Магнетизм металлов что такое

Обновлено: 05.07.2024

Ферромагнетиков, то есть металлов, которые хорошо магнитятся, в природе существует всего 9. Это железо, кобальт, никель, их сплавы и соединения, а также шесть металлов- лантаноидов: гадолиний, тербий, диспрозий, гольмий, эрбий и тулий.

Металлы, притягивающиеся только к очень сильным магнитам (парамагнетики): алюминий, медь, платина, уран.

Поскольку в быту не встречаются настолько большие магниты, которые бы притянули парамагнетик, а также не встречаются металлы-лантаноиды, можно смело утверждать, что все металлы, кроме железа, кобальта, никеля и их сплавов не будут притягиваться к магнитам.

В справочных таблицах дана удельная магнитная восприимчивостьχ некоторых пара- и диамагнитных тел, которая для изотропных тел определяется выражением:

χ = Y / H

где Y обозначает намагниченность 1г тела, а Н — напряженность внешнего намагничивающего поля.

Таблица магнитная восприимчивость χ для элементов

Твердые тела предполагаются в изотропном состоянии. Температуры (t °С) отвечают стоградусной шкале.

Элементыt (°С)χ-10β
Азот18-0,34
Алюминий18+0,65
Аргон18-0,48
Барий20+0,91
Висмут18-1,38
260-1,02
Водород18-1,98
Вольфрам16+0,28
Гелий18-0,47
Золото18-0,15
-256,6-0,13
Иридий25+0,14
200+0,17
450-0,20
850-0,26
1150+0,31
Кадмий18-0,18
Калий20+0,52
Кальций20+1.10
Кислород20+106,2
Кислород жидкий-195+259,6
Кислород твердый-240+60
Кремний20-0,13
Литий16+0,50
Магний18+0,55
Магний жидкий700+0,55
Марганец22+9,9
Медь18-0,085
Молибден18+0,04
Натрий18+0,51
Неон18-0,33
Олово18+0,025
Олово серое18-0,35
Олово жидкое400-0,036
Палладий18+5,4
200+4,6
750+2,6
1230+1,7
Платина18-1,10
250-0,66
700-0,45
1220+0,30
Ртуть18-0,19
Ртуть твердая—80-0,15
Свинец16-0,11
Свинец жидкий330-0,08
Сера ромб18-0,49
Сера жидкая113-0,49
220-0,49
Серебро16-0,20
Сурьма16-0,87
Сурьма жидкая800-0,49
Тантал18+0,87
820+0,77
Углерод алмаз18-0,49
400-0,51
1200-0,56
Углерод графит20-3,5
-170-6,0
600-2,0
1000-1,3
Фосфор белый20-0,90
Хлор жидкий-60-0,57
Хром18+3,6
1100+4,2
Цинк18-0,157
Цинк жидкий450-0,09
Эрбий18+22

Таблица магнитная восприимчивость χ для некоторых соединений, органических и неорганических

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.

НЕМАГНИ́ТНЫЕ МАТЕРИА́ЛЫ

НЕМАГНИ́ТНЫЕ МАТЕРИА́ЛЫ, ма­те­риа­лы с низ­кой маг­нит­ной про­ни­цае­мо­стью ($μ⩽1,5$). Раз­ли­ча­ют диа- и па­ра­маг­нит­ные, сла­бо­фер­ро­маг­нит­ные и ан­ти­фер­ро­маг­нит­ные ма­те­риа­лы.

Стро­го го­во­ря, аб­со­лют­но не об­ла­даю­щих маг­нит­ны­ми свой­ст­ва­ми ма­те­риа­лов не су­ще­ст­ву­ет, т. к.

диа­маг­не­тизм – свой­ст­во, при­су­щее всем ве­ще­ст­вам, ко­то­рое в боль­шей или мень­шей сте­пе­ни мо­жет пе­ре­кры­вать­ся элек­трон­ным или ядер­ным па­ра­маг­не­тиз­мом, фер­ро­маг­не­тиз­мом или ан­ти­фер­ро­маг­не­тиз­мом.

К Н. м. от­но­сит­ся боль­шин­ст­во ме­тал­лов и спла­вов (в т. ч. ау­сте­нит­ные ста­ли и чу­гу­ны), а так­же боль­шин­ст­во по­ли­ме­ров и ком­по­зи­тов на их ос­но­ве, де­ре­во, стек­ло и мно­гие др. ма­те­риа­лы. Как кон­ст­рук­ци­он­ные ма­те­риа­лы наи­боль­шее рас­про­стра­не­ние, бла­го­да­ря вы­со­ким ме­ха­нич.

свой­ст­вам, из­но­со­стой­ко­сти и дол­го­веч­но­сти, по­лу­чи­ли ме­тал­лич. Н. м., гл. обр. не­маг­нит­ные ста­ли и чу­гу­ны, а так­же спла­вы ме­ди, алю­ми­ния, ти­та­на (напр., ни­ке­лид ти­та­на) и др.

Не­маг­нит­ность ста­лей и чу­гу­нов обес­печи­ва­ет­ся соз­да­ни­ем в них струк­ту­ры аусте­ни­та, что дос­ти­га­ет­ся со­от­вет­ст­ву­ю­щим ле­ги­ро­ва­ни­ем. Не­маг­нит­ные сталь и чу­гун ха­рак­те­ри­зу­ют­ся вы­со­ким удель­ным элек­три­че­ским со­про­тив­ле­ни­ем. Луч­ши­ми тех­но­ло­гич.

свой­ст­ва­ми об­ла­да­ют хро­мо­ни­ке­ле­вые не­маг­нит­ные ста­ли, вы­пус­кае­мые в ви­де лис­тов, про­воло­ки и лент. Ти­пич­ный со­став не­маг­нит­ной ста­ли: до 0,12% (по мас­се) $ce$, до 0,8% $ce$, 1–2% $ce$, 17–19% $ce$, 11–13% $ce$, ос­таль­ное – $ce;; μ$= 1,05–1,2.

Для де­та­лей слож­ной кон­фи­гу­ра­ции, от ко­то­рых не тре­бу­ет­ся вы­со­кой проч­но­сти, при­ме­ня­ют бо­лее де­шё­вые не­маг­нит­ные чу­гу­ны, удель­ное элек­трич. со­про­тив­ле­ние ко­то­рых (1,4–2,0 мкОм·м), как пра­ви­ло, боль­ше, чем у не­маг­нит­ных ста­лей (ок.

1 мкОм·м), что обес­пе­чи­ва­ет ма­лые по­те­ри энер­гии на вих­ре­вые то­ки в де­та­лях, ра­бо­таю­щих на пе­ре­мен­ном то­ке. Наи­бо­лее рас­про­стра­не­ны ни­кель-мар­ган­це­вые чу­гу­ны, со­дер­жа­щие (по­ми­мо $ce$) 2,6–3,2% $ce$, 5–7,5% $ce$, 9–12% $ce$, 2,5–3,5% $ce$ и до 1,1% $ce;; μ$=1,03–1,06. Н. м.

на ос­но­ве цвет­ных ме­тал­лов име­ют обыч­но бо­лее низ­кую маг­нит­ную про­ни­цае­мость, чем не­маг­нит­ные ста­ли и чу­гу­ны, хо­ро­шо об­ра­ба­ты­ва­ют­ся ре­за­ни­ем и дав­ле­ни­ем, од­на­ко их ме­ха­нич. свой­ст­ва не все­гда удов­ле­тво­ри­тель­ны, а элек­трич. со­про­тив­ле­ние ма­ло.

Н. м. при­ме­ня­ют для из­го­тов­ле­ния де­та­лей, ко­то­рые не долж­ны ока­зы­вать маг­нит­но­го влия­ния на ра­бо­чую сис­те­му из­ме­рит. ус­та­но­вок, при­бо­ров, ма­шин и ап­па­ра­тов. Из Н. м.

го­то­вят ко­роб­ки ком­па­сов, де­та­ли элек­тро­из­ме­рит.

при­бо­ров и ча­сов, не­маг­нит­ные пру­жи­ны, втул­ки и флан­цы (сквозь ко­то­рые про­хо­дят ка­бе­ли пе­ре­мен­но­го то­ка), стя­ги­ваю­щие бол­ты и ко­жу­хи транс­фор­ма­то­ров и элек­тро­ма­шин, спец. (не­маг­нит­ное) мед. обо­ру­до­ва­ние и др.

Естественнонаучные исследования

Эрстед, проводя эксперименты с магнитной стрелкой и проводником, приметил следующую особенность: разряд энергии, направленный в сторону к стрелке, мгновенно на нее действовал, и она начинала отклоняться.

Стрелка всегда отклонялась, с какой бы стороны он не подошел.

Продолжать многократные эксперименты с магнитом стал физик из Франции Доминик Франсуа Араго, взяв за основу трубку из стекла, перемотанную металлической нитью, посередине этого предмета он установил железный стержень. С помощью электричества, находившееся внутри железо начинало резко намагничиваться, из-за этого стали прилипать различные ключи, но стоило отключить разряд, и ключи сразу падали на пол. Исходя из происходящего физик из Франции Андре Ампер, разработал точное описание всего происходящего в этом эксперименте.

Когда магнит притягивает к себе металлические предметы, это кажется волшебством, но в действительности «волшебные» свойства магнитов связаны всего лишь с особой организацией их электронной структуры. Поскольку электрон, вращающийся вокруг атома, создает магнитное поле, все атомы являются маленькими магнитами; однако в большинстве веществ неупорядоченные магнитные эффекты атомов уравновешивают друг друга.


Магнитная цепочка

Касание конца магнита к металлическим скрепкам приводит к возникновению у каждой скрепки северного и южного полюса. Эти полюса ориентируются в том же направлении, что и у магнита. Каждая скрепка стала магнитом.

Бесчисленные маленькие магнитики

Некоторые металлы имеют кристаллическую структуру, образованную атомами, сгруппированными в магнитные домены. Магнитные полюса доменов обычно имеют различное направление (красные стрелки) и не оказывают суммарного магнитного воздействия.

Образование постоянного магнита


Обычно магнитные домены железа ориентированы бессистемно (розовые стрелки), и естественный магнетизм металла не проявляется. Если к железу приблизить магнит (розовый брусок), магнитные домены железа начинают выстраиваться вдоль магнитного поля (зеленые линии). Большинство магнитных доменов железа быстро выстраивается вдоль силовых линий магнитного поля. В результате железо само становится постоянным магнитом.

Магнитно-твердые материалы

Магнитно-твердые материалы применяются для изготовления постоянных магнитов. Эти материалы должны отвечать следующим требованиям:

  1. обладать большой остаточной индукцией;
  2. иметь большую максимальную магнитную энергию;
  3. обладать стабильностью магнитных свойств.

Самым дешевым материалом для постоянных магнитов является углеродистая сталь (0,4 – 1,7 % углерода, остальное – железо). Магниты, изготовленные из углеродистой стали, обладают невысокими магнитными свойствами и быстро теряют их под влиянием нагрева, ударов и сотрясений.

Легированные стали обладают лучшими магнитными свойствами и применяются для изготовления постоянных магнитов чаще, чем углеродистая сталь. К таким сталям относятся хромистая, вольфрамовая, кобальтовая и кобальто-молибденовая.

Для изготовления постоянных магнитов в технике разработаны сплавы на основе железа – никеля – алюминия. Эти сплавы отличаются высокой твердостью и хрупкостью, поэтому они могут обрабатываться только шлифованием. Сплавы обладают исключительно высокими магнитными свойствами и большой магнитной энергией в единице объема.

В таблице 1 приведены данные о составе некоторых магнитно-твердых материалов для изготовления постоянных магнитов.

Химический состав магнитно-твердых материалов

Наименование материалаХимический состав в весовых процентахОтносительный вес на единицу магнитной энергии
Углеродистая сталь Хромистая сталь Вольфрамовая сталь Кобальтовая сталь Кобальто-молибденовая сталь Альни Альниси Альнико Магнико0,45 C остальное Fe 2 – 3 Cr; 1 C 5 W; 1 C 5 – 30 Co; 5 – 8 Cr; 1,5 – 5 W 13 – 17 Mo; 10 – 12 Co 12,5 Al; 25 Ni; 5 Cн 14 Al; 34 Ni; 1 Si 10 Al; 17 Ni; 12 Co; 6 Cн 24 Co; 13 Si; 8 Al; 3 Cн26,7 17,2 15,8 5,1 – 12,6 3,8 3,6 3,4 3,1 1

Распределение парамагнетиков и диамагнетиков в периодической системе элементов Менделеева

Магнитные свойства простых веществ периодично изменяются с увеличением порядкового номера элемента.

Вещества, не притягивающиеся к магнитам (диамагнетики), располагаются преимущественно в коротких периодах – 1, 2, 3. Какие металлы не магнитятся? Это литий и бериллий, а натрий, магний и алюминий уже относят к парамагнетикам.

Алюминиевые банки

Вещества, притягивающиеся к магнитам (парамагнетики), расположены преимущественно в длинных периодах периодической системы Менделеева – 4, 5, 6, 7.

Однако последние 8 элементов в каждом длинном периоде также являются диамагнетиками.

Кроме того, выделяют три элемента – углерод, кислород и олово, магнитные свойства которых различны у разных аллотропных модификаций.

К тому же называют еще 25 химических элементов, магнитные свойства которых установить не удалось вследствие их радиоактивности и быстрого распада или сложности синтеза.

Магнитные свойства лантаноидов и актиноидов (все они являются металлами) меняются незакономерно. Среди них есть и пара- и диамагнетики.

Выделяют особые магнитоупорядоченные вещества – хром, марганец, железо, кобальт, никель, свойства которых изменяются незакономерно.

Какие металлы, кроме железа, притягиваются магнитом?

Какие металлы, кроме железа, притягиваются магнитом?

Интересно

Возможность магнита притягивать к себе различные металлические предметы наверняка хорошо знакома каждому. Присутствие их в повседневной жизни остается практически незамеченным, например, в виде различных изображений на дверцах холодильника. Не говоря уже о применении магнитов в медицине и других отраслях. Как устроен магнит и какие вещества он притягивает, помимо железа?

Что такое магнит и как он устроен?

Магнит – это тело, которое обладает собственным магнитным полем. Магниты бывают нескольких видов:

  1. Постоянные – изделия, которые после однократного намагничивания сохраняют данное свойство. Магниты разделяются на несколько подвидов в зависимости от силы и других параметров.
  2. Временные – функционируют по принципу постоянных, но лишь тогда, когда располагаются в сильном магнитном поле. Например, изделия из так называемого мягкого железа (гвозди, скрепки и т.п.).
  3. Электромагниты представляют собой провода, плотно намотанные на каркас. Как правило, такое устройство оснащено железным сердечником. Работает оно лишь при условии прохождения по проводу электрического тока.

Постоянный магнит – наиболее привычный и распространенный. Для его изготовления чаще всего используют следующие сочетания материалов:

  • неодим-железо-бор;
  • альнико или сплав ЮНДК (железо, алюминий, никель, кобальт);
  • самарий-кобальт;
  • ферриты (соединения оксидов железа и других металлов-ферримагнетиков).

Любой магнит имеет южный и северный полюс. Одинаковые полюса отталкиваются, а противоположные – притягиваются.

Интересный факт: магниты зачастую изготавливаются в виде подковы. Это делается для того, чтобы полюса располагались максимально близко друг к другу. Таким образом, создается сильное магнитное поле, которое способно притягивать более крупные части металла.

Почему магнит притягивает лишь определенные вещества?

Принцип его работы построен на создании магнитного поля при помощи движущихся электронов. В целом электрон является простейшим магнитом. А любая заряженная частица, находящаяся в движении, образует магнитное поле. Если движущихся частиц много, а их перемещение происходит вокруг одной оси, получается тело с магнитными свойствами.

Почему в таком случае магнит не притягивает все вещества подряд? В состав атома входит ядро, а также электроны, вращающиеся вокруг него. У электронов есть специальные уровни, по которым они вращаются, или орбиты. На каждом таком уровне расположено по 2 электрона. Причем вращаются они в разных направлениях.

Однако есть вещества под названием ферромагнетики. Некоторые электроны у них непарные. Соответственно, определенное их количество может вращаться в одном и том же направлении. Так создается магнитное поле вокруг каждого атома вещества.

Направление магнитного поля

Направление магнитного поля

К ферромагнетикам относятся такие металлы, как железо, кобальт, никель, гадолиний, тербий, диспрозий, гольмий, эрбий. Также аналогичными свойствами характеризуются некоторые металлические сплавы и соединения. Количество ферромагнетиков неметаллического происхождения не так велико или пока мало изучено. К ним относится, например, оксид хрома.

Магнитной восприимчивостью характеризуются вещества (преимущественно металлы), которые обладают определенной структурой. Их называют ферромагнетиками – это вещества, у которых магнитные поля атомов складываются в одном направлении. Помимо железа, к ферромагнетикам относятся кобальт, никель, тербий, гадолиний, диспрозий, гольмий, эрбий. Также магнит притягивает некоторые сплавы и даже неметаллические вещества – например, оксид хрома.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Магнетизм

Благодаря различию свойств на уровне атомно-молекулярного строения все вещества по своим магнитным свойствам подразделяются на три класса — ферромагнетики, парамагнетики и диамагнетики.

Согласно закону Ампера, электрический ток производит магнитное поле. Электрон, вращающийся вокруг атома, можно рассматривать как циклический электрический ток очень малой силы и радиуса. Однако магнитное поле он, и это не удивительно, всё равно индуцирует. Фактически же, все электроны, вращаясь вокруг атомов, производят свое магнитное поле, и каждый атом, как следствие, обладает собственным магнитным полем, которое представляет собой суммарное поле, или суперпозицию магнитных полей отдельных электронов.

Теперь мы подходим к главному. В некоторых атомах равное число электронов вращается во всевозможных направлениях, и их магнитные поля взаимно гасятся. Однако в атомах некоторых элементов орбиты электронов могут быть ориентированы таким образом, что часть электронов производит магнитные поля, остающиеся некомпенсированными за счет полей электронов, обращающихся в противоположном направлении. И когда такие магнитные поля, связанные с вращением электронов по орбите, к тому же оказываются одинаково направленными у всех атомов кристаллической структуры вещества, он, в целом, создает вокруг себя стабильное и достаточно сильное магнитное поле. Любой фрагмент такого вещества представляет собой маленький магнит с четко выраженными северным и южным полюсами.

Именно совокупное поведение таких мини-магнитов атомов кристаллической решетки и определяет магнитные свойства вещества. По своим магнитным свойствам вещества делятся на три основных класса: ферромагнетики, парамагнетики и диамагнетики. Имеется также два обособленных подкласса материалов, выделенных из общего класса ферромагнетиков — антиферромагнетики и ферримагнетики. В обоих случаях эти вещества относятся к классу ферромагнетиков, но обладают особыми свойствами при низких температурах: магнитные поля соседних атомов выстраиваются строго параллельно, но в противоположных направлениях. Антиферромагнетики состоят из атомов одного элемента и, как следствие, их магнитное поле становится равным нулю. Ферримагнетики представляют собой сплав двух и более веществ, и результатом суперпозиции противоположно направленных полей становится макроскопическое магнитное поле, присущее материалу в целом.

Ферромагнетики

Некоторые вещества и сплавы (прежде всего, следует отметить железо, никель и кобальт) при температуре ниже точки Кюри приобретают свойство выстраивать свою кристаллическую решетку таким образом, что магнитные поля атомов оказываются однонаправленными и усиливают друг друга, благодаря чему возникает макроскопическое магнитное поле за пределами материла. Из таких материалов получаются постоянные магниты. На самом деле магнитное выравнивание атомов обычно не распространяется на неограниченный объем ферромагнитного материала: намагничивание ограничивается объемом, содержащим от нескольких тысяч до нескольких десятков тысяч атомов, и такой объем вещества принято называть доменом (от английского domain — «область»). При остывании железа ниже точки Кюри формируется множество доменов, в каждом из которых магнитное поле ориентировано по-своему. Поэтому в обычном состоянии твердое железо не намагничено, хотя внутри него образованы домены, каждый из которых представляет собой готовый мини-магнит. Однако под воздействием внешних условий (например, при застывании выплавленного железа в присутствии мощного магнитного поля) домены выстраиваются упорядоченно и их магнитные поля взаимно усиливаются. Тогда мы получаем настоящий магнит — тело, обладающее ярко выраженным внешним магнитным полем. Именно так устроены постоянные магниты.

Парамагнетики

В большинстве материалов внутренние силы выравнивания магнитной ориентации атомов отсутствуют, домены не образуются, и магнитные поля отдельных атомов направлены случайным образом. Из-за этого поля отдельных атомов-магнитов взаимно гасятся, и внешнего магнитного поля у таких материалов нет. Однако при помещении такого материала в сильное внешнее поле (например, между полюсами мощного магнита) магнитные поля атомов ориентируются в направлении, совпадающем с направлением внешнего магнитного поля, и мы наблюдаем эффект усиления магнитного поля в присутствии такого материла. Материалы, обладающие подобными свойствами, называются парамагнетиками. Стоит, однако убрать внешнее магнитное поле, как парамагнетик тут же размагничивается, поскольку атомы снова выстраиваются хаотично. То есть, парамагнетики характеризуются способностью к временному намагничиванию.

Диамагнетики

В веществах, атомы которых не обладают собственным магнитным моментом (то есть в таких, где магнитные поля гасятся еще в зародыше — на уровне электронов), может возникнуть магнетизм иной природы. Согласно второму закону электромагнитной индукции Фарадея, при увеличении потока магнитного поля, проходящего через токопроводящий контур, изменение электрического тока в контуре противодействует увеличению магнитного потока. Вследствие этого, если вещество, не обладающее собственными магнитными свойствами, ввести в сильное магнитное поле, электроны на атомных орбитах, представляющие собой микроскопические контуры с током, изменят характер своего движения таким образом, чтобы воспрепятствовать увеличению магнитного потока, то есть, создадут собственное магнитное поле, направленное в противоположную по сравнению с внешним полем сторону. Такие материалы принято называть диамагнетиками.

В отношении магнитных свойств вещества важно усвоить, что они зависят от конфигурации электронных орбит атомов. Даже после разбиения на отдельные атомы железо, например, сохранит свои ферромагнитные свойства. А вот при дальнейшем дроблении вы получите лишь элементарные частицы, которые собственными магнитными свойствами не обладают, и описать природу магнетизма будет уже нельзя. Итак, магнитные свойства вещества зависят исключительно от конфигурации элементарных частиц в составе атома и организации кристаллических доменов, но никак ни от свойства заряженных частиц атомной структуры.

Магнетизм железа и никеля — на Земле и внутри Земли

Магнетизм Земли определяется железом и никелем ее ядра. Но пока не до конца ясно, как именно. Фото: Science Photo Library / AFP («Коммерсантъ Наука» №6, сентябрь 2017)

Люди знают о земном магнетизме уже несколько тысячелетий, но его причина пока так и не выяснена. Теоретические исследования уральских физиков могут ответить на этот вопрос.

Магнитные свойства железа были обнаружены за несколько тысячелетий до н. э. Так, в Китае кусочки магнитных материалов использовались для создания компаса. В 1269 году была написана «Книга о магните» Петра Перегрина, а в 1600 году Уильям Гильберт написал трактат «О магните», описывающий основные свойства магнитов и анализирующий магнетизм Земли. Сегодня железо, включая его магнитные свойства, находит множество самых разных технологических применений. Железо — не единственное магнитное вещество, можно отметить никель и кобальт, заинтересовавшие человечество много позже и также широко использующиеся в настоящее время.

Несмотря на столь долгий срок изучения магнетизма, это явление по-прежнему порождает новые вопросы. В быту мы ощущаем магнетизм как притяжение или отталкивание между телами. В физике же под магнетизмом понимается способность тела сохранять остаточную намагниченность (то есть свое собственное магнитное поле) в отсутствие магнитного поля внешнего. А уже это собственное поле может воздействовать на другие магнитные тела.

Две концепции магнетизма

Общим свойством большинства магнитных веществ является то, что их магнетизм обусловлен атомами так называемых переходных металлов, содержащих d-электроны (индекс d относится к определенному виду симметрии электронных состояний атома). Переходные металлы — это не только железо, кобальт и никель, их несколько десятков.

Локализованная и зонная картины ферромагнетизма («Коммерсантъ Наука» №6, сентябрь 2017)

Локализованная (вверху) и зонная (внизу) картины ферромагнетизма

С появлением понятия спина электрона и соответствующего ему магнитного момента были предложены две различные квантово-механические картины магнетизма — локализованная и зонная.

Локализованная картина, сформулированная Гейзенбергом, предполагала, что электроны в кристалле не перескакивают с одного атома на соседний, однако между электронами с соседних атомов есть обменное взаимодействие. Это сугубо квантовый эффект, обусловленный разницей энергий параллельного и антипараллельного упорядочения спинов. Зонная картина Стонера, напротив, подразумевала возможность движения электронов, а их взаимодействие в основном осуществлялось в пределах одного атома.

На первый взгляд, зонная картина выглядела более применимой к переходным металлам. Но некоторые явления она объяснить не могла, например, закон Кюри — Вейсса, описывающий линейную зависимость обратной восприимчивости от температуры (восприимчивость — это отклик системы на слабое внешнее магнитное поле). В то же время было совершенно не очевидно, почему картина локализованных электронов, которая, как казалось, не может быть применима к переходным металлам (в частности, к железу), гораздо лучше описывает эксперимент.

В конце 1950-х — начале 1960-х годов Нэвилл Мотт, а за ним Джон Гуденаф предположили, что часть электронов в железе (а именно, электроны, соответствующие так называемым eg-состояниям, их два из пяти возможных d-состояний на атоме) характеризуются «непроводящими волновыми функциями», то есть они не перепрыгивают, являются локализованными.

Хотя к тому времени концепция перехода электронов из зонного, проводящего состояния в локализованное уже возникла (благодаря работам Мотта), предположение Мотта — Гуденафа находилось далеко за гранью существовавших тогда теоретических подходов. Оно соответствует введенным много позже так называемым орбитально-зависимым переходам металл — изолятор (orbital-selective Mott transition).

Разработанные позже (в 1980-х годах) методики расчета обменных взаимодействий в металлах на основе зонной теории позволили получить определенные теоретические указания на существование локализованных моментов в железе, но уже в самом методе этих расчетов был заложен, тем не менее, проводящий, зонный характер электронов.

Петр Перегрин (Petrus Peregrinus) — этим латинским псевдонимом подписывал свою труды французский физик XIII века Пьер Пелерен де Марикур (Pierre Pelerin de Maricourt). Точные даты его жизни неизвестны. Перегрин — автор первого экспериментального исследования и первого детального научного труда по магнетизму.

Уильям Гильберт (William Gilbert), 1544–1603 — английский физик и придворный врач, исследователь электричества и магнетизма, автор первой теории магнитных явлений.

Сэр Невилл Франсис Мотт (Nevill Francis Mott), 1905–1996 — английский физик, лауреат Нобелевской премии по физике в 1977 г., совместно с Филипом Андерсоном и Джоном ван Флеком, «за фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем», автор теории индуцированных взаимодействием переходов из металлического в изоляторное состояние.

Джон Гуденаф (John Goodenough), род. 1922 — американский ученый, специалист в области физики и материаловедения.

Первые шаги к объединенной теории

Ситуация изменилась лишь в конце 1990-х — начале 2000-х годов с появлением и развитием так называемой динамической теории среднего поля. Эта теория приближенно сводит сложную проблему движения электронов в кристалле к рассмотрению изменения их состояния со временем на одном выбранном атоме. Теория позволила описать переходы металл — изолятор в ряде веществ, что, естественно, привело к вопросу о ее способности объяснить магнетизм переходных металлов.

В частности, железо и никель были исследованы в рамках этой теории Михаилом Кацнельсоном, Александром Лихтенштейном совместно с американским физиком Габриэлем Котляром в 2001 году.

Ими впервые из полностью микроскопического (то есть исходящего из первопринципных уравнений) расчета в рамках зонной картины было получено линейное поведение обратной восприимчивости с температурой (закон Кюри — Вейсса), которое обычно интерпретируется как указание на присутствие локальных моментов. Также ими была найдена слабая зависимость локальной восприимчивости от времени (на оси мнимого времени, которое проще изучать с теоретической точки зрения), свидетельствующая о наличии локальных моментов. В какой-то момент казалось, что проблема железа и других переходных металлов почти решена.

Энергетические зоны

В атоме уровни энергии электрона дискретны. В кристаллическом твердом теле же образуются целые диапазоны разрешенных энергий (разрешенные зоны) и запрещенных энергий (запрещенные зоны). Несколько упрощая, можно сказать, что разрешенные зоны формируются из атомных уровней при объединении атомов в кристалл, а оставшееся место занято запрещенными зонами.

Развитие классических идей новыми методами

Однако появление в середине 2000-х годов концепции орбитально-зависимых переходов металл — изолятор вновь заставляло пересмотреть и дополнить полученные ранее результаты. Здесь я перехожу к моим, совместно с коллегами, исследованиям. Мой интерес к проблеме железа возник в 2007 году в результате обсуждений в недавно созданном в Екатеринбурге Институте квантового материаловедения, но затем вышел за рамки этого института. В частности, для меня представлял интерес вопрос о том, как идеи Мотта и Гуденафа могут быть далее развиты уже с помощью современных методов анализа электронных корреляций.

Схема электронной конфигурации атома железа («Коммерсантъ Наука» №6, сентябрь 2017)

Схема электронной конфигурации атома железа. Концентрические окружности соответствуют разным энергетическим уровням атома. Зеленые точки изображают электроны на орбиталях s (круговых), синие — на p (вытянутых), оранжевые — на d-орбиталях с более сложным распределением в пространстве

В связи с этим возникла идея провести рассмотрение железа в рамках динамической теории среднего поля, обратив внимание на вклад различных электронных орбиталей в наблюдаемые свойства. Уже из зонной структуры следовало, что вклады t2g и eg — электронных состояний в железе должны быть различны. (Здесь обозначения t2g и eg вновь относятся к симметрии электронных d-состояний на кубической решетке, на каждом атоме из пяти возможных d-состояний имеется три t2g-состояния и два eg-состояния — на каждую из двух возможных проекций спина электрона. В твердом теле эти состояния образуют, соответственно, t2g- и eg-зоны). Действительно, две электронные зоны — t2g и eg — устроены совершенно по-разному (точнее, у них разная зависимость энергии электрона от импульса). А оставшиеся менее существенные, так называемые нелокальные эффекты могли быть рассмотрены по теории возмущений.

С рассмотрения этой проблемы началось мое сотрудничество с группой Владимира Анисимова в Институте физики металлов УрО РАН. Как показали проведенные расчеты в методе динамической теории среднего поля, поведение t2g- и eg-электронов совершенно различно. В частности, так называемая собственная энергия электронов, описывающая влияние взаимодействия электронов на их движение, имеет различную зависимость от энергии для t2g- и eg-состояний. Причем зависимость, полученная для eg-состояний, действительно свидетельствовала о возможности их локализации. Кроме того, были вычислены также орбитальные вклады в локальную (то есть соответствующую реакции одного выбранного атома на приложенное к нему внешнее магнитное поле) восприимчивость. Оказалось, что вклад eg-состояний в локальную восприимчивость хорошо описывается законом Кюри (частный случай закона Кюри — Вейсса), что вновь свидетельствовало о сильной локализации этих состояний. В то же время, вклад t2g-состояний проявляет более сложную температурную зависимость, но за счет смешанных t2g-eg-вкладов полная локальная восприимчивость также удовлетворяет закону Кюри. Динамическая локальная восприимчивость, определяемая как отклик уже на зависящее от времени внешнее магнитное поле, демонстрирует характерный для систем с локальными моментами узкий пик.

Строго говоря, в вышеописанном законе Кюри для локальной восприимчивости присутствует также небольшая поправка. Она указывает на существование малой температуры, ниже которой локальные моменты перестают существовать, будучи, как говорят, экранированными подвижными электронами проводимости (это называется эффектом Кондо, по имени открывшего эффект японского физика).

Схема возникновения косвенного обмена РККИ («Коммерсантъ Наука» №6, сентябрь 2017)

Схема возникновения косвенного обмена РККИ между локальными моментами (длинные стрелки) через электроны проводимости (короткие стрелки). i, j соответствуют двум различным атомам, I — взаимодействие Хунда, тонкие стрелки показывают направление перескока

Реальное рассмотрение нелокальных эффектов (в том числе и природы магнитного обмена) в рамках теории возмущений было выполнено значительно позже, в 2015–2017 годах в сотрудничестве с Петром Игошевым, Александром Белозеровым и Владимиром Анисимовым. Для вычисления магнитного обмена можно следовать давней идее, что он обусловлен косвенным обменом через электроны проводимости. Это так называемый механизм РККИ: Рудермана — Киттеля — Касуи — Иосиды (Ruderman — Kittel — Kasuya — Yosida); в Советском Союзе аналогичные идеи развивались Семеном Шубиным и Сергеем Вонсовским. Косвенный обмен — это взаимодействие локальных моментов через посредство подвижных, свободных электронов. Проблема, однако, в том, что четкое разделение между этими состояниями в переходных металлах отсутствует, так как локальные моменты имеют конечное время жизни, и один и тот же электрон может быть локализованным или делокализованным в разные моменты времени. Эту проблему, однако, удается обойти (по крайней мере, для железа) с помощью математических преобразований — переписав восприимчивость электронной системы в виде, где взаимодействие между эффективными магнитными моментами становится явно выделенным. При этом оно как раз имеет форму РККИ. Полученные «квазилокальные» моменты можно затем связать с наблюдаемыми локальными моментами. Указанный подход дает хорошие результаты, сопоставимые с полученными ранее в рамках чисто зонных теорий, в которых, как уже сказано, понятие локального момента отсутствует.

Таким образом, в железе имеются хорошо определенные локальные моменты, появляющиеся в результате обменного взаимодействия. Одновременно были вычислены нелокальные поправки, позволившие добиться хорошего согласия с экспериментальными данными.

Железо, никель и магнетизм Земли

Как показали недавние исследования совместно с группой Дж. Санджованни в Университете Вюрцбурга (Германия), магнитные свойства никеля проявляют черты как сходства, так и отличия от железа. Отличие атома никеля от железа состоит в том, что он имеет восемь, а не шесть d-электронов. Хотя, сходно с железом, локальная восприимчивость никеля подчиняется закону Кюри — Вейсса, в никеле она имеет совершенно иное происхождение, а именно, в значительной мере обусловлена зонной структурой, а не взаимодействием. Кроме того, в никеле локальный момент сравнительно мал и к тому же уже при высоких температурах частично экранирован. Единственная роль взаимодействия состоит в резком уменьшении температуры Кондо, выше которой локальные моменты хорошо определены, с нескольких тысяч до нескольких сотен градусов.

Под высоким давлением железо становится немагнитным. Но добавление небольшого количества никеля возвращает магнетизм

Эти (и некоторые другие, не описанные здесь) интересные особенности никеля получили недавно дальнейшее развитие в сплавах железо-никель под давлением. Под давлением железо оказывается в особой, так называемой эпсилон-фазе, которая кардинально отличается от «обычной» альфа-фазы железа. В частности, эпсилон-железо абсолютно не обладает локальными магнитными моментами. Однако добавление к эпсилон-железу атомов никеля даже в небольшой концентрации качественно изменяет ситуацию.

Особенности электронной структуры никеля и эпсилон-железа таковы, что магнитные свойства их сплава, содержащего даже небольшое количество никеля, оказываются близкими свойствам «обычного» никеля. Указанный факт может иметь важные последствия для объяснения земного геомагнетизма. Внутреннее ядро Земли, как предполагается, как раз содержит железо и никель в концентрации примерно 4:1. Хотя при высоких внутриземных температурах железо жидкое, подвижность атомов железа невелика, и их состояние можно соотнести с одной из кристаллических фаз. При этом немагнитная эпсилон-фаза, по-видимому, наиболее энергетически выгодна. А тогда именно присутствие в ядре Земли никеля может обеспечить появление магнитного поля Земли благодаря так называемому эффекту геодинамо (вращению жидкого ядра), поддерживаемого благодаря результирующей низкой теплопроводности сплава железо-никель. Таким образом, абсолютно теоретические исследования сплавов железо-никель могут прояснить одну из пока не решенных задач — задачу о происхождении магнитного поля Земли.

Читайте также: