Электроды для сварки разнородных сталей

Обновлено: 28.09.2024

Вопрос: Какие марки электродов для сварки нержавеющей стали выпускает СпецЭлектрод?
В настоящее время нержавеющие стали превратились в неотъемлемую составную часть многих отраслей промышленности и прочно вошли в нашу повседневную жизнь. Их практическое применение характеризуется широким распространением, начиная с товаров широкого (народного) потребления, используемых в домашнем хозяйстве, охватывая оборудование для химической промышленности и, кончая оборудованием атомных электростанций. Поэтому для сварки этих сталей разработаны десятки марок покрытых металлических электродов специального назначения (спецэлектроды) по нержавейке и для сварки нержавеющих сталей. Практически все марки электродов для сварки нержавеющих высоколегированных сталей изготавливаются на ведущем в России и СНГ предприятии СпецЭлектрод. Это и нержавеющие электроды для сварки обычной (пищевой) нержавейки – ОЗЛ-8, ЦЛ-11; для сварки коррозионностойких нержавеющих сталей – ЦТ-15, НЖ-13, ЭА-400/10У, для сварки жаропрочных сталей – ОЗЛ-6, электроды по нержавейке ЦТ-28, КТИ-7А, для сварки разнородных нержавеющих сталей – ЭА-395/9, АНЖР-1, АНЖР-2, ОЗЛ-312.


Образцы сварных швов, выполненные различными электродами . ( Нажмите для увеличения.)

Вопрос: В чем состоят особенности сварки нержавеющих сталей?
Благодаря своей 70-летней истории, традициям, огромному накопленному опыту и знаниям в области разработки и производства сварочных материалов и нержавеющих сталей специалисты СпецЭлектрода рекомендуют для получения надежных сварных соединений этих сталей учитывать особенности сварки по нержавейке и придерживаться следующих рекомендаций:
- При сварке нержавеющих сталей нужно использовать только те нержавеющие электроды, которые подходят для данного типа основного металла. - Необходимо следить за тем, чтобы нержавеющие стали шли на сварку только с чистой и сухой поверхностью.
Для предотвращения насыщения сварочной ванны азотом длина дуги при сварке нержавеющими электродами должна быть минимальной.
- В обязательном порядке должны строго соблюдаться рекомендованные диапазоны тока, поскольку превышение сварочного тока может привести к перегреву стержня нержавеющего электрода и изменению характера плавления покрытия, вплоть до отваливания кусков.
- Электроды по нержавейке с рутиловым покрытием (НИАТ-1) обеспечивают малое проплавление металла изделия и обеспечивают бездефектную сварку тонколистового нержавеющего металла. Также некоторые марки с рутиловым покрытием обеспечивают сварку и на переменном токе - это электроды по нержавейке ОЗЛ-310, ОЗЛ-316.
- Ну и, конечно, использовать для сварки нержавеющих и других специальных сталей и сплавов электроды по нержавейке проверенных известных производителей, т.к. в противном случае результат может оказаться непредсказуемым.

Вопрос: Можно ли сваривать обычные стали с нержавеющими и какими электродами это можно сделать?
Существует ещё одна обширная область применения электродов для сварки «нержавейки» - это сварка разнородных сталей и сплавов, например, углеродистых сталей с нержавеющими. Сварка нержавеющих сталей с углеродистыми и низколегированными сталями должна выполняться высоколегированными нержавеющими электродами, т.е. более легированными, чем сам основной материал. В последние годы хорошо зарекомендовали себя электроды по нержавейке ОЗЛ-312. Они применяются, когда необходима высокая прочность соединения, часто используют при сварке сталей с неизвестным химсоставом. Электроды для нержавейки НИИ-48Г дают аустенитную структуру металла шва с отличной стойкостью к образованию горячих трещин и водородному растрескиванию, хорошо подходят для выполнения буферных (переходных) слоев. Также для сварки разнородных сталей применяют нержавеющие марки ЭА-395/9, АНЖР-1, АНЖР-2, ОЗЛ-32, ОЗЛ-28.
Данная тема опять же актуальна в свете того, что последнее время все чаще появляются «умельцы», которые сваривают нержавеющие стали с углеродистыми или со сталями с неизвестным химсоставом электродами АНО-4, МР-3С и т.д., особенно не задаваясь вопросами образования хрупких мартенситных участков, что приводит к разрушению самих изделий и конструкций даже от незначительных нагрузок.

Вопрос: Какие последние разработки электродов для сварки нержавеющих сталей имеются на Вашем предприятии?
Особо хочется отметить тот факт, что даже сегодня, в непростое для предприятий машиностроения и металлургии время, на СпецЭлектроде не прекращается работа по разработке новых нержавеющих электродов для сварки стандартных и специальных марок нержавеющей стали. Особенный интерес представляют марки по нержавейке ОЗЛ-312 и ОЗЛ-310.
Нержавеющие электроды ОЗЛ-312 предназначены для сварки трудносвариваемых нержавеющих сталей, а также разнородных соединений, сталей с неизвестным химсоставом и стали с 13% Mn (марганца); наплавки пластичных буферных слоев, восстановления зубчатых пар, колес, валов и других трущихся деталей. Эти высокопроизводительные электроды по нержавейке позволяют вести сварку на постоянном и переменном токе. Марка ОЗЛ-310 предназначена для сварки и наплавки конструкций из нержавеющих жаростойких сталей типа 25%Cr - 20%Ni, в том числе стали 45Х25Н20С2, работающих в окислительных средах при температуре до 1150 гр. С. Возможна сварка сталей 20Х23Н13 и 20Х23Н18. Сварку этими нержавеющими электродами можно вести как на постоянном, так и на переменном токе.

Характеристики электродов для сварки разнородных сталей

В современным машиностроении, нефтегазохимической и других отраслях широко используется оборудование из разнородных сталей и сплавов. Это означает, что конструкция была сварена из материалов, которые серьезно различаются по своим физико-механическим характеристикам, химическому составу, процессу легирования и способности к свариванию. Иными словами, материалы имеют разную атомарно-кристаллическую структуру. Для соединения таких деталей применяются специальные электроды для разнородных сталей.

Где и зачем используются разнородные стали и сплавы

В современной промышленности конструкции из таких материалов имеют широкое применение. Они необходимы там, где их отдельные детали работают в разных условиях – при разных знакопеременных нагрузках, уровнях температур и агрессивности сред, абразивного износа, давления и т. д. В ряду таких сфер:

  • ракетостроение;
  • судостроение;
  • энергетика (атомная, тепловая);
  • радиоэлектроника;
  • машиностроение;
  • криогенные установки и т. д.

Конструкции такого типа называют комбинированными. Они обеспечивают необходимые технические и технологические характеристики оборудования, в широком ряде случаев позволяют сделать его производство более экономичным.

ЭА-395/9 (НАКС) 3 мм (5 кг)

НИИ-48Г 5 мм (6 кг)

НИИ-48Г 3 мм (1 кг)

НИАТ-5 5 мм (5 кг)

НИАТ-5 3 мм (1 кг)

В чем сложность сварки разнородных сталей

Вся совокупность таких материалов условно подразделяется на четыре основные группы:

  • углеродистые и низколегированные стали;
  • высоколегированные;
  • легированные повышенной и высокой прочности;
  • теплоустойчивые.

Сваривать детали разнородного состава обычными электродами нельзя, поскольку риски получения некачественного шва максимальны.

  • В металле шва могут образоваться горячие трещины.
  • В области оплавления возможно появление участков, неоднородных по своей структуре.
  • Из-за значительной разницы в коэффициентах линейного расширения металлов могут существенно возрасти остаточные напряжения в зоне шва.

В результате сварки в металле шва могут появиться интерметаллидные структуры – соединения из металлов, рассчитанных на совершенно разный температурный режим сварки. Поскольку эти структуры очень хрупкие, существуют высокие риски быстрого разрушения металла шва и конструкции в целом.

Особенности электродов

Ключевая задача электродов для ММА сварки разнородных сталей – получение равнопрочного сварного соединения. Большая часть таких изделий применяется для сварки высоколегированных и легированных высокопрочных сталей. Особенности таких присадочных материалов:

  • минимальное содержание водорода, благодаря чему снижаются риски быстрого образования пор и межкристаллитных трещин в металле шва;
  • высокое содержание никеля: коэффициент его расширения близок к показателям низко- и среднелегированных сталей, благодаря чему обеспечивается стабильная зона сплавления.

Еще одна особенность: наличие в составе, помимо никеля, кремния, цинка и других легирующих добавок – в широком ряде случаев они позволяют подавить рост и даже полностью предотвратить образование указанных выше хрупких интерметаллических прослоек.

Особенности сварки

В большинстве случаев соединения разнородных сплавов ММА сварка выполняется на пониженных токах, при этом – с увеличенной скоростью. Это необходимо для того, чтобы ширина переходного интерметаллического шва была минимальной. Таким образом предотвращается появление трещин, которые могут образоваться у линии сплавления в металле шва.

При сварке перлитных (углеродистых) и аустенитных (высоколегированных) сталей используются стержни из более тугоплавких аустенитных сталей. Это необходимо для того, чтобы обеспечить наплавленному металлу необходимую аустенитную структуру, что важно для конструкций из теплостойких, жаростойких и жаропрочных сталей. Одна из технологий такой сварки:

  • наплавление тонкого слоя аустенитной стали на деталь из углеродистой стали;
  • подогрев кромок;
  • сварка деталей в режиме, используемом для аустенитных сталей.

При соединении углеродистых и хромистых сталей, напротив, используются электроды из сталей перлитного класса. В этом случае в зоне переходных участков со стороны хромистой стали обеспечивается необходимая высокая пластичность и ударная вязкость.

Как правило, сварка выполняется постоянным током обратной полярности. Инверторный аппарат позволяет максимально точно задать все сварочные параметры для получения металла шва необходимых характеристик.

Марки электродов для сварки разнородных сталей

Назовем некоторые наиболее распространенные марки электродной продукции, применяемые для решения профильных задач.

    – позволяют сваривать высоколегированные стали аустенитного класса с легированными и низколегированными. – обеспечивают прочный качественный шов, если необходимо соединить элементы из аустенитной хромоникелевой стали с деталями из высокомарганцовистых, специальных или низколегированных сталей. – применяются при изготовлении конструкций, в которых сварным способом соединяются детали из аустенитных сталей, с одной стороны, и низколегированных или углеродистых – с другой.

Среди профильной продукции также широко известны отечественные марки ЦТ-28, Э-42А-Э100, ОЗЛ-6, ОЗЛ-27, ОЗЛ-28, НИАТ-5, ОЗЛ-25Б. Их специализация – соединение деталей из сталей самой обширной группы – углеродистых и низколегированных с элементами из теплостойких, жаростойких, неконструкционных, трудносвариваемых и других сталей.

Электроды для сварки разнородных сталей широко представлены в каталоге изделий Магнитогорского электродного завода.

Как правильно выбрать электроды для сварки

Речь в статье пойдет о покрытых электродах, используемых для ручной электродуговой сварки. Параметры выбора электродов достаточно многочисленны, назовем основные:

  • выбор металлов, сплавов (стали, сплавы, разновидности чугуна и т. д.).
  • типы обслуживаемой конструкции или оборудования;
  • тип работ, который зависит от конструкции (массивные, толстостенные, тонкостенные, тавровые и т. д.);
  • род используемого для сварки тока;
  • наличие опыта у сварщика;
  • собственно, качество самого электрода.

Основываясь на этих параметрах, рассмотрим вопрос о том, как сделать оптимальный выбор.


Виды электродов для сварки и стали

Рассматривая типы и марки электродов для сварки, для начала остановимся на первых. Покрытые электроды (а именно они представлены в каталоге продукции МЭЗ) подразделяются на 4 основных типа — в зависимости от покрытия, которое на них наносится.

Основное покрытие («Б»)

Это один из наиболее распространенных типов обмазки, в составе которой — карбонаты кальция и магния. В маркировке обозначаются буквой «Б». Ключевое преимущество — малое содержание водорода в составе покрытия. Это и другие свойства позволяют получать механически очень прочный, высокопластичный шов с отличной ударной вязкостью. Электроды используются при сварке особо ответственных конструкций, а также конструкций, которые будут эксплуатироваться в знакопеременных по температуре условиях и суровых северных условиях. Наиболее широко известна марка УОНИ 13/55, УОНИИ 13/55, УОНИ 13/45. Среди минусов: образование при сварке сравнительно большого количества шлака, риски появления пор в сварном шве при сварке на длинной дуге, при влажной или окисленной поверхности.

Рутиловое покрытие («Р»)

Также является одним из самых широко используемых. Основа состава — рутил (диоксид титана), помимо него присутствуют кислород и кремний. Изделия обеспечивают легкий первичный, повторный поджиг, стабильное горение дуги, малое количество брызг, легкое отделение шлаковой корки, ровный шов товарного вида. Оптимально подходят для сварки низкоуглеродистых сталей. Наиболее популярные марки — МР-3 ЛЮКС, МР-3, ОЗС-12, АНО-21. В ряду минусов: необходимость в низкой влажности и в обязательной предварительной прокалке во избежание рисков окисления металла шва.

Кислое покрытие («А»)

Имеет в составе железо, кремний, марганец, другие элементы. Электродами с кислой обмазкой можно вести сварку по поверхностям с окалиной или ржавчиной, они обеспечивают высокую сопротивляемость возникновению в металле шва воздушных каналов. Из минусов — угроза появления в последнем горячих трещин.

Целлюлозное покрытие («Ц»)

Состоит из целлюлозы, органических смол, ферросплавов и других элементов. Электроды хорошо подходят для выполнения сварки в вертикальном положении благодаря малому количеству шлака и выделению защитных газов. В числе минусов — высокий уровень разбрызгивания металла и высокое содержание водорода, что может ухудшить качество металла сварного шва.


Выбор электродов для сварки металлоконструкций

Выбор перечисленных выше типов электродов зависит от того, какие работы выполняются (сварка или наплавка, заварка браков литья), а также от того, какие металлы и сплавы используются. Поэтому подбирать оптимальный вариант электродов для металлоконструкций следует с учетом их основного назначения:

Назначение

Рекомендуемые марки электродов

Сварка углеродистых и низколегированных конструкционных сталей

Сварка легированных высокопрочных сталей

Сварка теплоустойчивых, жаропрочных сталей и сплавов

ОЗЛ-35, КТИ-7А, ИМЕТ-10, ТМЛ-3У, АНЖР-2, ЦЛ-39

Сварка «нержавейки», коррозионностойких сталей и сплавов

УОНИ-13НЖ, ЭА-400/10Т, ИЖ-15С, ЦТ-15, НИАТ-1

Сварка элементов из разных материалов и сталей разных классов

ОЗЛ-32, ЦТ-28, ЭА-391/15, АНЖР-2, ВИ-ИМ-1, ИМЕТ-10, НИИ-48Г, В-56У

Сварка изделий из никелевых сплавов

Сварка литого чугуна

МНЧ-2, ОЗЧ-3, ОЗЖН-1, ОЗЖН-2

Сварка ковкого чугуна

НИИ-48Г, АНВ-20, ОЗЛ-44, ЭА-112/15

Сварка изделий из сплавов на основе алюминия

ОЗА-1, ОЗА-2, ОЗАНА-1, ОЗАНА-2

Сварка медных и бронзовых деталей

Комсомолец-100, АНЦ/ОЗН-3; ОЗБ-2М (для бронзы)

Наплавка деталей, работающих в условиях абразивного износа

Наплавка деталей, работающих в условиях интенсивных ударных нагрузок при абразивном износе

12АН/ЛИВТ, ТК3-Н, ВСН-6

Наплавка деталей, работающих в условиях интенсивного износа с ударными нагрузками

Наплавка деталей, работающих в условиях интенсивных ударных нагрузок

Наплавка изношенных деталей из высокомарганцовистых сталей

Наплавка металлорежущего инструмента

Как подобрать диаметр электрода в зависимости от толщины металла


При выборе следует учитывать зависимость диаметра электрода от толщины свариваемого металла изделий и элементов. Чем толще последний — тем, соответственно, больше и толщина стержня электрода. Так,

  • при толщине свариваемых элементов в 1,5-2,5 мм толщина электрода будет составлять 2-2,5 мм;
  • при толщине в 3 мм — соответственно 2,5-3 мм;
  • при 4-5 мм — 3-4 мм;
  • при 6-10 мм — 4-5 мм.

Допустимые значения сварочного тока также варьируются в зависимости от диаметра расходника (об этом — ниже). При повышенных значениях тока (всегда указываются на упаковке) и превышении рекомендуемых показателей диаметра существуют риски образования в металле шва пор. Следует также сказать о том, что если толщина изделий не более 1,5 мм, ручная дуговая сварка обычно не используется.

Выбор силы сварочного тока под электроды

Электродные расходники могут работать на постоянном и/или на переменном токе. Так, электроды с рутиловым покрытием используются в сварке как на постоянном, так и на переменном токах, то время как изделия с обмазкой основного типа (как, например, УОНИ 13/55 →) — только на постоянном токе обратной полярности.

Выбор силы сварочного тока напрямую влияет на качество сварки и получаемого результата. Если он подобран неправильно, заготовка при сварке может просто прожечься или, напротив, металл не оплавится на нужную глубину. Для правильного подбора существуют госты и рекомендуемые настройки, проверенные годами практики. Одно из ключевых правил — зависимость силы тока от диаметра электрода, важную роль также играют:

  • толщина заготовки;
  • пространственное положение сварки;
  • длина дуги;
  • количество слоев шва.

Для начинающих сварщиков будет полезно знать одно из основных негласных правил: на 1 мм диаметра электрода приходится в среднем 20-30 Ампер тока. Усредненно значения выглядят следующим образом:

Электроды для сварки высоколегированных сталей и сплавов

Согласно современной классификации (ГОСТ 5632—72) к высоколегированным сталям условно относят сплавы, содержание железа в которых более 45%, а суммарное содержание легирующих элементов не менее 10%, считая по верхнему пределу, при концентрации одного из элементов не менее 8% по нижнему пределу. К сплавам на никелевой основе относят сплавы с содержанием не менее 55% Ni. Такие стали и сплавы применяют в качестве коррозионно-стойких, жаростойких и жаропрочных материалов. Соответственно можно классифицировать и сварочные электроды по ГОСТ 10052—75 и отраслевой нормативно-технической документации. Высоколегированные электроды используют также для получения качественных соединений разнородных сталей и сплавов, при сварке конструкционных сталей без подогрева, для наплавки.

Специфическими особенностями физических свойств высоколегированных материалов являются пониженные температура плавления и теплопроводность, высокие электросопротивление и (для сталей) коэффициент линейного расширения. Указанные особенности и предопределяют поведение высоколегированных материалов при ручной дуговой сварке. Из-за низкой теплопроводности и высокого электросопротивления скорость плавления, а следовательно, и коэффициент наплавки электродов со стержнями из высоколегированных сталей и сплавов существенно выше, чем у электродов общего назначения. Повышенное электросопротивление металла стержней обусловливает применение укороченных электродов и меньших сварочных токов (20—30 А/мм). Превышение рекомендуемых документацией сварочных токов для высоколегированных электродов недопустимо, так как приводит к перегреву сварочного стержня, изменению характера плавления покрытия, вплоть до опадания кусков обмазки. Применению малых сварочных токов способствует и низкая теплопроводность металла, обусловливающая повышенную глубину проплавления (в сравнении с конструкционными сталями).

Отмечено различное поведение высоколегированных электродов при сварке на прямой и обратной полярности, связываемое с тепловыми характеристиками дуги. При сварке на прямой полярности напряжение на дуге на 15—20% выше, чем при сварке на обратной полярности. Соответственно больше тепловая мощность дуги, также повышается температура катода-электрода при сварке на прямой полярности. В основном из-за этого во избежание перегрева электрода при ручной дуговой сварке высоколегированных сталей и сплавов рекомендуется обратная полярность.

Высоколегированные стали и сплавы являются сложными металлургическими системами, содержащими в своем составе самые разнообразные элементы, которые обеспечивают их специальные свойства в различных условиях обработки и эксплуатации. Концентрация вредных примесей в них ограничена пониженными пределами, так как они в первую очередь понижают стойкость сталей и швов к образованию горячих трещин. Большое (иногда решающее) влияние на свойства сварных соединений высоколегированных сталей и сплавов оказывает металлургическая наследственность металла. Именно по этой причине целесообразен отбор плавок металла по специальным технологическим пробам для изготовления электродной проволоки.

Химический состав и структура наплавленного металла электродов для сварки высоколегированных сталей и сплавов отличаются, часто существенно, от состава и структуры свариваемых материалов. Даже при одинаковом составе свойства листового проката и литого металла шва будут различны, например, по пределу текучести для хромоникелевых аустенитных сталей типа 18—10 в 1,5 раза. Технология изготовления сталей и технология получения качественного сварного соединения также предъявляют специфические и противоречивые требования к составам материалов, в частности по структуре. С точки зрения обеспечения необходимой горячей пластичности и получения технологичного на различных стадиях металлургического передела металла необходима однофазная (аустенитная) структура, а для предотвращения образования горячих трещин — наличие определенного количества второй фазы в металле шва.

Основными вопросами, решающими выбор электродов при сварке высоколегированных сталей и сплавов, являются обеспечение основных эксплуатационных характеристик сварных изделий (коррозионной стойкости, жаростойкости и пр.), обеспечение стойкости металла к образованию горячих трещин, сварочно-технологические возможности электродов. Разнообразие условий работы оборудования из высоколегированных сталей и сплавов сотен марок, требований к свойствам сварных соединений в различных конструкциях (даже из стали одной марки) и к сварочно-технологическим свойствам электродов диктует необходимость использования большого ассортимента сварочных электродов.

До недавнего времени электроды для сварки высоколегированных сталей и сплавов отличало однообразие применяемых видов покрытий. При этом ведущим в отечественной практике является основное покрытие типа УОНИ-13, на базе которого, комбинируя проволоки различного состава, номенклатуру и содержание легирующих и раскислителей в покрытии, получают самые разнообразные электроды. Необходимость применения основных покрытий часто даже относят к общим правилам ручной дуговой сварки высоколегированных сталей всех марок. Этот взгляд во многом обусловлен опасностью развития при низкой основности покрытий кремневосстановительного процесса, приводящего к загрязнению металла шва силикатными включениями, вследствие чего возможно снижение его ударной вязкости и повышение склонности к образованию горячих трещин.

Такой процесс протекает из-за того, что стандартное связующее электродных покрытий — растворы силиката натрия — играют особую роль при сварке высоколегированных сталей. При понижении основности покрытия и наличии таких энергичных раскислителей, как алюминий и титан, возникают благоприятные условия для протекания кремневосстановительного процесса за счет сухого остатка жидкого стекла. Радикальным средством его предотвращения служит только замена связующего.

Органические покрытия в электродах для сварки высоколегированных сталей и сплавов не применяются из-за высокой науглероживающей способности и высокого содержания водорода. Органические соединения при температуре свыше ~140°С разлагаются с образованием активного сажистого углерода, который и является причиной повышения концентрации углерода в наплавленном металле. Использование рудно-кислых покрытий затруднено из-за их высокой окислительной способности.

Рутиловые и рутил-карбонатные покрытия для сварки высоколегированных сталей начали применять позже. Накопленный к настоящему времени опыт свидетельствует о рациональности их применения. К выводам о равнозначности характеристик металла шва одинакового уровня легирования и структуры, полученного с применением основных, рутиловых и рутил-карбонатных покрытий, приводят статистические данные. Рутиловые и рутил-карбонатные электроды ОЗЛ-14А, 03Л-36, ЭА-400/10Т, ОЗЛ-17У, НИАТ-1 и другие успешно применяют в различных отраслях в качестве ведущих сварочных материалов наряду с основными электродами марок ОЗЛ-8, ЭА-400/10У и пр.; рутил-карбонатные электроды ОЗЛ-9А распространены при сварке жаростойких сталей и т. д.

С точки зрения предотвращения образования горячих трещин радикальным средством является получение двухфазной структуры металла шва. При этом не важно, что представляет собой вторая фаза — δ-феррит, интерметаллиды или что-то иное. Необходимо образование в высокотемпературной области при кристаллизации металлов двухфазного строения, что приводит к получению швов с дезориентированной структурой. При двухфазной структуре металла шва его стойкость к трещинам не зависит от вида покрытия.

При сварке стабильно аустенитных сталей и сплавов для борьбы с горячими трещинами достаточно успешно применяют легирование наплавленного металла молибденом и марганцем, а в ряде случаев и азотом (электроды НИАТ-5, 03Л-37-2, АНВ-20 и др.). Это позволяет получать достаточную стойкость к трещинам даже в условиях кремневосстановительного процесса, характерного для рутиловых электродов.

Жесткие ограничения по видам применяемых покрытий накладывают требования обеспечения необходимой коррозионной стойкости металла шва в связи с продолжающейся тенденцией к применению коррозионно-стойких сталей со сверхнизким содержанием углерода (≤0,03%), что выдвигает на первый план проблему получения наплавленного металла с таким же содержанием углерода. При сварке электродами с основными покрытиями происходит науглероживание наплавленного металла. Концентрация углерода повышается за счет взаимодействия металла с углекислым газом, образующимся при диссоциации карбонатов.

При этом наиболее резко концентрация углерода возрастает при введении небольшого (до 15%) количества мрамора в покрытие и малой исходной концентрации углерода в проволоке.

Одним из ограничений может стать то обстоятельство, что мрамор при его содержании, принятом для основных покрытий, представляет собой достаточно сильный окислитель. Особенно йрко это проявляется для элементов с высоким сродством к кислороду, например для титана коэффициент перехода из проволоки уменьшается вдвое при изменении концентрации мрамора от 10 до 40. Также увеличивается разница в коэффициентах перехода элемента из проволоки и покрытия. По указанным причинам при сварке высоколегированных сталей, в состав которых входят легкоокисляющиеся элементы, часто необходимы неосновные, так называемые безокислительные рутиловые покрытия.

Применяющиеся в настоящее время в мировой практике электроды построены на принципе газошлаковой защиты расплавленного металла от кислорода и азота воздуха. В качестве компонентов, обеспечивающих газовую защиту, применяют, как правило, карбонаты. При их уменьшении или отсутствии в покрытии газовую защиту может обеспечивать плавиковый шпат за счет выделяющихся фторидов. Плавиковый шпат также способствует устранению водородной пористости, для чего его содержание в рутиловых покрытиях не должно снижаться менее 8%. Газовый состав для электродов с покрытиями разных видов отличается не очень значительно.

Вследствие повышенной растворимости газов в металле с высокими концентрациями хрома и никеля вопросы пористости применительно к таким электродам имеют существенно меньшее значение. Основной причиной образования пор служит азот, выделяющийся из пересыщенного жидкого металла в процессе его охлаждения и кристаллизации. Низкая скорость диффузии азота является причиной того, что он при кристаллизации выделяется не так быстро, как другие газы, вследствие чего может образоваться пористость, особенно при затруднении условий выделения азота, например, при сварке в горизонтальном или потолочном положениях. Водород и кислород существенно меньше влияют на процесс порообразования, но в сочетании с азотом могут способствовать возникновению пористости металла шва, являясь газами-заполнителями.

При прочих равных условиях решающее значение часто приобретают сварочно-технологические свойства электродов. Они существенно зависят от материала электродного стержня. В частности, переход на высоколегированные стержни для покрытий закрепленного состава весьма сказывается на качестве формирования швов при сварке в различных пространственных положениях. Например, коэффициент формы выпуклости шва, служащий критерием оценки качества формирования, снизился от 3,75 (стержень Св-08) до 2,72 (стержень Св-02Х19Н9), т. е. в 1,4 раза. Вероятно это связано с изменением межфазного натяжения на границе шлак—металл и текучести ванны, представляющей собой сложную характеристику. Для высоколегированных электродов текучесть ванны жидкого металла, оцениваемая массой выплеска, резко возрастает при переходе от электродов диаметром 4 мм к диаметру 5 мм: от 0,08—0,3 до 0,9—1,1 (для разных покрытий). В обратной зависимости снижается критерий качества формирования шва — от 3,4 до 1,75 (для электродов с основным покрытием). Для электродов диаметром менее 4 мм масса выплеска, как правило, не превышает 0,1 г, что и предопределяет их технологичность. По-видимому, этим обстоятельством во многом вызвано распространение в мировой практике электродов диаметром 3,15—3,25 мм.

Сварочно-технологические характеристики высоколегированных электродов с разными видами покрытий различны. Основные покрытия дают шлаки малой жидкотекучести и предпочтительны для швов, выполняемых в вертикальном и потолочном положениях. Электроды с рутиловыми покрытиями обеспечивают более гладкую поверхность швов, легкую отделимость шлака, мягкое горение и малое разбрызгивание, дают принципиальную возможность сварки на переменном токе. Повышенная жидкотекучесть шлаков обеспечивает их легкое передвижение и повышенную скорость сварки. Рутиловые электроды обеспечивают малое проплавление основного металла. Применительно к сварке высоколегированных сталей последняя характеристика покрытий с большим содержанием оксида титана (рутила) имеет важное значение. Покрытия из плавикового шпата обеспечивают существенно большее проплавление, что нежелательно.

С учетом всего изложенного и должен осуществляться выбор марки электродов из представленных в каталожной части для конкретного применения.

Технология сварки разнородных сталей

Инструктаж персонала

Разнородными принято считать стали, которые отличаются атомно-кристаллическим строением, т.е. имеют ГЦК-, ОЦК- решетку или принадлежат к разным структурным классам (перлитные, ферритные, аустенитные), а также стали с однотипной решеткой, относящиеся к различным группам по типу и степени легирования (низколегированные, легированные, высоколегированные). Они содержат в сумме до 5, 10 или свыше 10 % хрома и других легирующих элементов соответственно.

В табл. 1 приведены основные группы сталей, применяемых в машиностроении. Из них формируют различные сочетания для изготовления сварных конструкций.

Табл. 1 Классификация сталей, применяемых в сварных соединениях разнородных сталей

Класс сталей и сварочных материалов

Характеристика сталей

Марки (примеры)

Перлитные и бейнитные

09Г2С, 10ХСНД, 20ХГСА

30ХГСА, 40Х, 40ХН2МА, 38ХВ

Теплоустойчивые (Cr-Мо и Cr-Mo-V)

12МХ, 12Х1МФ, 20Х1М1Ф169

Мартенситные, ферритные, ферритно-мартенситные, аустенитно-мартенситные, ферритно-аустенитные

12 %-ные хромистые, жаростойкие

08X17Т, 15Х25Т, 20X17Н2

12 %-ные хромистые, жаропрочные

Аустенитные стали и сплавы на никелевой основе

Аустенитные коррозионно-стойкие и криогенные

Жаропрочные никелевые сплавы

Конструкции, сваренные из разнородных сталей, называют комбинированными. Они применяются в тех случаях, когда условия работы отдельных частей конструкции отличаются температурой, агрессивностью среды, особыми механическими воздействиями (износ, знакопеременное нагрузка и т.п.).

Особенности технологии сварки комбинированных конструкций из сталей различных структурных классов

Одна из причин пониженной свариваемости перлитной и аустенитной сталей - образование хрупкого мартенситного слоя или карбидной гряды в объеме переходной кристаллизационной прослойки, у которой уровень легирования металла снижается, приближаясь к перлитной стали. Образование этой прослойки объясняется ухудшением перемешивания жидкого металла в пристеночных слоях. При небольшом запасе аустенитности металла шва толщина этой прослойки может достигнуть критической величины, при которой происходит хрупкое разрушение сварного соединения.

Поэтому при выборе способов и режимов сварки отдают предпочтение технологии, при которой толщина кристаллизационной прослойки минимальна. Этого достигают следующими методами:

- Применением высококонцентрированных источников тепла (электронный луч, лазер, плазма);

- Разделкой кромок или их наплавкой (рис. 1), уменьшающей долю участия сталей;

- Выбором режимов сварки с минимальной глубиной проплавления;

- Переходом к дуговой сварке в защитных газах, обеспечивающей интенсивное перемешивание металла ванны.

Преимущества сварки комбинированных конструкций в защитных газах связаны с увеличением температуры расплавленного металла, снижением поверхностного натяжения и, соответственно, увеличением интенсивности его перемешивания, что вызвано ростом приэлектродного падения напряжения сварочной дуги и увеличением кинетической энергии переноса капель электродного металла и плазменного потока в дуге.

Добавление в аргон кислорода, азота, углекислого газа усиливает отмеченные преимущества. Добавки кислорода повышают температуру ванны также тем, что вызывают экзотермические окислительно-восстановительные реакции. В результате отмеченных явлений снижается уровень структурной и механической неоднородности в зоне сплавления перлитной стали с аустенитным швом.

При ручной дуговой сварке положительные результаты получают в противоположном варианте, т.е. при снижении температуры сварочной ванны, что зависит от температуры плавления электрода. Снижения температуры плавления электрода достигают увеличением содержания никеля и марганца. Применение таких электродов является наиболее радикальным мероприятием и при сварке под флюсом, одновременно уменьшающем ширину кристаллизационных и диффузионных прослоек (рис. 2).

При сварке под флюсом перемешивание ванны также может быть усилено увеличением силы тока, напряжения или скорости сварки. Однако рост этих параметров приводит к неблагоприятному изменению схемы кристаллизации (увеличению угла срастания кристаллитов), что увеличивает риск образования горячих трещин. Скорость сварки, как правило, не должна превышать 25 м/ч. Интенсивному электромагнитному перемешиванию ванны препятствует наличие шунтирования магнитного поля перлитной сталью, а также нарушение шлаковой защиты. В этом процессе весьма эффективен ввод внутренних стоков тепла в виде охлаждающей присадки (рис. 3), также снижающей температуру ванны.

Табл. 2 Выбор композиции наплавленного металла и термообработки для сварки перлитных и бейнитных сталей с аустенитными сталями и сплавами

Группа свариваемых сталей (см. табл. 1)

Композиция наплавленного металла

Предельная температура эксплуатации, °С

Термическая обработка

VI – VIII + XI – XIII

При формировании следующего слоя 2 со стороны перлитной стали в нем участвует основной металл (т. П), и корневой шов (отрезок а - в), образуя ванну состава т. Д, а также входящий в нее электрод (т. В), что в сумме создает металл слоя со структурой в - г, соответственно долей их участия. Аналогично слой 3 со стороны аустенита характеризуется отрезком е - д.

Большой запас аустенитности металла шва позволяет предотвратить образование малопластичных участков с мартенситной или карбидной структурой в корневых швах и слоях, примыкающих к перлитной стали в условиях неизбежного колебания долей их участия. Однако для этого варианта технологии будет характерна высокая склонность к возникновению горячих трещин в однофазном аустенитном металле шва, образующихся по границам зерен, сформированных в результате миграции. Для их предотвращения в швах со стабильно аустенитной структурой наплавленный металл легируют элементами, снижающими диффузионные процессы при высоких температурах, применяют электроды типа Х15Н25АМ6, содержащие 6 % Мо и 0,2 . 0,3 % N. Они препятствуют развитию высокотемпературной ползучести и межзеренного проскальзывания в твердом металле при сварке, повышая при этом пластичность в температурном интервале хрупкости и тем самым предотвращают образование горячих трещин. Более сложный вариант технологии необходим при сварке жестких узлов из аустенитной и среднеуглеродистой стали мартенситного класса, когда в корневых слоях из-за увеличения до 0,5 доли участия основного металла возможно образование горячих трещин, а в верхних слоях - холодных трещин типа "отрыв" и "откол". В этом случае корневые слои выполняют электродами, содержащими до 60 % Ni и 15 % Мо.

Указанные электродные материалы с однофазной аустенитной структурой шва применяют и при сварке перлитных сталей с термоупрочняемыми жаропрочными аустенитными сталями и никелевыми сплавами.

В большинстве таких случаев при сварке перлитных и термически неупрочняемых аустенитных сталей группы IX применяют другой - аустенитно-ферритный электрод, образующий в наплавленном металле 10 . 12 % ферритной фазы и допускающий долю участия перлитной стали в металле шва до 30 %. При смешивании материала электрода и расплава в том же соотношении будет получен шов, содержащий 4 . 6 % дельта-феррита, что исключает образование горячих трещин, но несколько увеличивает толщину кристаллизационной прослойки.

Такой вариант технологии допустим при сварке аустенитных сталей с перлитными (группы II - III), содержащими активные карбидообразователи для ограничения диффузии углерода, либо содержащих весьма малое количество углерода путем его частичной замены азотом.

Для сварных узлов, эксплуатирующихся при высоких температурах, необходимо применение высоконикелевых электродов типа ХН60М15. Швы, выполненные такими электродами хорошо работают в условиях теплосмен из-за равенства коэффициента линейного расширения с перлитной сталью (см. табл. 10.2). Этими электродами заваривают дефекты литья сталей групп IV и V без последующей термообработки.

При недостаточности или неприемлемости указанных технологических вариантов прибегают к сварке через проставки или к предварительной, в том числе комбинированной (см. рис. 10.9) наплавке кромки перлитной стали аустенитным металлом, с последующей сваркой таких заготовок аустенитно-ферритными сварочными материалами с регламентированным количеством ?-Fe (2 . 6 %).

При сварке кислотостойких и жаропрочных высокохромистых ферритных сталей (гр. VIII) с аустенитными (гр. XI . XIII) принципиально возможно применение как аустенитных, аустенитно-ферритных, так и высокохромистых электродов, поскольку при перемешивании в ванне указанных сталей с электродным металлом при доле его участия до 40 % металл шва сохраняет такую же структуру, как и у наплавленного указанными электродами. При этом с повышением температуры эксплуатации выше 500 °С предпочтительны высокохромистые электроды. При эксплуатации в условиях термоциклирования необходимо сваривать указанные сочетания сталей аустенитными электродами на никелевой основе, поскольку их коэффициент линейного расширения близок с высокохромистой сталью. Для удовлетворения требований жаростойкости шва следует применять электроды с высоким содержанием хрома (25 . 27 %) и никеля (12 . 14 %), что позволяет их эксплуатировать при 1000 °С.

При неагрессивных рабочих средах соединения указанных сталей, подвергаемые термообработке, могут быть выполнены электродами типа Э-08Х15Н25АМ6, которые допускают значительное перемешивание с основным металлом без образования горячих трещин. Если термообработка невозможна, рекомендуется облицовка кромок закаливающихся сталей электродами на никелевой основе.

Третий вариант технологии предусматривает предварительную наплавку на перлитную закаливающуюся сталь аустенитного слоя, при которой производится предварительный или сопутствующий подогрев, обеспечивающий необходимую скорость охлаждения, с последующим отпуском для устранения закалки. После этого детали из перлитной стали с наплавленными кромками сваривают с аустенитной сталью на режимах, оптимальных для последней.

Во всех случаях сварки разнородных сталей важным параметром процесса является уровень содержания водорода в шве, зависящий от длины дуги и температуры прокалки электродов. Водород вызывает пористость швов и способствует развитию зародышей всех указанных выше типов холодных трещин в закаленных зонах. Поэтому необходимо применять низководородистые электроды с основным покрытием и флюсы на фтористо-кальциевой основе.

Другое сочетание сталей разнородных структурных классов в сварных конструкциях - сварка перлитных и высокохромистых сталей. При сварке перлитных сталей с 12 %-ными хромистыми сталями необходимо предотвратить образование мартенсита и холодных трещин, а также развития диффузионных прослоек при отпуске и высокотемпературной эксплуатации. При выборе сварочных материалов следует исключить образование хрупких переходных участков в зонах перемешивания сталей. Для обеспечения наибольшей пластичности шва применяют сварочные материалы перлитного класса (табл. 3). В этом случае в переходных участках со стороны высоколегированной стали, содержащих до 5 % хрома, сохраняется высокая пластичность, вязкость, а также длительная прочность соединения в целом. Для снижения размеров диффузионных прослоек перлитный наплавленный металл должен легироваться определенным количеством более активных, чем хром, карбидообразующих элементов.

Табл. 3 Выбор композиции наплавленного металла и термообработки для сварки перлитных сталей с мартенситными, ферритными и аустенитно-ферритными

Читайте также: