fef1986 (13.05.2018 16:54) Спам Здравствуйте! сварочный инвертор 190проф не включается! сгорел ибп на дежурку отгорели три входа и R57 на 22ома, ибп припоял проводки обратно к сожелению проверить не чем впаял обратно ни чего не происходит тишина подскажите где копать или ипб всё таки сгорел!?


23. diggerweb (13.05.2018 22:19) 190 ПРОФ не имеет никакого отношения к сварочнику на этой странице. Вот правильно лучше тему на форуме тему создать.


24. алексей (01.07.2018 13:40) Спам Принесли ресанту с выломанным и потерянном трансформатором дежурки. Данные по обмоткам в схеме есть. У меня вопрос - есть ли зазор между ферритовом сердечником и примерно какого сечения феррит?


25. 19lebedev66 (18.07.2018 23:14) Спам Всем Добрый вечер. у меня проблема с Рисантой САИ250 GP190 .Никак не могу отремонтировать дежурку, после замены вышедших элементов вентиляторы закрутились, но не в полную силу, напряжение после транса пульсирует , зеленый диод тоже мигает с низкой частотой.
Понимаю что шим не встает на самопитание, все элементы корорые не проверить заменил, Может кто подскажет или идею подаст .
SD6834B,D010HER107,PC817,TL431_1, резистор между 1 и 2 ногами шим 1 Ом, R015,R016, ----Заменил
Выпаивал трансформатор был обрыв провода от 4ноге транса
я так думаю все беды начались после того когда диод D010HER107 пробило накоротко
U3L7815CV-выпаивал проверял-работает


26. JAWA350Premier (23.08.2018 20:21) Спам Доброго времени суток, у меня такая проблема с ресантой GP79, питание платы управления 11 в, хотя рабочее напряжение должно быть 18.5 в, для питания гальванической развязки и ПУ, LM 317 исправный, до него напряжение 12.4 после него 11, в, при этом транзистор 4n90 и трансформатор не греются, работают исправно, вентиляторы вращаются нормально, в чем может быть причина? Диод D03 отпаивал одну сторону напряжение 12,4в , как будто гдето просадка или скваженность маленькая. Кто сталкивался с такой проблемкой помогите , уже второй аппарат такой попадается)))


27. diggerweb (24.08.2018 12:53) JAWA350Premier с такой проблемой не сталкивался, вы лучше на форуме тему создайте, больше вероятности что кто то ответит.


29. friedrichpz7 (11.09.2018 21:53) Спам Ребят схема ресанты точто такая же как и на моем топ машин 4000 (180А)


30. syxmel (27.11.2018 17:39) Спам Добрый день, Всем.
Я уж думал все научились ремонтировать РЕсанты. Оказывается не один такой. перерыл кучу форумов. все заканчиваются 14-16 годом. А я никак не найду своего аппарата, и вопрос задать не знаю кому и как. Сначала была причина- мигал зелёный светодиод и запускался вентилятор 0.5 сек и опять. проверил всё. В конце концов заменил 6834. в процессе проверки не вернул назад то ли диод, то ли стабилитрон на входе драйверов силовых транзисторов (не пропаял). Все собрал. заменил 7815. Запаял силовые. Включил. Питание появилось. Что- то щелкнуло и зажегся еще и желтый. Подаю на силу через диод 20 в. желтый не светит, но и силы нет. Всё голову ломал. Как же разделение импульсов идёт? отпаял плату управления 12 pin. Всё цело. Припfял обратно с 10 ножки идут прямоугольные импульсы. Заходят под радиаторы силовых IGBT/. Второй раз отпаял их. Понял как идёт управление. Там стоит трансформатор на котoрый идут импульсы с платы 12 pin. Одно плохо, эти импульсы идут через резистор~47om.который шунтировался этим диодом-стабилитроном 4D14. Далее стоит транзистор 4Q1. Вот этот то транзистор и щелкнул. Да так , что след ожога на конденсаторе 4С2 и вся передняя часть транзистора отлетел.
Может кто знает какой транзистор туда можно поставить?
Ресанта 250. на плате написано SSB-200-142 Плата управления 12 pin Шим 3845 и ЛМ324

Читайте также: