Обозначение марганца в сталях

Обновлено: 12.05.2024

① - жаропрочные марки стали
② - кислотостойкие марки стали
③ - марки стали, используемые в пищевой промышленности
④ - хромистые, технические марки стали
⑤ - марки стали, используемые в нефтехимической промышленности

Приведенные значения приблизительны и могут отличаться от действующих норм и стандартов.

Маркировка марок сталей

Наличие широкого сортамента выпускаемых сталей и сплавов, изготавливаемых в различных странах, обусловило необходимость их идентификации, однако, до настоящего времени не существует единой системы маркировки сталей и сплавов, что создает определенные трудности для металлоторговли.

В связи с этим существуют разночтения, приводящие к ошибкам в заказах и как следствие нарушения качества изделий.

В России и странах СНГ принята буквенно-цифровая система, согласно которой цифрами обозначается содержание элементов стали, а буквами — наименование элементов. Буквенные обозначения применяются также для указания способа раскисления стали: «КП — кипящая сталь, ПС — полуспокойная сталь, СП — спокойная сталь».
Существуют определенные особенности обозначения для разных групп сталей конструкционных, строительных, инструментальных, нержавеющих и др. Общими для всех обозначениями являются буквенные обозначения легирующих элементов: Н — никель, Х — хром, К — кобальт, М — молибден, В — вольфрам, Т — титан, Д — медь, Г — марганец, С — кремний.

Конструкционные стали обыкновенного качества нелегированные (ГОСТ 380-94) обозначают буквами СТ., например СТ. 3. Цифра, стоящая после букв, условно обозначает процентное содержание углерода стали.

Конструкционные нелегированные качественные стали (ГОСТ 1050-88) обозначают двузначным числом, указывающим на среднее содержание углерода (например, СТ. 10).

Качественные стали для производства котлов и сосудов высокого давления согласно (ГОСТ 5520-79) обозначают как конструкционные нелегированные стали, но с добавлением буквы К (например, 20К).

Конструкционные легированные стали, согласно ГОСТ 4543-71, обозначают буквами и цифрами. Цифры после каждой буквы обозначают примерное содержание соответствующего элемента, однако при содержании легирующего элемента менее 1,5% цифра после соответствующей буквы не ставится. Качественные дополнительные показатели пониженное содержание примесей типа серы и фосфата обозначаются буквой — А или Ш, в конце обозначения, например (12 Х НЗА, 18ХГ-Ш) и т. п.

Литейные конструкционные стали, согласно ГОСТ 977-88, обозначаются как качественные и легированные, но в конце наименования ставят букву Л.

Стали строительные, согласно ГОСТ 27772-88, обозначают буквой С и цифрами, соответствующими минимальному пределу текучести стали. Дополнительно применяют обозначения: Т — термоупрочненный прокат, К — повышенная коррозионная стойкость, (например, С 345 Т, С 390 К и т. п.). Аналогично буквой Д обозначают повышенное содержание меди.

Стали подшипниковые, согласно ГОСТ 801-78, обозначаются также как и легированные, но с буквой Ш в конце наименования. Следует заметить, что для сталей электрошлакового переплава буква Ш обозначается через тире, (например, ШХ 15, ШХ4-Ш).

Стали инструментальные нелегированные, согласно ГОСТ 1435-90 делят на качественные, обозначаемые буквой У и цифрой, указывающей среднее содержание углерода (например, У7, У8, У10) и высококачественные, обозначаемые дополнительной буквой А в конце наименования (например, У8А) или дополнительной буквой Г, указывающей на дополнительное увеличение содержания марганца (например, У8ГА).

Стали инструментальные легированные, согласно ГОСТ 5950-73, обозначаются также как и конструкционные легированные (например, 4Х2В5МФ и т. п.)

Стали быстрорежущие в своем обозначении имеют букву Р (с этого начинается обозначение стали), затем следует цифра, указывающая среднее содержание вольфрама, а затем буквы и цифры, определяющие массовое содержание элементов. Не указывают содержание хрома, т. к. оно составляет стабильно около 4% во всех быстрорежущих сталях и углерода, т. к. последнее всегда пропорционально содержанию ванадия. Следует заметить, что если содержание ванадия превышает 2,5%, буква Ф и цифра указываются, (например, стали Р6М5 и Р6 М5Ф3).

Стали нержавеющие стандартные, согласно ГОСТ 5632-72, маркируют буквами и цифрами по принципу, принятому для конструкционных легированных сталей (например, 08Х18Н10Т или 16Х18Н12С4ТЮЛ).

Стали нержавеющие, нестандартные опытных партий обозначали буквами — индексами завода производителя и порядковыми номерами. Буквы ЭИ, ЭП, или ЭК присваивают сталям, впервые выплавленным заводом «Электросталь», ЧС — сталям выплавки Челябинского завода «Мечел», например, ЭИ-435, ЧС-43 и др.

Для обозначения способа выплавки доводки названия ряда сталей дополняют буквами (например, 13Х18Н10-ВИ), что означает вакуумно- индукционная выплавка.

Европейская система обозначений стали регламентирована стандартом EN 100 27. Первая часть этого стандарта определяет порядок наименования сталей, а вторая часть регламентирует присвоение сталям порядковых номеров.

В Японии наименование марок стали, как правило, состоит из нескольких букв и цифр. Буквенное обозначение определяет группу, к которой относится данная сталь, а цифры - её порядковый номер в группе и свойство.

В США существует несколько систем обозначения металлов и их сплавов. Это объясняется наличием нескольких организаций по стандартизации, к ним относятся AMS, ASME, ASTM, AWS, SAE, ACJ, ANSI, AJS. Вполне понятно, что такая маркировка требует дополнительного разъяснения и знания при торговле металлом, оформлении заказов и т.п.

Расшифровка и классификация марок сталей

Железо химически-активно и встречается в природе только в виде соединений, руды состоят из гидратов, закисей солей и оксидов. Богатая руда содержит не более 57% чистого металла, а изделия быстро корродируют. С развитием металлургии было изобретено множество сплавов на железной основе, которые превосходят его по прочности и имеют надежную молекулярную структуру. Стали классифицируют по способу раскисления, назначению и содержанию элементов. Обозначения марок сформированы разными системами стандартизации.

Для точной расшифровки марки стали воспользуйтесь нашим марочником стали


Классификация по химическому составу

В естественной среде железо реагирует с окислителями, галогенами, фосфором и серой. Для очищения сырья и преобразования оксидных соединений в роли восстановителя сначала применяли каменный уголь. Так при горении в недостатке кислорода, выплавляли чугун, из которого уже частично удалены оксиды и примеси, а доля углерода составляет не менее 2,14%. Для выплавления стали из полученной массы необходимо уменьшить его концентрацию до 2%.

Углеродистые

По составу отличаются от чугуна только концентрациями. При обработке снижается количество углерода и вредных включений. Соотношение кремния и марганца – может корректироваться для придания дополнительной прочности и стойкости к коррозии. По количеству углеродных соединений различают следующие группы:

  • Высокоуглеродистая (0,6-2%);
  • Среднеуглеродистая (0,25-0,55%);
  • Низкоуглеродистая (до 0,25%).

Углеродная составляющая участвует в формировании карбидов и укрепляет структуру на молекулярном уровне. Чем выше содержание, тем больше стойкость к механическим нагрузкам, особенно ударным. Понижение придает пластичность и возможность выпускать изделия повышенной точности. Из этих сплавов получают инструменты (топоры, валы), детали, испытывающие большое напряжение (оси, арматура) и малонагруженные (зубчатые колеса, пружины). Расшифровка характеристик стали производится по буквам:

  • Ст – сталь;
  • Цифра – номер, согласно регламенту, ГОСТ 380-2005;
  • Г – марганец выше 0,8%;
  • КП, ПС или СП – метод раскисления.

Группу объединяет название «конструкционные», их обозначают маркировками: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6сп.

Отдельно выделяют группу с названием «инструментальные», они содержат 0,7% углерода и дополнительно очищаются от вредных составляющих. Расшифровка букв в обозначении согласно ГОСТ 1435-99:

  • У – углеродистая;
  • Цифры: углеродная концентрация в десятых долях процента;
  • Г – марганец выше 0,33%;
  • А – повышенное качество, серы не более 0,03%, фосфора – до 0,035%.

Инструментальные нелегированные стали обозначают следующими маркировками: У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А.

Легированные

Для придания специальных свойств в расплав добавляют различные присадки. Процесс называют легированием. По соотношению легирующих элементов марки разделяют на низколегированные (до 2,5%), среднелегированные (до 10%) и высоколегированные (до 50%).

В таблице приведены металлы, включения примесей и их обозначения в маркировке:

Марганец – Mn Г
Хром – Cr Х
Никель – Ni Н
Титан – Ti Т
Молибден – Mo М
Бериллий – Be Л
Медь – Cu Д
Азот – N А
Ванадий – V Ф
Ниобий – Nb Б
Алюминий –Al Ю (от ювенал)
Селен – Se E
Кобальт – Co К
Бор – B P
Фосфор – P П
Кремний –Si С (от силициум)
Цирконий –Zr Ц

Например, 08Х18Н10 расшифровывается как 0,08% углерода (С), 18 % хрома (Cr), 10% никеля (Ni). Обозначаются не все составляющие, а только говорящие об основных свойствах. Легирование применяется во всех случаях, когда неприемлемо использование углеродистых сплавов. Технический процесс сложнее и дороже, но присадки помогают продлить срок службы в сложных условиях или создать материал со специальными возможностями.

Также в начале маркировки могут присутствовать такие обозначения:

Р — быстрорежущая;
Ш — шарикоподшипниковая;
А — автоматная;
Э — электротехническая.

У этих марок есть ряд особенностей:

  1. в шарикоподшипниковых сталях содержание хрома указывается в десятых долях процента (например, сталь ШХ4 содержит 0,4% хрома);
  2. в марках быстрорежущей стали после буквы Р сразу ставится число, указывающее содержание вольфрама в процентах. Также все быстрорежущие стали содержат 4% хрома (Х).


Классификация по назначению

Часто для группы со сходными химическими формулами и эксплуатационными ресурсами применяют термины, указывающие на условия применения. Как правило, такая продукция подвергается испытаниям на соответствие по нескольким одинаковым параметрам: на устойчивость к ударным нагрузкам, кислотам, экстремальным температурным режимам. Специальные обозначения в маркировке есть у нелегированных групп: строительные (С), подшипниковые (Ш), конструкционные (Сп), инструментальные (У). Отдельно выделяют режущие легированные сплавы (Р).


Классификация сталей по назначению

Конструкционные

Категория объединяет марки способные выдерживать разнонаправленные механические нагрузки: изгибающие, ударные, растягивающие. Отличительной особенностью является стойкость к усталости, они не трескаются и не истираются при сочетании различных негативных факторов. По составу могут быть углеродистыми и легированными. Применяются для изготовления конструкций и деталей повышенной прочности.

Если сталь является литейной конструкционной, то в конце маркировки ставят букву Л. Например: 40ХЛ, 35ХМЛ.

Инструментальные

Стальные изделия без легирования очень прочны, но в некоторых областях их качеств недостаточно, поэтому применяют присадки. Например, марганец участвует в формировании особо-прочной молекулярной структуры (аустенит) и увеличивает стойкость к механическим деформациям. Алмазная сталь ХВ5 долго сохраняет заточку, может резать очень твердые материалы, при этом требует ухода и легко ломается. Ее прародителями были булатные и дамасские клинки, плохо переносящие сырость и хрупкие ближе к острию.

Инструментальные нелегированные стали обозначаются буквой У. Затем ставится цифра, которая обозначает среднее содержание углерода в стали: У11; У12; У13;. Высококачественные стали дополнительно обозначают буквой А на конце — У11А; У12А; У13А.

Особого назначения

Способность выдерживать определенные физические или химические воздействия определяет область применения. К особенным свойствам относится: немагнитность, кислотостойкость, жаростойкость, жаропрочность. Появляются узкоспециальные названия: авиационные (нагрузка свыше 1300Мпа), судостроительные (стойкость в щелочной среде), криогенные (отсутствует хрупкость при –196 С о и ниже).

Классификация по способу раскисления

При плавлении руды необходимо удалить кислород, иначе готовый прокат быстро заржавеет. Так как кислород находится в несвободном состоянии, требуется разрушить оксидные и гидратные соединения. В реакции раскисления участвуют активные вещества: ферромарганец, силикомарганец, расплав алюминия и другие. Некоторые реагенты действуют только в вакуумной среде.

Для обозначения способа раскисления используют такие обозначения:

Уже более 100 лет разрабатываются методы прямого получения металла, минуя переплавку в чугун и использование кокса, загрязняющего расплав продуктами горения. В результате применения газообразных и твердых восстановителей, обработки в электропечах, реакторах, реторах, получается раствор, насыщенная газами в разной степени. Разделение не относится к легированным продуктам, так как добавление присадок требует регламентированной чистоты.

Кипящая

Для получения используют минимальное количество реагентов, поэтому остается много кислорода и углекислого газа. Слитки имеют неоднородное строение, в одной части оседают вредные примеси, поэтому до 5% готового слитка удаляется. Материал с низкими характеристиками, хрупкий. Воздух концентрируется в сердцевине, но наружная корка может иметь достаточную прочность. Возможно изготовление крепежных деталей котлов и конструкций, контактирующих с взрывоопасными средами. Главный недостаток: быстрая коррозия.

Спокойная

Благодаря сложным технологическим процессам присутствие газов и неметаллических включений минимально, а структура однородна. Из слитков изготовляют металлоконструкции, детали или используют для создания дорогостоящих сплавов.

Полуспокойная

Промежуточное состояние. Упрощенные технические циклы удешевляют производство, а свойства достаточны для выпуска несущих элементов сварных и клепаных конструкций. Из Ст5пс изготовляют болты, гайки, упоры, которые можно использовать в плюсовых температурах и низкой влажности воздуха.

Классификация по качеству

Чем меньше осталось вредных включений, тем выше качественные характеристики, но иногда это не оправдано экономически. Система стандартизации предусматривает три класса.

Качественная

К категории относят углеродистые продукты. В них больше всего фосфора, серы и газов, они недостаточно однородны. Качества удовлетворительны для производства конструкций и деталей.

Нелегированные качественные стали обозначают буквой К. Например, 20К

Высококачественная

Низкое содержание вредных примесей и неметаллических включений обозначается в маркировке буквой А в конце. Из марок У8 и У8А вторая будет обладать лучшими характеристиками, изделия получатся точнее и качественнее.

Букву А в начале пишут в марках конструкционных сталей высокой обрабатываемости (А12­–автоматная, А30, А40), но в таком случае она не отображает соответствие стандарту чистоты.

Особо качественные

Сплавы с минимально-возможным количеством примесей обозначаются по способу получения в конце маркировки:

  • ВД – вакуумно-дуговая переплавка;
  • Ш – электрошлаковый переплав;
  • ВИ – вакуумно-индукционный;
  • ПД – плазменно-дуговой.

Особое качество достигается легированием, так как основу, полученную из чугунного расплава, невозможно привести к таким показателям. Содержание серы снижено до 0,1%, фосфора – до 0,025%. Примеры: 30ХГСН2МА – ВД. Здесь пропущены цифры, так как концентрации присадок составляют от 0,8 до 1,2%, поэтому их доля округляется до 1.

Классификация по структуре

Легирующие элементы формируют собственные соединения и создают молекулярную решетку. Строение металлов по своей природе зернистое, подвергается изменениям при термообработке и давлении. Геометрия химических связей определяет отношение к классу: ферриты, аустениты, перлиты и мартенситы. В обозначениях эта информация не отображается, но принадлежность всегда учитывается для применения в той или иной области.


Аустенит

Атомы углерода находятся внутри ячеек кристаллической решетки металла. Легирующие элементы способны замещать атомы железа и вставать на их место. Аустениты отличаются прочностью и однородностью, не магнитны, относятся к коррозийно-стойким и жаропрочным материалам, применяются для транспортировки агрессивных веществ, работы в особо сложных условиях.

Феррит

Ферритная решетка похожа на куб правильной формы. Поликристаллическое строение делает ферриты мягкими, при переохлаждении зерна становятся крупными, увеличивается хрупкость. Представители класса являются сильными магнетиками, поэтому используются в радиотехнике и электронике для поглощения электромагнитных волн, выпуска антенн и сердечников.

Мартенсит

При закаливании и охлаждении формируется игольчатое строение, при этом атомы железа смещаются на вершины ячеек, а углеродные концентрируются в центре. Это создает внутренние напряжения. Интересно, что мартенситовое превращение происходит в определенных температурных промежутках, при котором достигается предельная твердость. Явление сопровождается возникновением «памяти метала». Сталь, находящаяся в таком состоянии способна вернуть форму после механической деформации.

Мартенсит получают различными методами термообработки и легирования, присадки помогают стабилизации решетки. Степень зависит от назначения, иногда необходимо полное прокаливание, а если этого не требуется, то воздействуют лишь на поверхностные слои. Применение осложняется дополнительными требованиями к обработке, особенно сварке. Уникальные свойства пока не изучены до конца.

Перлит

На этой стадии облегчается механическая обработка. Перлит – явление распада при охлаждении после нагрева. Зерна измельчаются или расслаиваются на пластинки. Состояние создают искусственно для пластической деформации.

Цементит

Особо устойчивое состояние. Решетка FeC3 имеет ромбическую форму, физически цементит очень тверд и хрупок. Формируется при кристаллизации расплава чугуна. В сталях образуется при охлаждении аустенита и нагревании мартенсита (разупрочняющий отжиг).

В металлургии термообработка производится для получения лучших эксплуатационных характеристик конкретного состава и состоит из многочисленных процедур нагревов и охлаждений в разной температуре: сфероидизация, гомогенизация, изотермический отжиг, разупрочнение, стабилизация.

Классификация по способу производства

Многое зависит от применяемого оборудования. Доменные печи давно заменены на более экологичные и эффективные варианты. За прошедшее столетие появилось несколько новых технологий:

  • Конверторная или бессемеровская. В процессе выплавки в конвертер поступает сжатый, обогащенный кислородом воздух, углеродная составляющая выжигается. Дополнительное топливо не требуется, так во время реакции высвобождается дополнительная энергия и масса нагревается самостоятельно. До изобретения технологии невозможно было получить температуру плавления 1600 С о , поэтому производили только чугун при 1400 С о . В усовершенствованном виде способ применяется и сегодня.
  • Мартеновская. Ученый предложил использовать полученное тепло повторно: выходящий воздух нагревает входящий. Для этого печь была оснащена регенератором, не только восстанавливающим тепло, но улавливающим копоть и конденсат. В установках действуют термические режимы, не превышающие 2000 С о . Изобретение позволило переплавлять лом, регенераторы используются в современных установках, особенно стеклодувных и плазменных.
  • Электросталь – оборудование нового поколения, использующее индукцию и дуговую выплавку. В современных установках получают наиболее чистые от загрязнений продукты, затраты электричества снижаются, так как поддерживается точная температура. В плазменно-дуговых печах создают жаропрочные и тугоплавкие материалы. Появилась возможность получать стали прямым методом, без плавления чугунной основы.

Предельное повышение температуры до 20000 С о позволило получить железо, усиленное молибденом и титаном. Вместе с технологией плавления одновременно разрабатываются методы металлообработки: резки, гибки, проката.

Таблица маркировки сталей


В таблице приведено содержание элементов в распространенных марках стали.

Легированные марки стали: классификация и маркировка

Обозначение легирование происходит от латинского ligare — связывать. Легированными называют стали, в химический состав которых добавлены другие металлы. Но недостаточно просто смешать расплав, все компоненты связываются на молекулярной уровне, формируя новые соединения и типы кристаллических решеток.

Легирование было известно человечеству давно. Некоторые месторождения были богаты железными рудами с включениями молибдена и ванадия. Из них производили дамасские и булатные клинки, самурайские мечи и другое редкое оружие. “Метеоритное железо” ценилось на вес золота и даже выше. Но управлять качествами по собственному желанию люди не могли до конца XIX в.

  • Железо — основа, не менее 45%;
  • Углерод — до 2,14% материал с более высоким содержанием причисляют к чугуну;
  • Полезные примеси: марганец, кремний;
  • Вредные: сера, фосфор.

С изменением взглядов на химию было открыто, что присадки некоторых элементов способны встраиваться в железо-углеродную структуру, изменяя ее химические и физические свойства. Первым удачным опытом легирования было получение сплава с 9% вольфрама и 2,5% марганца Р. Мюшеттом в 1858 г. Впоследствии ученый усовершенствовал разработку и на заводе в Шеффилде началось массовое сталелитейное производство. Из так называемой “самокалки” изготавливали режущий инструмент для обработки дерева и металла.

Первые эксперименты по хромированию произвел Джулиус Баур, затем его опыт расширил французский металлург Анри-Ами Брустляйн, подготовив описание 12 хромистых составов с указанием особенностей. Одновременно с этим Джеймс Райли наладил производство никелевой стали в Англии.

Сталь, усиленную никелем, начали использовать для производства велосипедных цепей и осей карет-автомобилей. Главным толчком к развитию технологии послужил автопром, новые модели на рубеже веков появлялись каждые 2-3 недели и приносили баснословные деньги. Первыми масштабными объектами строительства с применением легирования были мосты: Манхэттенский и Куинсборо. Число разработок кратно возросло с наступлением войны.

Технические характеристики

Углеродная составляющая придает твердость, но вместе с тем сплав малопластичен, легко разрушается от ударных воздействий, плохо переносит холод. Железо — один из самых активных химических элементов, и не встречается в чистом виде. Даже будучи связанным в соединениях, оно вступает в реакции с более агрессивными веществами.

Легирование решает ряд задач:

  • Делает структуру однородной;
  • Препятствует окислению;
  • Предотвращает водородную болезнь;
  • Одновременно увеличивает прочность и ударную вязкость;
  • Придает дополнительные физические и химические характеристики.

Сегодня к материалам предъявляют разные требования, например стойкость к истиранию и критически-низким температурам, способность длительно обеспечивать работу печного оборудования. В пищевой промышленности действует регламент по отсутствию вредных примесей.


С развитием технологий, металлурги получили возможность работать с расплавами при температуре до 20 тыс. градусов. Это дало возможность легирования тугоплавкими металлами.

Основные легирующие элементы:

  • Хром — увеличивает прочность и твердость без потерь пластичности, отвечает за кислотостойкость и жаростойкость;
  • Никель — улучшает ударную вязкость, устойчивость к окалинообразованию, термостойкость в агрессивных средах;
  • Кремний — стабилизирует структуру, повышает пределы прочности и текучести;
  • Марганец — защищает от окисления, увеличивает сопротивление истиранию;
  • Вольфрам — вводится в быстрорежущие и инструментальные марки;
  • Ванадий — карбидообразующий агент, объединяясь с углеродом усиливает стойкость к истиранию, прочность, и способность противостоять напряжениям;
  • Молибден — добавляют в быстрорежущие и жаропрочные материалы.

Процесс легирования начинается с очистки от примесей, обезуглероживания и раскисления, затем вводят присадки. Нередко после изготовления готовой продукции полуфабрикатам требуется дополнительная рекристаллизация.

Легирующие элементы не только встраиваются в структуру, они образуют интерметаллические включения и дисперсные частицы, упрочняющие молекулярное строение. Среди технических характеристик сталей есть такие, как термоупрочнение, упрочнение давлением.

Виды легированных сталей

Содержание углерода влияет на свойства, если оно находится в пределах 0,25-2,14% сталь называют углеродистой. Классификация производится следующим образом:

  • Высокоуглеродистые: 0,6-2%;
  • Среднеуглеродистые: 0,3-0,6%;
  • Низкоуглеродистые: до 0,25%.

Для того, чтобы добавить что-то, нужно удалить часть компонентов, иначе связывания не произойдет. Во время очистки снижаются концентрации вредных примесей и кислорода. Углерод удаляют выжиганием, путем выпадения карбидных соединений и другими способами. Добавлять присадки можно в любую сталь, но это не всегда дает нужный эффект.

В легированной стали углеродная составляющая обозначается в сотых долях процента. Предусмотрена классификация по общей массе присадок:

  • Низколегированные – до 2,5%;
  • Среднелегированные – 2,5-10%;
  • Высоколегированные – от 10%.

Введение присадок влечет за собой рекристаллизацию и образование новой структуры. Для сталей определены классы по форме кристаллической решетки:

  • Ферриты — магнитны, решетка неустойчива и может преобразовываться при нагревании и охлаждении в перлит, сорбит или тростит. К классу принадлежат все низколегированные и углеродистые стали. Устойчивые связи формируются при снижении углерода до 0,15% и легировании хромом.
  • Аустениты — образуются при высокой доле никеля, хрома и марганца. Структурное строение обеспечивает жаростойкость, коррозионную стойкость и пластичность. Класс составляют хромоникелевые нержавейки.
  • Мартенситы — при охлаждении после закалки происходит мартенситовое превращение, формируются кубические ячейки, которые составляют кристаллы игольчатого или реечного типа. Металл приобретает память, частично восстанавливается после деформации. Переход в такое состояние возможен для сталей с добавками хрома, молибдена, ванадия, вольфрама, ниобия и других добавок, отвечающих за жаропрочность.

Металлическая кристаллическая решетка организуется в виде фаз, обычно одновременно присутствуют две фазы. Например, сочетание аустенита и феррита. Нужную фазу увеличивают путем регулирования присадок и термических воздействий.

Название Процент добавок
Низколегированная Около 2,5%. Положительные качества прибавились, но при этом ковкость и прочие характеристики для металлообработки не сильно поменялись.
Среднелегированная От 2,5% до 10%. Используется такое соединение чаще всего.
Высоколегированная От 10% до 50%. Максимальная прочность и дороговизна – отличительные черты таких изделий.

Классификация легированных сталей

При выплавке из руды сначала получают чугун, который затем очищают от газов, оксидов и других включений. Этот процесс называют рафинированием. Удаление кислорода производится с помощью угля, шлака, марганца и других раскислителей, способных образовывать газы или тяжелые оксиды, которые выпадают в осадок.

Обезуглероживание осуществляется водородом и выгоранием карбидов с образованием угарного газа и окалины. Сегодня на некоторых предприятиях действуют передовые методы, например газокислородное рафинирование.

Результат этих процедур определяет качество стали:

  • Обыкновенные (рядовые): наиболее дешевый материал, углерода до 0,6% в толще присутствуют пузырьки воздуха. Самые распространенные: СтО, Ст3сп, Ст5кп.
  • Качественные: в структуре присутствуют кислород, азот, водород. качественными считаются спокойные, полуспокойные и кипящие марки. В кипящих концентрация газов максимальна. Сплавы могут быть углеродистыми и легированными: Ст08кп, Ст10пс, Ст20, 7ХФ, 8ХФ.
  • Высококачественные: выплавка преимущественно осуществляется в электропечах без использования угля. Концентрации серы и фосфора снижены до 0,03%. Примеры: 6ХВ2С, 6Х3ФС;
  • Особовысококачественная: расплавы подвергаются глубокой очистке от оксидов, сульфидов, неметаллических включений, содержат не более 0,01% серы и 0,025% фосфора. Например: 30ХГС3-Ш.

Действует классификация легированных сталей по назначению:

  • Конструкционные — для изготовления строительных конструкций и нагруженных механизмов;
  • Инструментальные (режущие и штамповые) — присадки повышают прочность и сохраняют однородность, обычно металл подвергают термообработке;
  • С особыми свойствами ( нержавеющие, жаропрочные, износостойкие и др.) — большая группа с разными характеристиками.

Предусмотрено обозначение отдельных групп:

  • Шарикоподшипниковые;
  • Пружинно-рессорные;
  • Автоматные;
  • Быстрорежущие;
  • Жаростойкие/жаропрочные;
  • Криогенные;
  • Авиационные и др.

Современные сплавы — это комплексно-легированные составы, с уникальными характеристиками. Например 15Х2НМФА способна в течение 100 лет обеспечивать радиационный ресурс реакторной установки, 17ХНГТ используют для пружин специального назначения.

Маркировка легированных сталей

Согласно стандарту ГОСТ для обозначения марок действует буквенно-цифровая система. Она распространена только на территории стран СНГ, свои маркировки есть в США, азиатских и европейских странах.

Рассмотрим построение маркировки у легированных сталей на примере 25Х2МФА:

  • 25 — округленное значение углерода в сотых долях процента, его содержание колеблется от 0,22 до 0,29%;
  • Х2 — хром от 2,5 до 3%, так как концентрация не всегда достигает верхнего предела, обозначают двойку;
  • М — марганец 0,3-0,6%, массовая доля менее 1%, цифру не указывают;
  • Ф — ванадий 0,25-035%;
  • А в конце — указывает на высокое качество, глубокую очистку от примесей.
  • Без цифры — когда массовая доля вещества не достигает 2%, единицу не пишут;
  • Буквы в конце: К- качественные нелегированные, А — высокое качество, Ш — особо высокое, Л — литейные;
  • Буква в конце через пробел: С — строительные, Т — термоупрочняемые, К -коррозионно-стойкие, Д- повышенное содержание меди.

Иногда маркировка указывает на предприятие, имеющее патент на выпуск определенного металлопроката, например ЭИ417, ЭП767, ЗИ8. Необычные названия, после освоения металлургическими заводами приобретают стандартные маркировки по ГОСТ.

Сварка сплавов

Легированные стали работают в широком диапазоне температур, но крайне чувствительны к термообработке. Каждый элемент имеет свои свойства, температуру плавления и рекристаллизации. Сварные соединения может выполнять только профессионал. Выбор методов сварки осуществляют после изучения технической документации, рекомендаций производителя.

При нагреве наблюдается выгорание карбидов, перераспределение присадок в толще сварного шва и одновременное окисление. Для предотвращения образования дефектов используют защитные среды и специальные терморежимы. Легирование снижает теплопроводность, без должного отвода тепла легко получить перегрев и распад некоторых химических связей.

Определение особенностей по основным легирующим добавкам:

  • Хромистые: содержание углерода 0,1-0,4%, для защиты от выгорания применяют покрытия или инертные газы, подбирают хромистые электроды. Предусматривается предварительный нагрев свариваемого участка током и последующая термообработка.
  • Марганцевые: необходимо предотвратить образование трещин, для этого сокращают время нагрева и сразу же охлаждают поверхность. Электроды с марганцем или марганцево-никелевые.
  • Хромоникелевые: это могут быть аустенитные или мартенситные сплавы. Производят анализ состава и назначения сварной конструкции.

Особенности сварки по количеству присадок:

  • Низколегированные: изделия часто закаливают, свариваемость хорошая, но швы чувствительны к концентраторам напряжений. Производят предварительный подогрев и медленное охлаждение, важно предотвратить образование холодных трещин.
  • Среднелегированные: в качестве добавок используют молибден, ванадий, вольфрам. Для сохранения надежности подбирают электроды с теми же элементами, но в меньших концентрациях. Требуется защита от водородной болезни, окисления, перегрева.
  • Высоколегированные: составы с высоким содержанием никеля и хрома и большим числом других легирующих агентов. Требования к свойствам сварных соединений определяют, учитывая назначение изделий.

Таблица основных легирующих добавок

Элемент Влияние
Хром Значительно защищает от коррозии, способствует повышению твердости, а также ударопрочности. Показательно то, что много хрома добавляют в нержавейку.
Никель С добавлением данного вещества сплав становится более вязкий и пластичный, уменьшается его хрупкость, что очень важно, например, перед обработкой давлением прессованием или штамповкой.
Титан Снижает зернистость, делает структуру более однородной, а значит, менее подверженной появлению трещин и расколов. Дополнительно улучшается восприимчивость к металлообработке и устойчивость к ржавлению.
Ванадий Как и после внедрения титана, можно заметить менее зернистую форму. Также характерно увеличение текучести и порога прочности на разрыв.
Молибден После него намного эффективнее процесс закалки, а также снижается хрупкость, появляется большая выносливость к ржавлению.
Вольфрам Кроме повышения твердости, он еще и помогает при термообработке зернистость не увеличивается при нагреве, а при отпуске не сильно страдает ломкость.
Кремний Его задача одновременное увеличение прочности и сохранение уровня вязкости. Но если его будет более 15%, то можно наблюдать за повышением магнитной проницаемости и сопротивляемости электричеству. однако нужно быть осторожным, поскольку сталь становится более хрупкой.
Кобальт Хорошо защищает от быстрого разрушения под воздействием высоких температур; делает выше ударопрочность
Алюминий Добавляет окалиностойкость, то есть при большом жаре не происходит быстрого окисления.

Изучение технических и проектных документов дает представление о возможных способах сварки. Например срок службы стальных деталей ступеней ракет носителей составляет всего несколько секунд, но даже краткий временной интервал в сложных условиях достигается непросто. На Земле нормативный эксплуатации конструкций превышает десятки лет.

Маркировка сталей

Существует более 3500 различных марок стали, обладающих уникальными физическими, химическими и экологическими свойствами. По сути, материал состоит из железа и углерода, а также примесей и дополнительных легирующих элементов. Данная статья будет полезна при определении какая марка стали подходит для сварных конструкций и соединений в зависимости от условий эксплуатации детали.

Маркировка сталей

Виды сталей

Классификация стали производится по следующим критериям: назначение, структурный состав, химический состав, качество и степени раскисления. Требуемое количество углерода задается при плавке. Для получения специальных свойств в состав сырья вводятся необходимые массовые доли различных легирующих элементов. По мере увеличения количества углерода возрастает твердость и прочной, а пластичность убывает. Содержание углеводов свыше 0,3% делает возможным закалку. Это процесс термической обработки, который заключается в нагреве и резком охлаждении в режиме, подходящем для конкретной марки. После закалки твердость и прочной материала увеличиваются.

Классификация сталей

По сфере применения выделяют конструкционные, инструментальные и специального назначения. Первые используются для изготовления различных деталей, механизмов, конструкций в строительстве и машиностроении. Инструментальные служат для изготовления инструмента и отличаются высокой прочностью. Специального назначения отличаются специфическими отклонениями состава, например, автоматные стали с повышенным содержанием фосфора и серы, предназначенные для неответственных деталей, обрабатываемых на станках автоматах. Во всех других видах примеси фосфора и серы считаются вредными.

По химическому составу материал разделяют на углеродистые и легированные. Вторые бывают низколегированные, легированные и высоколегированные. Легированной называется сталь, в которую помимо обычных примесей добавлены специальные легирующие элементы для улучшения физических, прочностных и технологических свойств материала.

Классификация по качеству. С увеличением содержания фосфора пластичность и ударная вязкость сплава снижается и повышается склонность к хладноломкости. Повышенное количество серы приводит к их красноломкости из-за низкоплавких сульфидных эвтектик, которые возникают по границам зерен. По качеству стали подразделяют на:

  • Обыкновенного качества – серы менее 0,06%, фосфора менее 0,07%.
  • Качественные – серы менее 0,04 %, фосфора менее 0,035%.
  • Высококачественны – серы менее0,025; фосфора менее 0,025%.
  • Особо высококачественные – серы менее 0,015%, фосфора менее 0,025%.

Рассмотрим разделение по структурному суставу:

  • в отожженном состоянии выделяю доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный сплавы;
  • в нормализованном состоянии – перлитный, мартенситный и аустенитный.

По степени раскисления материал бывает:

  • Кипящими – это не окисленный вид с высоким содержанием в ней металлических примесей.
  • Полуспокойными – сплав, полученный при неполном раскислении металла по сравнению с кипящим.
  • Спокойная – это раскисленый сорт, в котором находится минимальное количество примесей и шлаков.

Что значит марка стали и как ее определить

В мировой практике встречается различные системы маркировки сталей. Единых стандартов для продукции нет из-за большого количества организаций, осуществляющих контроль и маркировку металлопродукции. В Европе действует документ EN10027, имеющий схожий с российским подход к наименованию сталей.

По действующему российскому стандарту легирующие элементы обозначаются буквами кириллицы, а число указывает на количество элемента в процентах. Отсутствие цифрового значения за буквой означает, что содержание легирующей добавки от 0,8 % до 1,5%, за исключением молибдена и ванадия массовой доли которых меньше. Отсутствие числа впереди марки легированной стали означает, что углерода в ней от 1% и более. Обозначение и расшифровка легирующих элементов сталей приведена в таблице

Название элемента Химический символ Обозначение в марке Примеры
Углерод C не указывается
Хром Cr Х 40Х; 40Х13
Кремний Si С 65СГ; 30ХГСА
Никель Ni Н 45ХН; 12Х18Н10Т-Ш
Марганец Mn Г 65СГ; 30ХГС
Вольфрам W В ХВГ; Х6ВФ
Молибден Mo М 12ХМ; 15Н2М
Кобальт Co К Р10Ф5К5; Р6М5К5
Титан Ti Т 15ХГН2Т; 5ХНТ
Ванадий V Ф 12ХМФ; 12Х8ВФ
Алюминий Al Ю 38ХМНЮА; 36НХТЮА

Производство стали

Хром в количестве от 1% до 4% улучшает прокаливаемость сплава, повышает его прочность и жаростойкость. Из хромистых изготавливаются различные детали механизмов работающих в условиях высоких нагрузок. В больших массовых долях хром находятся в нержавеющих и жаростойких образцах.

Кремний в количестве от 1% до 1,5% повышает упругие свойства материала и используется для изготовления пружин и рессор. Кремний часто входит в состав инструментальной группы.

Никель в малых соотношениях благотворно влияет на ударную вязкость и прочность, а в больших количествах, как правило в сочетании с хромом, придает жаропрочные свойства и высокую коррозионную стойкость.

Содержание марганца от 1% до 1,5% увеличивает ударную вязкость, то есть ее способность противостоять ударным нагрузкам при низких температурах, когда материал становятся хрупкими.

Вольфрам резко повышает красностойкость и износостойкость, что является необходимым свойством режущих материалов, в которых он и находит наибольшее применение. Молибден, как и вольфрам увеличивает износостойкость и красностойкость, повышая сопротивление к окислению при высоких температурах.

Кобальт, находясь в составе стали и неметаллических режущих материалов, придает им сопротивляемость ударным нагрузкам при повышенных температурах. Наличие титана способствует мелкой зернистости в незакаленном состоянии, а также улучшает сопротивление окислению.

Ванадий, обычно в сочетании с хромом, повышает прочностные характеристики и увеличивает стойкость к окислению при высоких температурах. Алюминий повышает жаростойкость и окалиностойкость, кроме этого, как и титан, воздействуя на извлечение зернистости.

Как расшифровать маркировку

В зависимости от суммарного количества нежелательных примесей стали подразделяются по качеству на обычные, качественные, высококачественные и особо высококачественные. В их марке доля углерода указывается одной цифрой (ст.2, ст.3, ст.4) в десятых долях процента. Из вредных примесей 0,07 % приходится на фосфор и 0,06% на серу. Марки качественных конструкционных и инструментальных подгрупп отличаются тем, что в них количество углерода указывается двумя цифрами (ст.20, ст.40, ст. 45) и уже в сотых долях процента. В таких сплавах по 0,035% нежелательных компонентов. На высокое качество указывает буква «А» в конце маркировки, например ст.45А У8А. Содержание серы и фосфора в них по 0,025%. У особовысококачественной стали в конце названия через тире указывается буква «Ш». По назначению они могут быть конструкционными и инструментальными. Доля вредных примесей в них минимальная, порядка 0,015%. В нижеследующей таблице приведена маркировка обычной стали с расшифровкой состава.

Местонахождение буквы «А» в обозначение металлов имеет свое значение. Стоящая вначале она обозначает автоматные стали, с повышенным содержанием фосфора и серы. В середине – указывает на повышенное значение легирующего азота. Буквы «ШХ» указывают на принадлежность данной марки к подшипниковым, а рядом стоящее число означает количество хрома в десятых долях процента.

Спокойные стали маркируются без индекса, полуспокойные и кипящие – с индексом «пс» и «кп» соответственно. Кипящие виды производят марок 05кп, 08кп, 15кп, 20кп, полуспокойные – 08пс, 10пс, 15пс, 20пс.

Буква «Г» указывает на повышенное содержание марганца, например, 14Г, 18Г и т.д. Качественные сплавы с повышенными свойствами, используемые для производства котлов и сосудов высокого давления, обозначают по ГОСТ 5520-79 добавлением буквы «К» в конце наименования: 15К, 18К, 22К.

Для конструкционных марок первые две цифры показывают содержание углерода в сотых долях процента. Если легирующего элемента около 1%, то после буквы указывается его среднее значение в целых процентах. Если меньше 1 %, то цифра после буквы не ставится. «А» в конце марки означает, что сталь высококачественная. Для примера расшифруем следующую марку: 40ХН2МА – это конструкционная легированная высококачественная сталь, в сплаве которой содержится 0,4% углерода, 1% хрома, 2% никеля и 1% молибдена.

В инструментальных видах в начале обозначения указывается цифра, показывающая количество углерода в десятых долях процента. Ее опускают если углерода менее 1%. Например, марка 3Х2В8Ф состоит из 0,3% углерода, 2% хрома, 8% вольфрама, 1 % ванадия.

Иногда в обозначении марок в начале ставятся буквы, указывающие на область применения. Например, А11, А30, А40Е – автоматные стали, содержащие соответственно 0,11%, 0,3% и 0,4% углерода. АС38ХГМ – автоматная свинцесодержащая сталь с 0,38% углерода и около 1% хрома, марганца, молибдена.

Быстрорежущие инструментальные образцы обозначаются буквой «Р», которая ставится в начале марки. Далее указывается процентное значение легирующего компонента. Например, Р9, Р18, Р6М5К5 и т.д.

Марка популярных видов стали с разъяснениями состава приведена в нижеследующей таблице.

Данная система маркировки была принята еще во времена советского союза, однако, благодаря удобству, успешно используется до сегодняшнего дня, причем не только в России, ни и некоторых странах СНГ. Умение читать обозначение металлов пригодится проектировщикам и специалистам, работающим с металлоконструкциями различного назначения. Понимание химического состава материала позволяет эффективно подбирать сплавы с требуемыми эксплуатационными характеристиками.

Читайте также: