Восстановление деталей механизированными способами сварки и наплавки

Обновлено: 12.05.2024

Должны иметь представление: о назначении восстановления деталей.

Должны знать: классификацию способов восстановления деталей и их краткую характеристику.

Содержание учебного материала

Ремонт деталей как один из основных источников экономической эф­фективности авторемонтного производства, сокращения расхода запасных час­тей и экономии сырьевых ресурсов.

Классификация способов восстановления деталей и их краткая характе­ристика.

Требования к знаниям студентов.

Должны знать: виды слесарно-механической обработки, применяемые при восстановлении деталей; сущность и технологию восстановления деталей обработкой под ремонтные размеры; категорийные и пригоночные размеры; порядок выбора баз для механической обработки; сущность и технологию вос­становления деталей постановкой дополнительной или заменой части детали; достоинства и недостатки способа восстановления деталей слесарно-механической обработкой; средства технологической оснащенности; органи­зацию рабочих мест и правила техники безопасности.

Содержание учебного материала.

Виды слесарно-механической обработки, применяемые при восстановлении деталей.

Сущность и технология восстановления деталей способом обработки под ремонтные размеры. Категорийные и пригоночные размеры. Выбор баз для механической обработки.

Сущность и технология восстановления деталей постановкой дополни­тельной или заменой части детали. Достоинства и недостатки способа. Сред­ства технологической оснащенности.

Организация рабочих мест и правила техники безопасности.

Требования к знаниям студентов

Должны иметь представление: о сущности процесса восстановления деталей давлением.

Должны знать: способы и технологию восстановления формы и разме­нов, поврежденных и изношенных деталей, способы восстановления механи­ческих свойств материала деталей.

Сущность процесса восстановления деталей давлением. Способы и технология восстановления размеров и формы поврежденных и изношенных деталей. Восстановление механических свойств материала деталей. Оборудо­вание, приспособления, инструмент.

Должны иметь представление: о вредных процессах, происходящих в рабочей зоне, при сварке или наплавке деталей.

Должны знать: технологический процесс восстановления деталей сваркой и наплавкой, способы и технологию механизированных способов сварки и наплавки, особенности сварки деталей из чугуна и цветных металлов, режимы работы для конкретных условий обработки.

Виды сварки и наплавки, применяемые в авторемонтном производстве. Процессы, происходящие в рабочей зоне сварки (наплавки): металлургические процессы, структурные изменения, внутренние напряжения и деформа­ции.

Технологический процесс восстановления деталей сваркой и наплав­кой. Способы и технология механизированных способов сварки и наплавки:

под слоем флюса, в среде защитных газов, вибродуговой, лазерной и плаз­менной, контактной.

Особенности сварки деталей из чугуна и цветных металлов. Средства технологической оснащенности. Организация рабочих мест и охрана труда при выполнении сварочных и наплавочных работ.

Восстановление деталей вибродуговой наплавкой

Восстановление деталей из металлов, которым противопоказан разогрев до высокой температуры, проводится методом вибродуговой наплавки. Это эффективный способ ремонта конических и плоских поверхностей. Сущность технологии заключается в постоянной смене стадий горения и короткого замыкания за счет вибрации проволоки. Металл не успевает прогреваться на большую глубину, зона термического влияния минимальная, не возникает внутренних напряжений.

Вибродуговая наплавка применяется для восстановления деталей диаметром от 15 до 40 мм из разных видов стали:

  • низколегируемых цементируемых с содержанием углерода от 0,1 до 0,25%;
  • среднеуглеродистых легированных и инзколегированных, содержащих от 0,25 до 0,6% углерода.

Технология разработана для ремонта изношенных валов, ступиц, корпусов, наплавки конических и плоских поверхностей.

Вибродуговая наплавка

Определение и принцип действия

Вибродуговая наплавка, по сути, это разновидность автоматической сварки, только электрод вибрирует с частотой от 50 до 100 колебаний в минуту. Восстанавливаемую деталь фиксируют в патроне-держателе или на токарном станке так, чтобы можно было подвести электроток. Второй контакт выводится на неплавящийся электрод. Наплавочная проволока подается по направляющим, проходит через мундштук. При подключении питания наплавка под действием магнита начинает вибрировать, прилипает к поверхности и отрывается с определенной частотой. Чтобы металл не прогревался под действием дуги, в рабочую зону подается охлаждающая жидкость. Компонентный состав водной эмульсии регламентирован, возможно два варианта:

  • 3-х или 4% раствор кальцинированной соды;
  • добавляют глицерин в пропорции 15 или 20% от объема.

Технология применяется для деталей сложной конфигурации, прошедших термическую обработку. На закаленных поверхностях после глубокого прогрева возникает коробление, а вибродуговая наплавка не влияет на прочностные характеристики.

Основные достоинства вибродуговой наплавки:

  • вибросваркой создают небольшой слой, толщину которого можно регулировать в диапазоне от 500 мк до 3 мм;
  • детали подвергаются несущественной деформации под действием температуры;
  • зона термовлияния малоглубинная, нет необходимости проводить обследование методами неразрушающего контроля;
  • вибрационная сварка не изменяет твердость восстанавливаемой поверхности;
  • за счет подачи жидкости происходит закалка наплавляемого слоя;
  • метод применим для малоизношенных поверхностей, которые нельзя наплавить обычной сваркой, устраняется люфт механизма.

Вибрация обеспечивает устойчивость процесса наплавки. Для улучшения показателей износостойкости наплавленного слоя предусмотрены легирующие флюсы. Для обеспечения защитного облака предусмотрена автоматическая подача углекислого или инертного газа.

Технология разработана для ремонта изношенных валов, ступиц, корпусов, наплавки конических и плоских поверхностей. Применяется, когда противопоказан разогрев металла до высокой температуры.

Технология процесса вибродуговой наплавки

Перед процессом наплавления деталь необходимо подготовить. Обрабатываемую поверхность зачищают до металлического блеска. Для снятия оксидного слоя применяют наждачную бумагу. Зачистку производят после закрепления детали, при тех же частотах вращения, что и при наплавке. Допустимое биение люфта – 500 микрон. Когда искривление большое, поверхность предварительно выправляют. На резьбовых отверстиях полностью удаляют борозды резьбы. Невосстанавливаемые шпоночные пазы и отверстия заделываются медными или графитовыми вставками.

Подготовка деталей включает процессы обезжиривания, промывки сушки. Поверхность, которую не нужно восстанавливать, от температурного воздействия защищают асбестовыми листами.

Основные особенности вибродуговой наплавки деталей от других сварочных процессов:

  • в автомате установлен вибратор, создающий магнитное поле с частотой от 50 до 100 Гц в зоне подачи наплавочной проволоки;
  • цикличность розжига и затухания дуги за счет чередования электрических разрядов и коротких замыканий;
  • наличие блока индукции, обеспечивающего накопление электрической энергии на нуле;
  • низкое напряжение электропитания.

Легкий розжиг электродуги гарантирует сдвиг фаз тока и напряжения. При переходе через нулевую отметку фазы возникает самоиндукция, совпадающая по направлению с вектором напряжения. После разрыва цепи сразу возникает дуговой разряд, стабилизирующий горение дуги. Мелкокапельный перенос наплавочного металла происходит в момент короткого замыкания, длительность существования дуги – 20% цикла, металл не проваривается на большую глубину.

Схема вибродуговой наплавки постоянным током

Нюансы технологического процесса:

  • оптимальное напряжение источника питания до 20 В;
  • требуется постоянный электрический ток;
  • контакты подключаются по обратной полярности: плюс подключают к электроду, минус выводят на наплавляемую деталь (анодное пятно – точка максимального разогрева дуги смещается к кончику электрода, металл меньше подвергается разогреву);
  • количество охлаждающей эмульсии регулируется, кран устанавливают на наплавочной головке аппарата вибродуговой наплавки;
  • струя направляется в область за столбом дуги, при попадании воды в дугу процесс восстановления нарушается;
  • соотношением скоростей вращения детали и подачи наплавочной проволоки регулируют толщину наплавляемого слоя (если подача наплавки опережает вращение, слой будет максимальным, при увеличении окружной скорости вибродуговой валик растягивается, становится уже, тоньше);
  • в аппарат заправляют проволоку толщиной от 1,5 до 2,5 мм;
  • равномерность издаваемого звука – залог образования слоя одинаковой толщины;
  • стабильность процесса контролируют с помощью амперметра – стрелка не должна сильно дергаться, когда резко отклоняется, шовный валик образуется прерывистым.

Пористость восстановленного слоя существенно зависит от чистоты поверхности и подаваемой охлаждаемой жидкости. От грязи появляются раковины. На рыхлость слоя влияет химический состав используемой проволоки, нужно выбирать состав, близкий к марке стали. Необходимо учитывать, что при слишком большой окружной скорости образуются несплошности.

Оборудование и материалы

В состав установки для вибродуговой наплавки металла на реставрируемые детали входит несколько устройств:

  • переоборудованный токарный станок, обеспечивающий необходимую скорость вращения зафиксированной в зажимах детали;
  • наплавочная вибродуговая головка, в этом качестве используют автоматические аппараты для дуговой сварки, источник электропитания.

В вибродуговых автоматах меняют конструкцию мундштука, вместо подачи флюса монтируют подачу защитного газа. Модифицируют головки ОКС-1252 и ОКС-6569.

Проволоки, применяемые для вибродуговой технологии:

  • для чугуна – Св-15;
  • для среднеуглеродистой стали – Св-18ХГСА, Св-08А, Нп-30ХГСА, Нп-50;
  • для обычной стали – 65Г.

В качестве запчастей необходимы направляющие трубки, мундштуки, направляющие ролики.

Вибродуговой наплавкой получают слой любой твердости, восстанавливать можно металл с различными техническими характеристиками, включая чугун, различные виды сталей.

Восстановление деталей наплавкой – какие способы существуют?

Восстановление деталей наплавкой – это методика, которая дает возможность вернуть тому или иному изделию его первоначальные характеристики, а в некоторых случаях даже придать ему новые особые качества.

1 Восстановление деталей методом наплавки – суть технологии

Под наплавкой принято понимать операцию нанесения на поверхность восстанавливаемого изделия из основного металла слоя присадочного расплавленного металла. В ходе такого процесса нужно добиться расплавления основного материала на незначительную глубину, чтобы получить гомогенный состав.

Восстановление деталей методом наплавки – суть технологии

Наплавка выполняется на всех без исключения поверхностях, начиная от конических и плоских и заканчивая сферическими и цилиндрическими.

Конечной целью описываемой процедуры обычно является восстановление исходных геометрических параметров обрабатываемого изделия. Но кроме того, наплавка позволяет произвести качественное упрочнение валов и других деталей, придать им новые формы, создать на поверхности дополнительный слой с конкретными механическими и физическими показателями (например, высокая жаростойкость, износостойкость, твердость, коррозионная стойкость, антифрикционность и так далее).

Технология наплавки по своей сути примерно идентична процессу сварки. По своим задачам они одинаковы, так как цель работ в обоих случаях - получение шва без ненужных включений, трещин, пор, а также защита наплавляемого материала от атмосферных газов. Когда выполняется восстановление деталей сваркой и наплавкой (а также их упрочнение), важно придерживаться ряда требований, а именно:

  • следует добиваться минимального смешивания основного и наплавляемого материала;
  • основной металл нужно проплавливать на как можно меньшую глубину;
  • припуски на обработку изделий, которая будет производиться после наплавки, важно уменьшать до приемлемых показателей;
  • необходимо обеспечивать наименьшие остаточные деформации и напряжения в изделии.

Восстановление деталей методом наплавки – суть технологии фото

Сейчас наплавка валов и деталей выполняется различными способами. Существуют такие виды наплавки:

  • порошковая;
  • импульсно-дуговая;
  • индукционная;
  • газовая;
  • вибродуговая;
  • электродуговая;
  • плазменная;
  • электрошлаковая.

2 Электродуговая восстановительная наплавка электродами с покрытием

Данный вид выполнения наплавочной процедуры считается самым распространенным. Подобная наплавка демонстрирует отличные результаты не только на промышленных объемах, но и в домашних условиях. Она очень удобна и проста, а главное – для нее не нужно приобретать какое-либо особое оборудование.

При электродуговом восстановлении важно правильно подобрать электрод, чтобы он смог сформировать наплавочный слой с требуемыми параметрами. Сечение стержня определяет форма и толщина детали, которую предстоит обработать, а конкретный тип электрода выбирается в зависимости от состава наплавляемого металла.

Стальные изделия в большинстве случаев восстанавливают рассматриваемым в статье способом в нижнем положении электрода током обратной полярности. При этом обязательно следует подготовить основной металл к процедуре, очистив его поверхность от ржавчины, остатков масла и прочих загрязнений.

Электродуговая восстановительная наплавка электродами с покрытием

Восстановление валов из низколегированных и низкоуглеродистых сталей производят чаще всего без их нагрева. А вот детали из других марок стали нередко подогревают (предварительно), а затем снимают с них внутренние напряжения, проводя их термическую обработку. Температура предварительного подогрева – от 300 градусов.

Наплавочные швы могут располагаться по-разному. Когда обработке подвергаются цилиндрические изделия, используются три основные схемы:

  • валики идут по винтовой линии;
  • валики по окружностям замкнутого типа;
  • валики вдоль образующей.

Первый способ считается оптимальным в тех случаях, когда наплавка ведется механизировано.

При работе с плоскими поверхностями говорят о двух распространенных схемах, предполагающих применение:

  • широких валиков (движения электрода в поперечном направлении делаются увеличенными);
  • узких валиков (они перекрывают друг друга примерно на треть своей ширины).

Восстановление "особых" деталей сваркой и наплавкой (например, элементов конструкций, функционирующих при повышенных нагрузках, измерительных и режущих приспособлений) может осуществляться твердыми сплавами, а не обычным металлом. В таких сплавах обычно присутствуют соединения никеля, кобальта, бора, железа, углерода с хромом, танталом, титаном, марганцем.

Электродуговая восстановительная наплавка электродами с покрытием фото

Если указанные изделия имеют большой показатель износа, перед основной наплавкой выполняют предварительную, используя сварные стержни, сделанные из стали с малым содержанием углерода. А вот в тех случаях, когда изготавливают новые режущие и измерительные приспособления с наплавкой твердосплавного типа, основанием для них служат заготовки из легированных и углеродистых марок стали.

Восстановление специального инструмента, как правило, выполняют следующими видами электродов:

А вот детали, работающие в сложных условиях, наплавляют стержнями Т-620, ОЗН-300М, Т-590, ОЗН-7М, ОМГ-Н.

3 Особенности наплавки в газовой защитной атмосфере

Восстановление валов и других изделий по технологии TIG (применяются присадочные прутки и сварочные стержни из вольфрама) и MIG/MAG (проволока подается автоматизировано) также широко применяется в настоящее время. Указанные методы предполагают использование азота, углекислоты, аргона или гелия в качестве защитного газа.

Азот обычно применяется при восстановлении медных деталей, а вот для валов и изделий из углеродистых сплавов чаще используют углекислый газ (при этом нужна раскисляющая проволока с включением кремния и марганца). Вольфрамовые неплавящиеся стержни применяют для восстановления в гелиевой либо аргоновой среде. Композиции на базе алюминия и магния, а также высоколегированные стали наплавляют в смеси гелия и аргона (изредка эти газы используются и отдельно).

Особенности наплавки в газовой защитной атмосфере

Наплавочную операцию по технологии TIG следует выполнять так, чтобы металл разбрызгивался незначительно. Выполняется это условие тогда, когда процесс ведется короткой дугой на прямой полярности, которая не позволяет электроду из вольфрама оплавляться. А вот MIG/MAG-технология осуществляется на токе обратной полярности.

Особенности наплавки в газовой защитной атмосфере фото

При восстановлении деталей из нержавеющей стали необходимо использовать проволоку из нержавейки. Полуавтоматическая наплавка низколегированных и углеродистых сплавов всегда производится двумя видами проволоки:

  • типа Нп (50, 40, 30ХГСА);
  • типа Св (08Г2С, 08ГС и др.).

Первые проволоки относят к специальным, вторые характеризуются сплошным сечением.

4 Восстановление деталей под слоем флюса – достоинства и недостатки

Данный метод оптимален для наплавки крупных по диаметру и геометрическим размерам валов, а также других деталей:

  • лопастей смесительных агрегатов;
  • компонентов ходовой части экскаваторов и тракторов;
  • элементов камнедробильного оборудования и специальных агрегатов.

Восстановление под слоем флюса предполагает, что электродуга горит между наплавляемым изделием и концом проволоки. Сама проволока поступает на участок обработки со специального устройства подачи. В эту же зону подается и флюс, создающий оболочку с высокими эластичными свойствами. Эта оболочка не дает азоту и кислороду из воздуха проникать в расплавленный материал.

Восстановление деталей под слоем флюса – достоинства и недостатки

Флюсы для наплавки бывают двух типов:

  1. Керамические. Состоят из различных компонентов – газо- и шлакообразующих, стабилизирующих, а также легирующих добавок. К таким флюсам относят составы серии "АНК" (19, 18).
  2. Плавленые. В них отсутствуют легирующие элементы, поэтому при их применении восстановленный слой не имеет высокого показателя твердости. Часто используемые плавленые флюсы – ОСЦ-45 и АН-348А.

Достоинства использования флюса для наплавки:

  • высокое качество полученного слоя по показателям плотности и однородности с заданными характеристиками и химсоставом;
  • отличная стабильность процесса восстановления и его высокая производительность;
  • возможность наплавления слоев существенной толщины (до 8 и более миллиметров).

К недостаткам данного метода восстановления валов и прочих изделий относят следующие факты:

  • нельзя получить слои меньше 1,5 миллиметров;
  • сложности при наплавке деталей с малым (до 5 сантиметров) сечением из-за того, что расплавленная ванна и флюс практически не держатся на поверхности обрабатываемых изделий;
  • физико-механические характеристики деталей изменяются, что обусловлено глубоким и быстрым нагревом при восстановлении (в ряде случаев отмечается и деформация изделий).

5 Кратко о других популярных методах наплавки

Высококачественное упрочнение и восстановление валов (как и иных деталей) также может выполняться при помощи вибрирующего электрода. Сам процесс в данном случае называют вибродуговой наплавкой. Она отличается от рассмотренной выше наплавки под флюсом тем, что конец сварочного стержня колеблется по отношению к восстанавливаемой поверхности перпендикулярно.

Кратко о других популярных методах наплавки

Отличный уровень сцепления основного материала и наплавленного слоя достигается при плазменной наплавке, которая выполняется струей плазмы. Такая струя представляет собой пучок высокоионизированного горячего газа, формирующегося в специальной горелке.

Кратко о других популярных методах наплавки фото

В последнее время набирает популярность электроконтактный способ наплавки. Он имеет очень высокую производительность (за минуту восстанавливается до 150 квадратных сантиметров поверхности изделия) и характеризуется несущественным тепловым влиянием и малой глубиной проплавления.

Механизированная сварка и наплавка: технология, оборудование, сущность и назначение


Создавать прочные стыки и восстанавливать изношенные покрытия можно разными способами. Сегодня под прицелом внимания один из них, а именно механизированная сварка и наплавка: рассмотрим, что она из себя представляет и какими методами может осуществляться, проанализируем преимущества и недостатки, которыми она обладает.

Обратите внимание, у нее широкая сфера применения: она выполняется как при изготовлении самых разных строительных конструкций (чаще всего труб), так и при ремонте активно использовавшихся функциональных узлов. С помощью тех или иных ее видов возвращают исходную геометрию шеек коленвалов, шлицов КПП и редукторов, элементов ходовой части гусениц и многих других предметов. В настоящее время считается наиболее перспективным направлением, а значит активно развивается.

сущность и назначение механизированной наплавки металлов

Что называют механизированной наплавкой

В общем случае это процесс нанесения специального слоя на изношенную поверхность, который, затвердев, не только восстановит начальную форму детали, но и станет своего рода защитным покрытием. Весь смысл (и главная особенность) здесь в том, как осуществляется данный вид работ, а реализовать его можно одним из двух вариантов:

  • • автоматически – как подача электродного материала, так и его перемещение (и заготовки тоже) в пространстве выполняется оборудованием; многие установки обеспечивают еще и поперечные колебания направляемого стержня, что позволяет уменьшить количество проходов;
  • • полуавтоматически – механическим путем выполняется только доставка проволоки (или другой присадки) в рабочую зону, по шлангу, после чего сварщик самостоятельно перемещает держатель с нею относительно заготовки.

У каждого есть свои особенности. Так, в первом случае может не хватить гибкости при позиционировании, во втором многое зависит от мастерства человека, решающего задачу. Хотя производительность труда в обеих ситуациях значительно выше, чем при любом из ручных методов (у них другие достоинства). Качество и равномерность покрытия, обычно, тоже лучше, что и обуславливает широту применения, особенно серийного.

механизированная наплавка поверхностей деталей

Технология механизированной наплавки

  • • Начальным этапом становится очистка поверхности детали от остатков смазочных материалов, грязи. Можно либо аккуратно обжечь ее с помощью горелки, либо промыть горячим щелочным раствором, после чего пройтись по ней щеткой. Это нужно для максимально равномерного осаждения восстанавливающего слоя.
  • • Следующий шаг – предупреждение значительных внутренних напряжений (если есть вероятность их возникновения), чтобы исключить появление трещин в нанесенном покрытии. Для этого необходимо подогреть обрабатываемый элемент до определенной температуры. До какой именно? Зависит от размеров, формы, характеристик заготовки, а также от конечных свойств присадки.
  • • Ну а затем осуществляется расплав – проволоки, металлической ленты, порошка – и непосредственное нанесение дополнительного материала на основной, под флюсом или без него, под защитой газа или без нее. Если при этом накладываются отдельные валики, стоит следить, чтобы каждый последующий перекрывал 0,4-0,5 ширины предыдущего.

Кажется, что все просто, и при должном уровне опыта так и есть, но важно не забывать, что правильная техника механизированной наплавки требует учитывать целый ряд нюансов. Даже при подготовке нужно:

  • • отшлифовать рабочие поверхности предмета шкуркой, если ранее он уже проходил процедуру восстановления;
  • • заглушить выходящие в зону контакта отверстия графитовыми стержнями или сразу пастой на основе жидкого стекла, причем сделать это предварительно, примерно за сутки;
  • • снять остатки смазки при помощи специально проколотых резиновых шайб, установленных перед головками;
  • • закрепить деталь в патроннике с достаточной надежностью – так, чтобы биение не было больше 1,5 мм.

Просто необходимо придерживаться не только выбранного способа (методы мы подробно рассмотрим ниже), но и режима плавления. Последний зависит от целого ряда факторов, в числе которых и величины напряжения с током, и характер вращения заготовки, и скорость подачи, и даже угол положения проволоки или ее длина.

В вопросе формирования валиков тоже есть своя специфика: при их нанесении важно проваривать основной материал неглубоко, так, чтобы его доля в покрытии не превышала 0,3-0,45 m. При этом нельзя вести дугу слишком быстро, иначе слои получатся узкими и пострадает качество сцепления.

Свои ограничения есть и по вылету присадочного прутка: чем он больше, тем значительнее сопротивление цепи, тем сложнее выполнять работу. Практическим путем обнаружено, что данная величина не должна превышать 25 мм.

что называют механизированной наплавкой

Виды механизированной наплавки

Сегодня актуальны такие способы:

  • • под флюсом;
  • • в защитной газовой среде;
  • • электроконтактный;
  • • электрошлаковый;
  • • вибродуговой;
  • • плазменный.

Теперь рассмотрим каждый из них подробнее.

Работы под флюсом удобны тем, что при их осуществлении воздух не воздействует на разгоряченный металл, что помогает избежать пор и в целом облегчает труд. Плюс, отсутствует разбрызгивание, выделяющееся тепло используется более эффективно, можно выполнить легирование.

Сам процесс отличается своей производительностью, и тому есть две причины:

  • • Вылет сравнительно малый, поэтому ток (не единицу площади стержня) в 7-8 раз выше, чем при ручной дуговой сварке.
  • • Образующийся шлак помогает минимизировать потери основного материала, что положительно сказывается на итоговом коэффициенте напайки (увеличивает его в 1,5-2 раза).

Роль электрода выполняет сплошная проволока сечением 1-6 мм, скорость ее подачи регулируется автоматическим устройством и составляет от 100 до 300 км/ч. К ней подводится «плюс» от источника (через мундштук из меди), тогда как «минус» – к самой заготовке (но ток при этом еще проходит через станину и съемник).

При этом флюс может быть стеклообразным, представляя собой размельченную смесь силикатов (серия АН), и только оберегать основной материал от воздуха. Или содержать в себе легирующие, связывающие, шлакообразующие, раскисляющие добавки и изменять физико-химические свойства наносимого покрытия.

Механизированная наплавка поверхностей деталей в защитной газовой среде проводится в пространстве, заполненном смесью аргона и водяного пара или CO2. Первый дорого стоит, поэтому на заводах по умолчанию используют CO2, ремонтируя в нем кузова, элементы кабин и оперения и многие другие заготовки.

Процесс протекает следующим образом: поданный в рабочую зону, углекислый газ вытесняет собой воздух, не давая кислороду или азоту негативно воздействовать на созданный шов. Проблема только в том, что дуга нагревается до 6000 0С, а при такой температуре связи в CO2 нарушаются, и реакция его распада провоцирует выгорание легирующих веществ и углерода в наносимом покрытии. Чтобы нивелировать возможный вред, следует использовать специальную присадочную проволоку из серии Св, в составе которой содержатся добавки титана, кремния, марганца.

механизированные способы сварки и наплавки деталей

Этот вариант обладает сразу четырьмя преимуществами:

  • • позволяет получить ровный, плотный и даже эстетичный слой (причем без шлака), не требующий какой-то последующей обработки;
  • • дает возможность решить вопрос в 1,5-3 раза быстрее, чем вручную;
  • • обеспечивает все условия для визуального контроля процесса;
  • • способствует попутному охлаждению заготовки, из-за чего поверхность последней не коробится.

В число минусов запишем относительную непрочность шва и сравнительно большое разбрызгивание.

Зато метод просто реализуется на практике: стандартного 40-литрового баллона углекислоты хватает на 20 часов работы. Содержащуюся в ней влагу не проблема нейтрализовать осушителем – медным купоросом. Отличным редуктором станет обычный кислородный. Все операции нужно проводить с подачей тока обратной полярности.

Есть как классические, так и современные механизированные способы сварки и наплавки деталей. Электроконтактная относится, скорее, ко второй категории, так как выполняется на модернизированном оборудовании. Для ее реализации используются машины, приваривающие проволочный или ленточный металл, в один или несколько проходов, и таким образом создающие равномерное покрытие нужной толщины (до 3 мм). Рациональнее, если слоев будет 2-4: это позволит сохранить все физико-механические свойства, исключая перегрев при проведении работ.

Перемешивание основного и дополнительного материала стремится к нулю, особенно при использовании промежуточных присадок – порошков ПГ-СР. При этом вполне реально поддерживать производительность на уровне 2-4 кг/ч.

Электрошлаковый метод позволяет ремонтировать даже сильно изношенные элементы, например, Он обеспечивает высокое качество шва, причем работу можно проводить действительно быстро, показатель в 30 г/Ач вполне реален.

  • • флюс нагревается дугой, после чего через него пропускается ток;
  • • в таких условиях электрод плавится и образует ванну вместе с основным металлом;
  • • кристаллизатор движется вверх с определенной скоростью, а нижние слои постепенно остывают.

Обратите внимание, рабочая зона в этом случае полностью защищена от влияния воздуха, поэтому ничто не мешает вводить легирующие добавки и использовать выделяющееся тепло с максимальной эффективностью.

Техника и технология механизированной наплавки вибродуговым способом сводится к использованию присадочного стержня, создающего колебания с амплитудой от 1 до 3 мм и частотой от 50 до 100 Гц. В результате весь процесс становится чередой из трех циклично повторяющихся этапов:

  • • горение;
  • • холостой ход;
  • • замыкание.

Причем на первом шаге выделяется до 9/10 всего тепла, а на третьем – только 1/10. Это объясняется тем, что 12-20 В, т. е. при малом напряжении источника тока в цепи есть индуктивность, а значит дуга остается стабильной, и ее вольтаж уже 30-35 В.

Для максимальной эффективности стоит подключать ток обратной полярности и выполнять работу в охлаждающей жидкой среде. Хорошо подойдет водный раствор глицерина (10%) или кальцинированной соды (5%), поданный за 40 мм от присадочного стержня. В результате нагрева он обратится в пар, который и заберет вредные азотистые соединения. Кроме того, Ca сделает горение более стабильным, а C3H8O3 предотвратит появление трещин.

Да, метод хорош малой зоной повышения температуры и почти полным отсутствием потерь легирующих элементов и позволяет получить тонкое, но прочное покрытие, но у него есть и недостаток. Минус в том, что усталостная прочность заготовки снижается – из-за появления пор в нанесенном слое, что частично ограничивает случаи применения.

Если же рассматривать современные механизированные способы наплавки, то самой прогрессивной считается плазменная технология. В соответствии с ней восстановление изношенной поверхности осуществляется под воздействием сильно нагретого и богато ионизированного газа – аргона, гелия, воздуха, азота с добавками.

сущность механизированной наплавки

Может осуществляться по одной из трех схем – с открытой, закрытой и комбинированной струей. В первом случае роль анода выполняет заготовка, во втором – горелка или сопло, в третьем – и то и другое.

Варианта реализации тоже два:

  • • плазма захватывает порошок и равномерно осаждает его на поверхность;
  • присадка сразу вводится в струю.

Метод обладает пятью практическими преимуществами:

  • • за счет концентрации высокой температуры зона термического влияния сужается;
  • • благодаря ему на сталь реально наносить самые разные износостойкие материалы, даже пластмассу;
  • • позволяет точно регулировать толщину слоя – от тонкой, в 0,1 мм, до 2-3 мм;
  • • отличается сравнительно высоким КПД дуги – достигает 45%;
  • • по нему можно выполнять еще и поверхностную закалку.

Оборудование для механизированной наплавки

Обычно это установки, «сердце» каждой из которых – переделанный токарный станок: вместо резцедержателя у него головка, также он оснащен источником питания и зачастую понижающим редуктором, уменьшающим вращение до 5 или даже до 2 об/мин.

Хотя для коленчатых валов есть техника, не требующая дополнительной доработки. Это машины вроде ОКС-5523 с универсальными центросмесителями, и они регулируют скорость бесступенчато.

Источники тока подключают самые разные, например, это может быть:

  • • выпрямитель из серии ВКС-500-1 или ВС-600;
  • • преобразователь вроде ПСУ-500-2 или ПСГ-500.

При выборе головок для подачи присадки традиционно отдают предпочтение моделям из семейств ОКС.

Наиболее распространенным электродом считается пружинная проволока сечением 1,6-2 мм, хотя также популярны серии Св и Нп, в том числе и низкоуглеродистые, и высоколегированные. Подбирать одну из них нужно так, чтобы наносимое покрытие по своему химическому составу было сходным с основным.

Флюс – это соединение из порошкового графита с феррохромом и жидкого стекла. Эти вещества смешивают в определенных пропорциях и прокаливают, потом дают настояться, а дальше добавляют к чистому и уже приготовленному. Затем остается лишь хранить его в сухой емкости и использовать по мере необходимости.

виды механизированной наплавки

Сущность механизированной наплавки и ее назначение

В общем случае это нанесение слоя материала на поверхность заготовки. Это нужно:

  • • для восстановления или изменения исходных размеров (геометрии) элемента, что особенно актуально, если это инструмент, например, режущая кромка;
  • • или придания новых свойств, допустим улучшения антикоррозионных характеристик или для повышения стойкости к истиранию.

Ну и в рассматриваемой нами ситуации процесс еще и должен быть наполовину или полностью автоматизированным.

Плюсы

  • • можно создавать покрытия значительной толщины (до 2-3 мм) и таким образом возвращать изначальную геометрию даже сильно изношенным изделиям;
  • • производительность в 1,5-3 раза выше, чем при любом из ручных методов;
  • • используемое оборудование сравнительно надежное и простое в транспортировке;
  • • отсутствуют ограничения по габаритам предметов – конусы доменных печей, сосуды атомных реакторов и другие большие объекты тоже реально защитить и восстановить;
  • • каждый метод достаточно легок в реализации;
  • • наносимый слой может быть какого угодно состава, от чистой меди до комбинированной пластмассы;
  • • наплавку не проблема сочетать с другими методами обработки, допустим, с азотированием или плазменной закалкой.

Минусы

  • • В ряде случаев в результате смешивания основного материала с добавленным, наблюдается ухудшение практических свойств;
  • • при неправильном выборе режима деформация, провоцируемая высокими температурами, может быть чрезмерной, что требует принятия дополнительных мер по сохранению геометрии заготовки;
  • • решающему задачу мастеру нужно обладать теоретическими знаниями в области сочетаемости металлов, чтобы сделать покрытие не просто равномерным, а с нужными свойствами;
  • • небольшое количество сочетаний по сравнению с тем же напылением;
  • • трудно покрывать малые элементы сложных форм – ванну приходится постоянно переносить и не всегда удается осуществить это плавно.

Выводы

Мы рассмотрели сущность и назначение механической наплавки металлов, со всеми ее плюсами и минусами, и, по нашему мнению, достоинства важнее недостатков, а значит этой технологией стоит пользоваться. Какой именно способ ее выполнения выбрать, решать вам. А выгодно заказать станки для реализации практически каждого из методов вы можете в нашей компании «Сармат».

Читайте также: