Металлы а групп презентация

Обновлено: 05.10.2024

1. Общая характеристика металлов главных подгрупп I-III групп ПСХЭ Д.И.Менделеева

2. Характеристика металлов главной подгруппы I группы

Щелочны́е мета́ллы: литий Li, натрий Na,
калий K, рубидий Rb, цезий Cs и франций
Fr. Эти металлы получили название
щелочных, потому что большинство их
соединений растворимо в воде. По-славянски
«выщелачивать» означает «растворять»,
это и определило название данной группы
металлов. При растворении щелочных
металлов в воде образуются растворимые
гидроксиды, называемые щёлочами.

3. Строение атомов щелочных металлов

Все щелочные металлы имеют один s-электрон на внешнем
электронном слое, который при химических реакциях легко теряют,
проявляя степень окисления +1. Поэтому щелочные металлы
являются сильными восстановителями.

4. Физические свойства

цезий
литий
Все металлы этой подгруппы имеют серебристо-белый цвет
(кроме серебристо-жёлтого цезия), они очень мягкие, их
можно резать скальпелем. Литий, натрий и калий легче
воды и плавают на её поверхности, реагируя с ней. Поэтому
хранят эти металлы под слоем керосина или парафина.
калий
натрий
рубидий

6. Получение щелочных металлов

1. Для получения щелочных металлов используют в основном
электролиз расплавов их галогенидов, чаще всего — хлоридов,
образующих природные минералы:
катод: Li+ + e → Li
анод: 2Cl- — 2e → Cl2
2. Иногда для получения щелочных металлов проводят электролиз
расплавов их гидроксидов:
катод: Na+ + e → Na
анод: 4OH- — 4e → 2H2O + O2
Поскольку щелочные металлы в электрохимическом ряду напряжений
находятся левее водорода, то электролитическое получение их из растворов
солей невозможно; в этом случае образуются соответствующие щёлочи и
водород.

7. Химические свойства

Реакции с неметаллами
(образуются бинарные соединения):
4Li + O2 2Li2O(оксид лития)
2Na + O2 Na2O2(пероксид натрия)
K + O2 KO2(надпероксид калия)
2Li + Cl2 = 2LiCl(галогениды)
2Na + S = Na2S(сульфиды)
2Na + H2 = 2NaH(гидриды)
6Li + N2 = 2Li3N(нитриды)
2Li + 2C = 2Li2C2(карбиды)

Активно взаимодействуют с водой:
2Na + 2H2O 2NaOH + H2
2Li + 2H2O 2LiOH + H2
Реакция с кислотами:
2Na + 2HCl 2NaCl + H2

Качественная реакция на катионы щелочных металлов окрашивание пламени в следующие цвета:
Li+ - карминово-красный
Na+ - желтый
K+, Rb+ и Cs+ - фиолетовый
Так выглядит проба
на окрашивание
пламени солями
натрий
Карминовокрасное
окрашивание
пламени солями
лития
Окрашивание
пламени
горелки
ионами калия

10. Обобщим химические свойства щелочных металлов

11. Характеристика металлов главной подгруппы II группы

Атомы этих
элементов имеют на
внешнем
электронном уровне
два s-электрона: ns2.
В реакциях атомы
элементов подгруппы
легко отдают оба
электрона внешнего
энергетического
уровня и образуют
соединения, в
которых степень
окисления элемента
равна +2.

12. Физические свойства

Бериллий, магний,
кальций, барий и
радий - металлы
серебристо-белого
цвета. Стронций имеет
золотистый цвет. Эти
металлы легкие,
особенно низкие
плотности имеют
кальций, магний,
бериллий. Радий
является
радиоактивным
химическим
элементом.

13. Получение щелочноземельных металлов

Электролизом расплавов их хлоридов или
термическим восстановлением их
соединений:
BeF2 + Mg = Be + MgF2
MgO + C = Mg + CO
3CaO + 2Al = 2Ca + Al2O3
3BaO + 2Al = 3Ba + Al2O3

14. Химические свойства

Щелочноземельные элементы - химически активные
металлы. Они являются сильными
восстановителями. Из металлов этой подгруппы
несколько менее активен бериллий, что обусловлено
образованием на поверхности этого металла защитной
оксидной пленки.
кальций
магний
бериллий

15. Взаимодействие с простыми веществами

Все легко взаимодействуют с кислородом и серой, образуя
оксиды и сульфаты:
2Be + O2 = 2BeO
Ca + S = CaS
Бериллий и магний реагируют с кислородом и серой при
нагревании, остальные металлы - при обычных условиях.
Все металлы этой группы легко реагируют с галогенами:
Mg + Cl2 = MgCl2
При нагревании все реагируют с водородом, азотом, углеродом,
кремнием и другими неметаллами:
Ca + H2 = CaH2 (гидрид кальция)
3Mg + N2 = Mg3N2 (нитрид магния)
Ca + 2C = CaC2 (карбид кальция)

16. Взаимодействие с кислотами

Все взаимодействуют с хлороводородной и разбавленной
серной кислотами с выделением водорода:
Be + 2HCl = BeCl2 + H2
Разбавленную азотную кислоту металлы восстанавливают
главным образом до аммиака или нитрата аммония:
2Ca + 10HNO3(разб.) = 4Ca(NO3)2 + NH4NO3 +
3H2O
В концентрированных азотной и серной кислотах (без
нагревания) бериллий пассивирует, остальные металлы
реагируют с этими кислотами.

17. Взаимодействие со щелочами

Бериллий взаимодействует с водными
растворами щелочей с образованием
комплексной соли и выделением водорода:
Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2
Остальные металлы II группы с щелочами не
реагируют.

18. Алюминий

13Al
[Ne]
2
1
3s 3p
Алюминий находится в главной п/группе III
группы периодической системы.
На внешнем энергетическом уровне
имеются свободные р-орбитали, что
позволяет ему переходить в возбужденное
состояние. В возбужденном состоянии атом
алюминия образует три ковалентные связи
или полностью отдает три валентных
электрона, проявляя степень окисления +3.

19. Физические свойства

20. Химические свойства

С простыми веществами:
1)
С кислородом:
4Al0 + 3O2 → 2Al+32O3
2)
С галогенами:
2Al0 + 3Br20 → 2Al+3Br3
3) С другими неметаллами (азотом, серой, углеродом) реагирует
при нагревании:
2Al0 + 3S t°→ Al2+3S3(сульфид алюминия)
2Al0 + N2 t° → 2Al+3N(нитрид алюминия)
4Al0 + 3С → Al4+3С3(карбид алюминия)
Сульфид и карбид алюминия полностью гидролизуются:
Al2S3 + 6H2O → 2Al(OH)3¯ + 3H2S
Al4C3 + 12H2O → 4Al(OH)3¯+ 3CH4

Со сложными веществами:
4)
С водой (после удаления защитной оксидной пленки):
2Al0 + 6H2O ® 2Al+3(OH)3 + 3H2
5)
Со щелочами:
2Al0 + 2NaOH + 6H2O ® 2Na[Al+3(OH)4]
(тетрагидроксоалюминат натрия) + 3H2
6) Легко растворяется в соляной и разбавленной серной
киcлотах:
2Al + 6HCl ® 2AlCl3 + 3H2
2Al + 3H2SO4(разб) ® Al2(SO4)3 + 3H2
При нагревании растворяется в кислотах - окислителях:
2Al + 6H2SO4(конц) ® Al2(SO4)3 + 3SO2 + 6H2O
Al + 6HNO3(конц) ® Al(NO3)3 + 3NO2 + 3H2O
7)
Восстанавливает металлы из их оксидов (алюминотермия):
8Al0 + 3Fe3O4 ® 4Al2O3 + 9Fe
2Al + Cr2O3 ® Al2O3 + 2Cr

22. Получение алюминия

23. Применение алюминия

— в электротехнике
— для производства легких сплавов
(дюралюмин, силумин) в самолето- и
автомобилестроении
— для алитирования чугунных и
стальных изделий с целью повышения
их коррозионной стойкости
— для термической сварки
— для получения редких металлов в
свободном виде
— в строительной промышленности
— для изготовления контейнеров,
фольги и т.п.

Общая характеристика металлов IА группы.
презентация к уроку по химии (9 класс) на тему

Презентация к уроку "Общая характеристика металлов I А группы".Цель презентации : дать характеристику элементам IA группы по их положению в периодической системе химических элементов,рассмотреть физические и химические свойства, области применения.

ВложениеРазмер
obshchaya_kharakteristika_metallov_ia_gruppy.ppt 2.72 МБ
Подтяните оценки и знания с репетитором Учи.ру

За лето ребенок растерял знания и нахватал плохих оценок? Не беда! Опытные педагоги помогут вспомнить забытое и лучше понять школьную программу. Переходите на сайт и записывайтесь на бесплатный вводный урок с репетитором.

Вводный урок бесплатно, онлайн, 30 минут

Предварительный просмотр:

Подписи к слайдам:

По теме: методические разработки, презентации и конспекты


Общая характеристика металлов (проверочная работа)

Проверочная работа состоит из 2-х частей. Часть А- химический диктант. Часть В- нужно написать уравнения реакций.


ЛЕКЦИЯ №3 "Общая характеристика металлов 1-3 групп"

ЛЕКЦИЯ №3 по химии для 11 класса (профиль)Раздел 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИИТема 2 Периодический закон и.

ТЕСТ 3.2. (1-16) по теме «Общая характеристика металлов главных подгрупп I-III групп" для 11 кл ЕГЭ

ТЕСТ 3.2. 11 класс ( профиль) подготовка к ЕГЭТема: «Общая характеристика металлов гла.


Общая характеристика металлов

Материал может быть использован в 11 классе при изучении общей характеристики металлов к учебнику Г.Е.Рудзитиса и Ф.Г.Фельдмана.


Презентация к уроку "Общая характеристика металлов"

Презентация поможет более наглядно продемонстрировать свойства металлов, объяснить их строение, типы кристаллических решеток, применение металлов и сплавов, а также закрепить материал. Тестирование со.

Презентация к уроку по теме: "Общая характеристика металлов"

Для учащихся 9-11 классов.


Технологическая карта урока по химии 9 класс Общая характеристика металлов

Технологическая карта урока по химии 9 класс Общая характеристика металлов в соответствии требованиями ФГОС.

Презентация "Металлы главных подгрупп"
презентация к уроку по химии (11 класс)

Презентация "Металлы главных подгрупп" предназдначена для проведения теоретического занятия по химии. содержит текст лекции, тест и вопросы для выполнения домашнего задания.

ВложениеРазмер
metally_glavnyh_podgrupp.pptx 419.33 КБ

Государственное бюджетное профессиональное образовательное учреждение Департамента здравоохранения города Москвы “Медицинский колледж №5” (ГБПОУ ДЗМ “МК №5”ОП1) Презентация на тему: «Металлы главных подгрупп » Вид занятия: лекция дисциплина ОУДп.02. ХИМИЯ Специальность34.02.01 Сестринское дело (базовая подготовка) Преподаватель Субботина Е.В. Москва 2020

Изучив эту тему, Вы будете Знать: 1.с троение, свойства, классификацию металлов главных подгрупп 2.способы получения металлов 3. применениещелочных металлов Уметь: 1.соотносить строение веществ, их свойства и применение на примере наиболее часто используемых полимеров. 2.использовать химические знания в повседневной жизни.

Содержание учебного занятия 1.характеристика металлов главных подгрупп 2 .Физические свойства металлов главных подгрупп 3 .химические свойства алюминия 4 .Способы получения 5 .Применение полимеров 6. ЖЕСТКОСТЬ ВОДЫ И СПОСОБЫ ЕЕ УСТРАНЕНИЯ

Характеристика Щелочные металлы — это металлы главной подгруппы I группы. Их атомы на внешнем энергетическом уровне имеют по одному электрону. Щелочные металлы — сильные восстановители. Их восстановительная способность и химическая активность возрастают с увеличением порядкового номера элемента (т. е. сверху вниз в Периодической таблице). Все они обладают электронной проводимостью. Прочность связи между атомами щелочных металлов уменьшается с увеличением порядкового номера элемента. Также снижаются их температуры плавления и кипения. Щелочные металлы взаимодействуют со многими простыми веществами — окислителями.

Щелочноземельными элементами называются элементы главной подгруппы II группы. Атомы этих элементов содержат на внешнем энергетическом уровне по два электрона. Они являются восстановителями, имеют степень окисления +2. В этой главной подгруппе соблюдаются общие закономерности в изменении физических и химических свойств, связанные с увеличением размера атомов по группе сверху вниз, также ослабевает и химическая связь между атомами. С увеличением размера иона ослабевают кислотные и усиливаются основные свойства оксидов и гидроксидов.

Главную подгруппу III группы составляют элементы бор, алюминий, галлий, индий и таллий, элементы относятся к р-элементам. На внешнем энергетическом уровне они имеют по три (s 2 p 1 ) электрона, чем объясняется сходство свойств. Степень окисления +3. Внутри группы с увеличением заряда ядра металлические свойства увеличиваются. Бор — элемент-неметалл, а у алюминия уже металлические свойства. Все элементы образуют оксиды и гидроксиды. кциях с водой они образуют растворимые в воде основания (щелочи).

Физические свойства 1 подгруппа Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней. Поэтому хранят эти металлы под слоем керосина или парафина. Литий 2 подгруппа Бериллий, магний, кальций, барий и радий - металлы серебристо-белого цвета. Стронций имеет золотистый цвет. Эти металлы легкие, особенно низкие плотности имеют кальций, магний, бериллий. Радий является радиоактивным химическим элементом. Стронций 3 подгруппа Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. По электропроводности занимает 4-е место после Сu , Аg , Аu . Галлий

Химические свойства алюминия Алюминий – химически активный металл, но прочная оксидная пленка определяет его стойкость при обычных условиях. Практически во всех химических реакциях алюминий проявляет восстановительные свойства .

Взаимодействие с неметаллами С кислородом взаимодействует только в мелкораздробленном состоянии при высокой температуре: 4Al + 3O 2 = 2Al 2 O 3 , реакция сопровождается большим выделением тепла. Выше 200°С реагирует с серой с образованием сульфида алюминия: 2Al + 3S = Al 2 S 3 . При 500°С – с фосфором, образуя фосфид алюминия: Al + P = AlP. При 800°С реагирует с азотом, а при 2000°С – с углеродом, образуя нитрид и карбид: 2Al + N 2 = 2AlN, 4Al + 3C = Al 4 C 3 . С хлором и бромом взаимодействует при обычных условиях, а с йодом при нагревании, в присутствии воды в качестве катализатора: 2Al + 3Cl 2 = 2AlCl 3 С водородом непосредственно не взаимодействует. С металлами образует сплавы, которые содержат интерметаллические соединения – алюминиды, например, CuAl 2 , CrAl 7 , FeAl 3 и др.

Взаимодействие с водой Очищенный от оксидной пленки алюминий энергично взаимодействует с водой: 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 в результате реакции образуется малорастворимый гидроксид алюминия и выделяется водород

Взаимодействие с кислотами Легко взаимодействует с разбавленными кислотами, образуя соли: 2Al + 6HCl = 2AlCl 3 + 3H 2 ; 2Al + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 3H 2 ; 8Al + 30HNO 3 = 8Al(NO 3 ) 3 + 3N 2 O + 15H 2 O (в качестве продукта восстановления азотной кислоты также может быть азот и нитрат аммония). С концентрированной азотной и серной кислотами при комнатной температуре не взаимодействует, при нагревании реагирует с образованием соли и продукта восстановления кислоты: 2Al + 6H 2 SO 4 = Al 2 (SO 4 ) 3 + 3SO 2 + 6H 2 O; Al + 6HNO 3 = Al(NO 3 ) 3 + 3NO 2 + 3H 2 O.

Взаимодействие со щелочами Алюминий – амфотерный металл, он легко реагирует со щелочами: в растворе с образованием тетрагидроксодиакваалюмината натрия: 2Al + 2NaOH + 10H 2 O = 2Na[Al(H 2 O) 2 (OH) 4 ] + 3H 2 при сплавлении с образованием алюминатов: 2Al + 6KOH = 2KAlO 2 + 2K 2 O + 3H 2 .

Восстановление металлов из оксидов и солей Алюминий – активный металл, способен вытеснять металлы из их оксидов. Это свойство алюминия нашло практическое применение в металлургии: 2Al + Cr 2 O 3 = 2Cr + Al 2 O 3 .

Способы получения металлов Получение щелочных металлов 1. Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов , чаще всего — хлоридов, образующих природные минералы: катод: Li + + e → Li анод: 2Cl- — 2e → Cl 2 2. Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов : катод: Na + + e → Na анод: 4OH- — 4e → 2H 2 O + O 2 Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.

Электролизом расплавов их хлоридов или термическим восстановлением их соединений: MgO + C = Mg + CO Получение щелочноземельных металлов

III группа 1. Электролиз расплава AlCl 3 : 2AlCl 3 = 2Al + 3Cl 2 2. Основной промышленный способ - электролиз расплава Al 2 O 3 ( глинозема) в криолите 3 NaF • AlF 3 : 2Al 2 O 3 = 4AI + 3O 2 3. Вакуумтермический : AlCl 3 + ЗК = Al + 3KCl

1. Щелочные металлы в природе встречаются только в форме соединений. Так как щелочные металлы очень легко и быстро окисляются. Они вступают в реакцию с кислородом, водой. Натрий и калий являются постоянными составными частями многих весьма распространенных силикатов. Из отдельных минералов натрия важнейший–поваренная соль ( NaCl ) –входит в состав морской воды и на отдельных участках земной поверхности образует под слоем наносных пород громадные залежи так называемой каменной соли. В верхних слоях подобных залежей иногда содержатся и скопления солей калия в виде минералов сильвинита ( KCl – NaCl ), карналлита (KCl·MgCl 2 ·6Н 2 О). Для лития известен ряд минералов (например, сподумен – LiAl (SiO 3 ) 2 ), но скопления их редки. Рубидий и цезий встречаются почти исключительно в виде примесей к другим щелочным металлам. Следы франция всегда содержатся в урановых рудах. Нахождение в природе

2. Как и щелочные металлы, магний и щелочноземельные металлы в природе встречаются только в виде соединений. Их природные соединения: CaCO 3 ∙MgCO 3 –доломит; MgCO 3 –магнезит; KCl∙MgCl 2 · 6Н 2 O – карналлит; MgSO 4 ·7Н 2 O – горькая (английская) соль; CaCO 3 - кальцит (известняк, мел, мрамор); СаF 2 – флюорит; Ca 3 (PO 4 ) 2 – фосфорит; BaSO 4 - барит.

Соединения Соединения элементов 1 группы Гидриды. Ме + Н - ( Me = Li , Na , К, Rb , Cs ) Гидриды - сильнейшие восстановители. С водой они реагируют, выделяя водород, например: NaH + H 2 О = NaOH + H 2 Оксиды. Na 2 О + H 2 О = 2NaOH, а п ероксиды выделяют кислород: 2Na 2 О 2 + 2H 2 О = 4NaOH + О 2 ↑ Соли. Na 2 SО 3 + H 2 О-NaHSО 3 + NaOH CH 8 COONa + H 2 O = CH 3 COOH + NaOH Na 2 CО 3 + H 2 О-NaHCО 3 + NaOH

Соединения элементов 2 группы Оксиды металлов II А группы Общая формула МеО 1) Окисление металлов (кроме Ba , который образует пероксид) 2Са + О 2 → 2СаО 2) Термическое разложение нитратов или карбонатов CaCO 3 CaO + CO 2 ­ 2Mg(NO 3 ) 2 2MgO + 4NO 2 ­ + O 2

Соединения элементов 3 группы Оксид и гидроксид этого металла являются амфотерными, т.е. проявляют как основные, так и кислотные свойства. Основные свойства: Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O 2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 6H 2 O Кислотные свойства: Al 2 O 3 + 6KOH +3H 2 O = 2K 3 [Al(OH) 6 ] 2Al(OH) 3 + 6KOH = K 3 [Al(OH) 6 ] Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Жесткость воды и способ ее устранения Природная вода, проходя через известковые горные породы и почвы, обогащается солями кальция и магния (а также железа) и становится жёсткой. В жесткой воде при стирке белья увеличивается расход мыла, а ткань, впитывая соли, становится желтой и быстро ветшает. Накипь – нерастворимые соединения кальция и магния и оксид железами), осаждающиеся на внутренних стенках посуды, паровых котлов и трубопроводов. В жесткой воде дольше варятся овощи, крупы и мясо. Различают временную и постоянную жесткость воды.

Временная жесткость вызвана присутствием в воде гидрокарбонатов М(НСO 3 ) 2 (М = Са, Mg) и Fe(HCO 3 ) 2 . Если количественно определяют содержание ионов HCO 3 - , говорят о карбонатной жесткости, если содержание ионов Са 2+ , Mg 2+ и Fe 2+ – о кальциевой, магниевой или железной жесткости. Временная жесткость тем выше, чем больше содержание этих ионов в воде. Жесткость воды назвали временной потому, что она устраняется простым кипячением: Са(НСO 3 ) 2 = СаСO 3 v + Н 2 O + СO 2 ^ Mg(HCO 3 ) 2 = Mg(OH) 2 v + 2СO 2 ^ 4Fe(HCO 3 ) 2 + O 2 = 2Fe 2 O 3 v + 8CO 2 ^ + 4H 2 O Постоянная жесткость обусловлена другими солями кальция и магния (сульфаты, хлориды, нитраты, дигидро-ортофосфаты и др.). Такая жесткость не устраняется кипячением воды. Поэтому для удаления из жесткой воды большей части всех солей ее умягчают, используя химические реактивы и специальные (ионообменные) способы. Умягченная вода пригодна для питья и приготовления пищи.

Умягчение воды достигается, если ее обработать различными осадителями – гашеной известью, содой и ортофосфатом натрия: устранение временной жесткости: Са (НСO 3 ) 2 + Са (ОН) 2 = 2СаСO 3 v + 2Н 2 O Mg (HCO 3 ) 2 + Ca (OH) 2 = CaMg (CO 3 ) 2 v + 2Н 2 O 4Fe(HCO 3 ) 2 + 8Са(ОН) 2 + O 2 = 4FeO(OH)v + 8СаСO 3 v + 10Н 2 O устранение постоянной жесткости: Ca (NO 3 ) 2 + Na 2 CO 3 = СаСO 3 v + 2NaNO 3 2MgSO 4 + Н 2 O = Na 2 CO 3 = Mg 2 CO 3 (OH) 2 v + СO 2 ^ + 2Na 2 SO 4 3FeCl 2 + 2Na 3 PO 4 = Fe 3 (PO 4 ) 2 v + 6NaCl В химической лаборатории и в промышленности используется полностью обессоленная вода (для питья она непригодна). Для получения обессоленной воды природную воду подвергают перегонке (дистилляции). Такая дистиллированная вода является мягкой, подобно дождевой воде .

Тест по теме Выбираем один правильный ответ: 1.Все металлы: восстановители; окислители; не изменяют степеней окисления; 2. Самый большой радиус атома имеет металл: литий; мышьяк; уран; 3.Наименьшей электроотрицательностью обладает: дубний; натрий; марганец;

4.Восстановительные свойства наиболее ярко выражены у металла: магния; полония; франция; 5. Самый большой заряд ядра имеет атом металла: индий; лантан; актиний; 6.Во всех металлах вид химической связи: ионная; металлическая; ковалентная;

7.Наиболее пластичным является металл: золото; натрий; ртуть; 8. Наибольшей отражательной способностью обладает: палладий; кальций; хром; 9. Наибольшую электрическую проводимость имеет металл: свинец; медь; марганец;

10. Самый легкий металл: литий; кальций; калий; 11. Самый тяжелый металл: свинец; осмий; вольфрам; 12.Самый твердый металл: хром; полоний; калий;

13.К ферромагнетикам относят: гадолиний; рубидий; барий; 14. К благородным металлам относят: платина; аргон; железо; 15 Натрий взаимодействует с: кислородом, галогенами, водородом; кислородом, инертными газами, водородом; азотом, кислородом, оксидом лития;

16. Натрий взаимодействует с: водой, фенолом, этиловым спиртом; кальцием, хлором, оксидом алюминия; водой, хлором, оксидом углерода;

Критерии оценки: 2 ошибки-оценка 4 3ошибки- оценка 3 4 ошибки и более-оценка 2

Рефлексия что понравилось на уроке? что было непонятно? что было сложным? Сегодня я узнал. Сегодня я понял Сегодня я научился Сегодня я смог Сегодня меня удивило

Домашнее задание Письменно ответьте на вопросы: Что такое коррозия? Какие виды коррозии вы знаете? Чем химическая коррозия отличается от химической? Опишите способы защиты металлов от коррозии? Что такое руды? Что такое металлургия? Что такое пирометаллургия? Пример реакции Что такое гидрометаллургия? Пример реакции Что такое электрометаллургия?


Урок: Металлы главной подгруппы I группы периодической системы.

Продолжительность занятия: 45 минут.Цель занятия: Изучение физических и химических свойств щелочных металлов, основных способах их получения и областях применения.Методичес.


V группа главная подгруппа. Азот

Данная мультимедийная презентация может быть использована на уроке в 9 классе, при изучении данной темы.

IV группа главная подгруппа. УГЛЕРОД

Данная презентация может быть использована на уроке в 9 классе при изучении данной темы.

Урок - семинар по теме: «Металлы главных подгрупп I–III групп и побочных подгрупп периодической системы химических элементов Д.И.Менделеева»

В этой работе показана разработка урока – обобщения (урок-семинар) по теме «Металлы».Такая форма организации обобщающего урока способствует развитию познавательного интереса и активизации .


Элементы II группы главной подгруппы. План-конспект урока
Урок химии в 9 классе. Зачет по теме VI-VII группа главная подгруппа

Обобщающий урок после изучения VI-VII Группы главной подгруппы. Позволяет расширить знания обучающихся по темам и получить дополнительные оценки.Способствует сплочению коллектива работа в группах.

Презентация по химии на тему "Металлы I А группы" (9 класс)

Цель урока: формирование понятий о физических и химических свойствах щелочных металлов.Образовательные
Задачи урока: дать общую характеристику щелочных металлов в свете общего;
познакомить учащихся с практическим применением щелочных металлов.

Строение и свойства атомов

Щелочные металлы — это элементы главной подгруппы I группы :
литий Li,
натрий Nа,
калий К,
рубидий Rb,
цезий Сs ,
франций Fr.

На внешнем энергетическом уровне атомы этих элементов содержат по одному электрону, находящемуся на сравнительно большом удалении от ядра. Они легко отдают этот электрон, поэтому являются очень сильными восстановителями. Во всех своих соединениях щелочные металлы проявляют степень окисления +1. Восстановительные свойства их усиливаются при переходе от Li к Сs, что связано с ростом радиусов их атомов. Это наиболее типичные представители металлов: металлические свойства выражены у них особенно ярко.

Серебристо-белые мягкие вещества (режутся ножом), с характерным блеском на свежесрезанной поверхности. Все они легкие и легкоплавкие, причем, как правило, плотность их возрастает от Li к Сs, а температура плавления, наоборот, уменьшается.

Все щелочные металлы чрезвычайно активны, во всех химических реакциях проявляют восстановительные свойства, отдают свой единственный валентный электрон, превращаясь в положительно заряженный катион.
В качестве окислителей могут выступать простые вещества – неметаллы, оксиды, кислоты, соли, органические вещества.

Взаимодействие с неметаллами

Щелочные металлы легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:
оксид образует только литий:
4Li + O2 = 2Li2O,
натрий образует пероксид:
2Na + O2 = Na2O2,
калий, рубидий и цезий – надпероксид:
K + O2 = KO2.

Взаимодействие с водородом, серой, фосфором, углеродом, кремнием протекает при нагревании:
с водородом образуются гидриды:
2Na + H2 = 2NaH,
с серой – сульфиды:
2K + S = K2S,
с фосфором – фосфиды:
3K + P = K3P,
с кремнием – силициды:
4Cs + Si = Cs4Si,
с углеродом карбиды образуют литий и натрий:
2Li + 2C = Li2C2

С азотом легко реагирует только литий, реакция протекает при комнатной температуре с образованием нитрида лития:
6Li + N2 = 2Li3N.

С галогенами все щелочные металлы образуют галогениды:
2Na + Cl2 = 2NaCl.

Взаимодействие с
водой

Все щелочные металлы реагируют с водой, литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Щелочные металлы способны реагировать с разбавленными кислотами с выделением водорода, однако реакция будет протекать неоднозначно, поскольку металл будет реагировать и с водой, а затем образующаяся щелочь будет нейтрализоваться кислотой.
При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.
Взаимодействие щелочных металлов с кислотами практически всегда сопровождается взрывом, и такие реакции на практике не проводятся.

Взаимодействие с кислотами

Соединения щелочных металлов
В свободном виде в природе щелочные металлы не встречаются из-за своей исключительно высокой химической активности. Некоторые их природные соединения, в частности соли натрия и калия, довольно широко распространены, они содержатся во многих минералах, растениях, природных водах.

Гидроксид натрия NаОН в технике известен под названиями едкий натр, каустическая сода, каустик.
Техническое название гидроксида калия КОН — едкое кали.
Оба гидроксида — NaОН и КОН разъедают ткани и бумагу, поэтому их называют также едкими щелочами.
Едкий натр применяется в больших количествах для очистки нефтепродуктов, в бумажной и текстильной промышленности, для производства мыла и волокон.
Едкое кали дороже и применяется реже. Основная область его применения — производство жидкого мыла.

Соли щелочных металлов — твердые кристаллические вещества ионного строения.
.
Nа2СO3 — карбонат натрия, образует кристаллогидрат Nа2СO3* 10Н2O, известный под названием кристаллическая сода, которая применяется в производстве стекла, бумаги, мыла.
Вам в быту более известна кислая соль — гидрокарбонат натрия NаНСO3, она применяется в пищевой промышленности (пищевая сода) и в медицине (питьевая сода).
К2С03 — карбонат калия, техническое название — поташ, используется в производстве жидкого мыла.
Nа2SO4 • 10Н2O — кристаллогидратат сульфата натрия, техническое название — глауберова соль, применяется для производства соды и стекла и в качестве слабительного средства.

NаСl — хлорид натрия, или поваренная соль, эта соль вам хорошо известна из курса прошлого года. Хлорид натрия является важнейшим сырьем в химической промышленности, широко применяется и в быту.

Спасибо за внимание!

Рабочие листы и материалы для учителей и воспитателей

Более 3 000 дидактических материалов для школьного и домашнего обучения

Металлы II A группы и их соединения. Жёсткость воды МБОУ СОШ 99 г.о. Самара Предмет: Химия Класс: 9 Учебник: Минченков Е.Е. и др., 2006 г. Учитель: Лузан. - презентация

Презентация на тему: " Металлы II A группы и их соединения. Жёсткость воды МБОУ СОШ 99 г.о. Самара Предмет: Химия Класс: 9 Учебник: Минченков Е.Е. и др., 2006 г. Учитель: Лузан." — Транскрипт:

1 Металлы II A группы и их соединения. Жёсткость воды МБОУ СОШ 99 г.о. Самара Предмет: Химия Класс: 9 Учебник: Минченков Е.Е. и др., 2006 г. Учитель: Лузан У.В. Год создания: 2012

2 Атомы этих элементов имеют на внешнем электронном уровне два s- электрона : ns 2. В реакциях атомы элементов подгруппы легко отдают оба электрона внешнего энергетического уровня и образуют соединения, в которых степень окисления элемента равна +2.

3 Бериллий, магний, кальций, барий и радий - металлы серебристо - белого цвета. Стронций имеет золотистый цвет. Эти металлы легкие, особенно низкие плотности имеют кальций, магний, бериллий. Радий является радиоактивным химическим элементом.

5 Электролизом расплавов их хлоридов или термическим восстановлением их соединений : BeF 2 + Mg = Be + MgF 2 MgO + C = Mg + CO 3CaO + 2Al = 2Ca + Al 2 O 3 3BaO + 2Al = 3Ba + Al 2 O 3

6 Щелочноземельные элементы - химически активные металлы. Они являются сильными восстановителями. Из металлов этой подгруппы несколько менее активен бериллий, что обусловлено образованием на поверхности этого металла защитной оксидной пленки. кальций магний бериллий

7 Все легко взаимодействуют с кислородом и серой, образуя оксиды и сульфаты : 2Be + O 2 = 2BeO Ca + S = CaS Бериллий и магний реагируют с кислородом и серой при нагревании, остальные металлы - при обычных условиях. Все металлы этой группы легко реагируют с галогенами : Mg + Cl 2 = MgCl 2 При нагревании все реагируют с водородом, азотом, углеродом, кремнием и другими неметаллами : Ca + H 2 = CaH 2 ( гидрид кальция ) 3Mg + N 2 = Mg 3 N 2 ( нитрид магния ) Ca + 2C = CaC 2 ( карбид кальция )

8 Все взаимодействуют с хлороводородной и разбавленной серной кислотами с выделением водорода : Be + 2HCl = BeCl 2 + H 2 Разбавленную азотную кислоту металлы восстанавливают главным образом до аммиака или нитрата аммония : 2Ca + 10HNO 3 ( разб.) = 4Ca(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O В концентрированных азотной и серной кислотах ( без нагревания ) бериллий пассивирует, остальные металлы реагируют с этими кислотами.

9 Бериллий взаимодействует с водными растворами щелочей с образованием комплексной соли и выделением водорода : Be + 2NaOH + 2H 2 O = Na 2 [Be(OH) 4 ] + H 2 Остальные металлы II группы с щелочами не реагируют.

10 Жесткость воды Жёсткость воды - свойство воды ( не мылиться, давать накипь в паровых котлах ), связанное с содержанием растворимых в ней соединений кальция и магния это параметр, показывающий содержание катионов кальция, магния в воде. Жесткая вода образует накипь на стенках нагревательных котлов, батареях, чем существенно ухудшает их теплотехнические характеристики. Жесткая вода мало пригодна для стирки. Накипь на нагревателях стиральных машин выводит их из строя, она ухудшает еще и моющие свойства мыла. Катионы Ca2+ и Mg2+ реагируют с жирными кислотами мыла, образуя малорастворимые соли, которые создают пленки и осадки, в итоге снижая качество стирки и повышая расход моющего средства, т. е. жесткая вода плохо мылится

11 Существует два типа жесткости : временная и постоянная. Обусловлено это различие типом анионов, которые присутствуют в растворе в качестве противовеса кальцию и магнию. Временная жесткость связана с присутствием в воде наряду с катионами Ca2+, Mg2+ и Fe2+ гидрокарбонатных, или бикарбонатных анионов (HCO3-). Постоянная жесткость ( или некарбонатная ) возникает, если в растворе присутствуют сульфатные, хлоридные, нитратные и другие анионы, соли кальция и магния которых хорошо растворимы и так просто не удаляются. Общая жесткость определяется как суммарное содержание всех солей кальция и магния в растворе.

12 Для устранения карбонатной жёсткости воду кипятят. Общую жёсткость устраняют или добавлением химических веществ, или при помощи так называемых катионитов. При использовании химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты, например добавляют известковое молоко и соду : Са + 2 НСО 3 + Са + 2 ОН = 2 Н 2 О + 2 СаСО 3 Са + SO4 + 2Na + CO3 = 2Na + SO4 + CaCO3

Читайте также: