Требование к металлическим конструкциям которое определяется сроками физического и морального износа

Обновлено: 21.09.2024

Долговечность - это время, в течение которого в зданиях и сооружениях эксплуатационные качества сохраняются на заданном проектном уровне в соответствии с нормативными сроками службы. При этом она не зависит от периодически проводимых текущих и капитальных ремонтов.
Различают физическую и моральную (технологическую) долговечность, а также обратные им понятия - физический износ и моральный износ (старение).

Физическая долговечность зависит от физико-технических характеристик конструкции: прочности, жесткости, геометрической неизменяемости, тепло- и звукоизоляции, герметичности и других параметров.


Моральная долговечность определяется соответствием зданий и сооружений по геометрическим размерам, благоустройству, архитектуре, технологической оснащенности и т.д. своему функциональному назначению.
Существует также понятие оптимальной долговечности, а именно, срока службы зданий и сооружений, в течение которого экономически целесообразно поддерживать их в рабочем состоянии. После этого затраты на содержание становятся нецелесообразными, так как значительно превышают сметную стоимость нового строительства.
В ходе эксплуатации здания и сооружения подвергаются воздействию многочисленных природных и технологических факторов, учитываемых в рабочем проекте при выборе материалов, конструкций и т.п. Однако на практике соответствие фактических характеристик строительных материалов и конструкций может существенно отличаться от нормативных, в результате чего суммарное воздействие многих факторов может привести к ускоренному износу сооружений.

Физический износ конструкций зданий и сооружений - это потеря ими своих первоначальных качеств. В процессе физического износа конструкций можно выделить следующие моменты:

  • во-первых, период приработки, деформаций и повышение износа; он непродолжителен и на него распространяются гарантии, выдаваемые строительной организацией в соответствии с видом конструкции и характером ее работы: в этот период, как правило, выполняются ремонтные работы после прекращения осадок зданий и сооружений;
  • во-вторых, период нормальной эксплуатации, медленного износа, во время которого накапливаются необратимые деформации, приводящие к структурных изменениям материала конструкции и постепенному его разрушению;
  • в-третьих, период ускоренного износа, когда он достигает критического значения и возникает вопрос о целесообразности проведения ремонта или разборки зданий и сооружений

Моральный износ (старение) здании и сооружении различают двух форм:

  • под моральным износом первой формы понимают обесценивание ранее построенных здании и сооружении. Он не имеет практического значения, ибо здания и сооружения не могут быть проданы на рынке и подлежат сносу или разборке;
  • моральный износ второй формы - это технологическое старение, требующее дополнительных капитальных вложений на модернизацию здании и сооружений в соответствии с современными технологиями. С данным видом старения наиболее часто приходится встречаться на практике. Определение морального старения второй формы очень сложный процесс и носит индивидуальный характер.

В то время, как моральный износ первой формы практически не связан с дополнительными затратами, моральный износ второй формы требует более 25% стоимости ремонтных работ. В настоящее время около 75% капитальных вложений расходуется на реконструкцию промышленных предприятий, ибо это более простой и экономичный путь получения продукции, чем при новом строительстве.

Физический износ можно уменьшить путем проведения ремонтов, а моральный износ - только реконструкцией. Но следует иметь в виду, что каждое здание и сооружение характеризуется обоими видами износа, но на практике иногда определяющим является один из них.
Поэтому при составлении перспективных планов ремонта и реконструкции зданий и сооружений необходимо подходить конкретно в каждом случае, исходя из реальных условий и возможностей ремонтно-строительных организаций.

Основные требования, предъявляемые к металлическим конструкциям

Блок основных требований, предъявляемых к металлическим конструкциям, представлен на рис. 1.3. Большинству требованиям строительные конструкции должны соответствовать на стадиях проектирования, изготовления, транспортирования, монтажа и эксплуатации.

Главное требование, не только к металлическим конструкциям, – это соответствие эксплуатационному назначению, т.е. обслуживанию того технологического процесса, который должен протекать в проектируемом здании или сооружении. При этом должны быть обеспечены удобство и безопасность с наименьшими затратами для поддержания конструкций в надежном состоянии. Это требование в основном определяет систему, конструктивную форму сооружения и выбор материала для него, Выполнению этого требования подчинены все задачи проектирования.

Технические требования сводятся к обеспечению прочности, устойчивости, жесткости. Эти требования определяются СНиП на проектирование металлоконструкций. Сюда же относится и требование надежности, которое заключается в том, что конструкция должна безотказно работать в течение заданного расчетного периода эксплуатации, и долговечности конструкции, определяемой сроками ее физического и морального износа.

Рис. 1.3. Основные требования к металлическим конструкциям

Физический износ металлических конструкций связан с коррозией и с накоплением других эксплуатационных повреждений. Моральный – с изменением требований и условий эксплуатации (реконструкция производства, модернизация оборудования, изменение санитарных норм и т.п.).

Экономичность определяется затратами на металл и другие материалы, необходимые для изготовления конструкций, стоимостью изготовления, транспортирования и монтажа.

Экономия металла – одно из важнейших требований при проектировании металлических конструкций, так как стоимость металла составляет более половины стоимости конструкций. К тому же сталь является дифицитным материалом, широко применяемым в других областях промышленности.

Экономия металла достигается на основе реализации следующих основных направлений: совершенствование применяемых в строительстве металлоконструкций (практикой наработано большое количество различных видов конструкций); создание и внедрение в строительстве современных эффективных конструктивных форм и систем (пространственные, предварительно напряженные, висячие, структурные и т.п.); совершенствование методов расчета и изыскание оптимальных конструктивных решений с использованием электронно-вычислительной техники.

Совершенствование существующих конструкций, в первую очередь, обеспечивается применением сталей повышенной и высокой прочности, использованием наиболее экономичных прокатных и гнутых профилей.

Стали повышенной и высокой прочности получают путем легирования и термической обработки, что увеличивает их стоимость. Однако увеличение стоимости отстает от роста прочности металла.

В растянутых элементах и системах повышение прочности реализуется прямым путем (чем выше прочность, тем меньше размеры сечения элемента, воспринимающего одно и то же усилие): требуемая площадь A = N/Ry.

Для сжатых элементов, для которых основным предельным состояниям является потеря устойчивости, повышение прочности стали вступает в противоречие с гибкостью элемента: требуемая площадь A = N/(φRy).

При увеличении прочности размеры сечения элемента A, воспринимающие усилие N, должны уменьшаться, и, как следствие, уменьшаться радиус инерции i. При этом гибкость λ = lef/i увеличивается, а коэффициент продольного изгиба φ, принимаемый по гибкости, уменьшается, что, в свою очередь, приводит к увеличению требуемой площади сечения.

Наибольший эффект от применения высокопрочных сталей может быть получен в сжатых элементах с ограниченной гибкостью до 50 – 60. Особенно целесообразно применение этих сталей в большепролетных и тяжелонагруженных конструкциях, так как для восприятия больших усилий требуются сечения элементов значительных размеров, обладающих большой жесткостью.

Следует отметить, что снижение веса конструкций косвенно сказывается на уменьшении размеров нижерасположенных конструкций (стены, колонны, фундаменты и т.п.), воспринимающих нагрузку от собственного веса, а также при транспортировании и монтаже наиболее легких конструкций.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Мерой эффективности профиля для изгибаемых элементов является ядровое расстояние , а для сжатых – удельный радиус инерции .

Чем выше характеристики момента сопротивления W и радиуса инерции i при одинаковом расходе металла (площадь сечения A одинакова для всех сечений), тем выгоднее сечение балки как конструкции, работающей на изгиб, а колонны, работающей на сжатие.

Для получения высоких характеристик ρ и i материал по сечению необходимо располагать на максимальном удалении от центра тяжести (табл.1.1).

Наиболее эффективным сечением для балок, изгибаемых в одной плоскости (относительно x-x) является двутавровое сечение, а для элементов, работающих на осевое сжатие, – трубы круглого, квадратного и прямоугольного сечений.

Одним из видов эффективных гнутых профилей в кровлях применяяется профилированный настил, обладающий значительной поперечной жесткостью, в то же время у стального листа толщиной до 1 мм, из которого выполнен настил, жесткость для работы на поперечный изгиб практически отсутствует.

Сравнительная оценка жесткости изгибаемого элемента

при различной компоновке сечения

(условно стенка в двутавре исключена)

Wx ≈ 2 /a

Конструкции должны быть наименее трудоемки при изготовлении, что достигается простой формой, минимальным количеством деталей, возможностью механизированной обработки, простотой и удобством сборки и сварки.

Типизация, проводимая на ее основе унификация и стандартизация обеспечивают большую повторяемость, серийность изготовления конструктивных элементов и их деталей на заводах. Следовательно, они способствуют повышению производительности труда, сокращению сроков изготовления на основе эффективного использования более совершенного оборудования и специальных технологических приспособлений, создают благоприятные условия для разработки и внедрения особенно эффективного поточного метода изготовления и монтажа металлических конструкций.

Транспортабельность конструкций. В связи с изготовлением металлических конструкций на заводе с последующей перевозкой их к месту монтажа должно быть предусмотрено разделение конструкций на отправочные элементы, соответствующие транспортным средствам по массе и габаритам.

Основным способом доставки конструкций является транспортирование их по железной дороге, поэтому отправочный элемент должен вписываться в железнодорожный габарит.

Скоростной монтаж определяется соответствием конструкции возможностям ее сборки в наименьшие сроки при меньшей трудоемкости с использованием современного монтажного оборудования. Быстрый ввод здания или сооружения в эксплуатацию позволяет получить дополнительную прибыль, тем самым компенсировать часть затрат на строительство.

Ведущим принципом скоростного монтажа является предварительная сборка конструкций в крупные блоки на земле с последующим подъемом и установкой их в проектное положение при минимальном объеме монтажных работ наверху.

Эстетичность. Конструкции независимо от их назначения должны обладать гармоничными формами, иметь приятный внешний вид, что особенно важно для общественных зданий и сооружений, отражать национальные особенности и традиции.

Классификация и область применения металлических конструкций, основные требования, предъявляемые при проектировании.

Металлические конструкции подразделяют по разным параметрам: по размеру, весу, конфигурации, методу изготовления и принципу действия.

По способу изготовления металлоконструкции разделяют на литые, кованые, точеные, клепаные, штампованные, сварные и комбинированные (клеесварные и штампосварные).

По виду металлические конструкции можно разделить на стержневые и сплошные системы

Наибольшее применение в промышленных и гражданских зданиях и сооружениях находят стержневые системы с жесткими элементами, хорошо работающими на растяжение, сжатие и изгиб. Применение стержневых металлических конструкций экономически выгодно в большепролетных зальных покрытиях (с пролетами более 40 м) преимущественно для зданий общественного назначения (спортивные залы, крытые рынки, выставочные павильоны, залы театров и т.д.);

Металлические каркасы рекомендуется применять в высотных гражданских зданиях с числом этажей не менее 20, а также в промышленных зданиях с нормативными длительно действующими нагрузками не менее 10 кН/м2, а также в зданиях с сетками колонн не менее 6X12 и 9X9 м

При проектировании металлических конструкций должны учитываться следующие основные требования.

Условия эксплуатации. Удовлетворение заданным при проектировании условиям эксплуатации является основным требованием для проектировщика. Оно в основном определяет систему, конструктивную форму сооружения и выбор материала для него.

Экономия металла. Требование экономии металла определяется большой его потребностью во всех отраслях промышленности (машиностроение, транспорт и т. д.) и относительно высокой стоимостью.

Транспортабельность. В связи с изготовлением металлических конструкций, как правило, на заводах с последующей перевозкой на место строительства в проекте должна быть предусмотрена возможность перевозки их целиком пли по частям (отправочными элементами) с применением соответствующих транспортных средств.

Технологичность. Конструкции должны проектироваться с учетом требований технологии изготовления я монтажа с ориентацией на наиболее современные и производительные технологические приемы, обеспечивающие максимальное снижение трудоемкости.

Скоростной монтаж. Конструкция должна соответствовать возможностям сборки ее в наименьшие сроки с учетом имеющегося монтажного оборудования.

Долговечность конструкции определяется сроками ее физического и морального износа. Физический износ металлических конструкций связан главным образом с процессами коррозии . Моральный износ связан с изменением условий эксплуатации.

Эстетичность. Конструкции независимо от их назначения должны обладать гармоничными формами. Особенно существенно это требование для общественных зданий и сооружений.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Поможем написать любую работу на аналогичную тему

Классификация и область применения металлических конструкций, основные требования, предъявляемые при проектировании.

Классификация и область применения металлических конструкций, основные требования, предъявляемые при проектировании.

Классификация и область применения металлических конструкций, основные требования, предъявляемые при проектировании.

Основные требования, предъявляемые к металлическим

Блок основных требований, предъявляемых к металлическим конструкциям, представлен на рис. 1.3. Большинству требованиям строительные конструкции должны соответствовать на стадиях проектирования, изготовления, транспортирования, монтажа и эксплуатации.

Главное требование, не только к металлическим конструкциям, – это соответствие эксплуатационному назначению, т.е. обслуживанию того технологического процесса, который должен протекать в проектируемом здании или сооружении. При этом должны быть обеспечены удобство и безопасность с наименьшими затратами для поддержания конструкций в надежном состоянии. Это требование в основном определяет систему, конструктивную форму сооружения и выбор материала для него, Выполнению этого требования подчинены все задачи проектирования.

Технические требования сводятся к обеспечению прочности, устойчивости, жесткости. Эти требования определяются СНиП на проектирование металлоконструкций. Сюда же относится и требование надежности, которое заключается в том, что конструкция должна безотказно работать в течение заданного расчетного периода эксплуатации, и долговечности конструкции, определяемой сроками ее физического и морального износа.

Рис. 1.3.Основные требования к металлическим конструкциям

Физический износ металлических конструкций связан с коррозией и с накоплением других эксплуатационных повреждений. Моральный – с изменением требований и условий эксплуатации (реконструкция производства, модернизация оборудования, изменение санитарных норм и т.п.).

Экономичность определяется затратами на металл и другие материалы, необходимые для изготовления конструкций, стоимостью изготовления, транспортирования и монтажа.

Экономия металла – одно из важнейших требований при проектировании металлических конструкций, так как стоимость металла составляет более половины стоимости конструкций. К тому же сталь является дифицитным материалом, широко применяемым в других областях промышленности.

Экономия металла достигается на основе реализации следующих основных направлений: совершенствование применяемых в строительстве металлоконструкций (практикой наработано большое количество различных видов конструкций); создание и внедрение в строительстве современных эффективных конструктивных форм и систем (пространственные, предварительно напряженные, висячие, структурные и т.п.); совершенствование методов расчета и изыскание оптимальных конструктивных решений с использованием электронно-вычислительной техники.

Совершенствование существующих конструкций, в первую очередь, обеспечивается применением сталей повышенной и высокой прочности, использованием наиболее экономичных прокатных и гнутых профилей.

Стали повышенной и высокой прочности получают путем легирования и термической обработки, что увеличивает их стоимость. Однако увеличение стоимости отстает от роста прочности металла.

В растянутых элементах и системах повышение прочности реализуется прямым путем (чем выше прочность, тем меньше размеры сечения элемента, воспринимающего одно и то же усилие): требуемая площадь A = N/Ry.

Для сжатых элементов, для которых основным предельным состояниям является потеря устойчивости, повышение прочности стали вступает в противоречие с гибкостью элемента: требуемая площадь A = N/(φRy).

При увеличении прочности размеры сечения элемента A, воспринимающие усилие N, должны уменьшаться, и, как следствие, уменьшаться радиус инерции i. При этом гибкость λ = lef/i увеличивается, а коэффициент продольного изгиба φ, принимаемый по гибкости, уменьшается, что, в свою очередь, приводит к увеличению требуемой площади сечения.

Наибольший эффект от применения высокопрочных сталей может быть получен в сжатых элементах с ограниченной гибкостью до 50 – 60. Особенно целесообразно применение этих сталей в большепролетных и тяжелонагруженных конструкциях, так как для восприятия больших усилий требуются сечения элементов значительных размеров, обладающих большой жесткостью.

Следует отметить, что снижение веса конструкций косвенно сказывается на уменьшении размеров нижерасположенных конструкций (стены, колонны, фундаменты и т.п.), воспринимающих нагрузку от собственного веса, а также при транспортировании и монтаже наиболее легких конструкций.

Мерой эффективности профиля для изгибаемых элементов является ядровое расстояние , а для сжатых – удельный радиус инерции .

Чем выше характеристики момента сопротивления W и радиуса инерции i при одинаковом расходе металла (площадь сечения A одинакова для всех сечений), тем выгоднее сечение балки как конструкции, работающей на изгиб, а колонны, работающей на сжатие.

Для получения высоких характеристик ρ и i материал по сечению необходимо располагать на максимальном удалении от центра тяжести (табл.1.1).

Наиболее эффективным сечением для балок, изгибаемых в одной плоскости (относительно x-x) является двутавровое сечение, а для элементов, работающих на осевое сжатие, – трубы круглого, квадратного и прямоугольного сечений.

Одним из видов эффективных гнутых профилей в кровлях применяется профилированный настил, обладающий значительной поперечной жесткостью, в то же время у стального листа толщиной до 1 мм, из которого выполнен настил, жесткость для работы на поперечный изгиб практически отсутствует.

Конструкциям

Блок основных требований, предъявляемых к металлическим конструкциям, представлен на рис. 1.3. Большинству требованиям строительные конструкции должны соответствовать на стадиях проектирования, изготовления, транспортирования, монтажа и эксплуатации.

Главное требование, не только к металлическим конструкциям, – это соответствие эксплуатационному назначению, т.е. обслуживанию того технологического процесса, который должен протекать в проектируемом здании или сооружении. При этом должны быть обеспечены удобство и безопасность с наименьшими затратами для поддержания конструкций в надежном состоянии. Это требование в основном определяет систему, конструктивную форму сооружения и выбор материала для него, Выполнению этого требования подчинены все задачи проектирования.

Технические требования сводятся к обеспечению прочности, устойчивости, жесткости. Эти требования определяются СНиП на проектирование металлоконструкций. Сюда же относится и требование надежности, которое заключается в том, что конструкция должна безотказно работать в течение заданного расчетного периода эксплуатации, и долговечности конструкции, определяемой сроками ее физического и морального износа.

Рис. 1.3.Основные требования к металлическим конструкциям

Физический износ металлических конструкций связан с коррозией и с накоплением других эксплуатационных повреждений. Моральный – с изменением требований и условий эксплуатации (реконструкция производства, модернизация оборудования, изменение санитарных норм и т.п.).

Экономичность определяется затратами на металл и другие материалы, необходимые для изготовления конструкций, стоимостью изготовления, транспортирования и монтажа.

Экономия металла – одно из важнейших требований при проектировании металлических конструкций, так как стоимость металла составляет более половины стоимости конструкций. К тому же сталь является дифицитным материалом, широко применяемым в других областях промышленности.

Экономия металла достигается на основе реализации следующих основных направлений: совершенствование применяемых в строительстве металлоконструкций (практикой наработано большое количество различных видов конструкций); создание и внедрение в строительстве современных эффективных конструктивных форм и систем (пространственные, предварительно напряженные, висячие, структурные и т.п.); совершенствование методов расчета и изыскание оптимальных конструктивных решений с использованием электронно-вычислительной техники.

Совершенствование существующих конструкций, в первую очередь, обеспечивается применением сталей повышенной и высокой прочности, использованием наиболее экономичных прокатных и гнутых профилей.

Стали повышенной и высокой прочности получают путем легирования и термической обработки, что увеличивает их стоимость. Однако увеличение стоимости отстает от роста прочности металла.

В растянутых элементах и системах повышение прочности реализуется прямым путем (чем выше прочность, тем меньше размеры сечения элемента, воспринимающего одно и то же усилие): требуемая площадь A = N/Ry.

Для сжатых элементов, для которых основным предельным состояниям является потеря устойчивости, повышение прочности стали вступает в противоречие с гибкостью элемента: требуемая площадь A = N/(φRy).

При увеличении прочности размеры сечения элемента A, воспринимающие усилие N, должны уменьшаться, и, как следствие, уменьшаться радиус инерции i. При этом гибкость λ = lef/i увеличивается, а коэффициент продольного изгиба φ, принимаемый по гибкости, уменьшается, что, в свою очередь, приводит к увеличению требуемой площади сечения.

Наибольший эффект от применения высокопрочных сталей может быть получен в сжатых элементах с ограниченной гибкостью до 50 – 60. Особенно целесообразно применение этих сталей в большепролетных и тяжелонагруженных конструкциях, так как для восприятия больших усилий требуются сечения элементов значительных размеров, обладающих большой жесткостью.

Следует отметить, что снижение веса конструкций косвенно сказывается на уменьшении размеров нижерасположенных конструкций (стены, колонны, фундаменты и т.п.), воспринимающих нагрузку от собственного веса, а также при транспортировании и монтаже наиболее легких конструкций.

Мерой эффективности профиля для изгибаемых элементов является ядровое расстояние , а для сжатых – удельный радиус инерции .

Чем выше характеристики момента сопротивления W и радиуса инерции i при одинаковом расходе металла (площадь сечения A одинакова для всех сечений), тем выгоднее сечение балки как конструкции, работающей на изгиб, а колонны, работающей на сжатие.

Для получения высоких характеристик ρ и i материал по сечению необходимо располагать на максимальном удалении от центра тяжести (табл.1.1).

Наиболее эффективным сечением для балок, изгибаемых в одной плоскости (относительно x-x) является двутавровое сечение, а для элементов, работающих на осевое сжатие, – трубы круглого, квадратного и прямоугольного сечений.

Одним из видов эффективных гнутых профилей в кровлях применяяется профилированный настил, обладающий значительной поперечной жесткостью, в то же время у стального листа толщиной до 1 мм, из которого выполнен настил, жесткость для работы на поперечный изгиб практически отсутствует.

Читайте также: